COVARIANT ENTANGLEMENT CONSTRUCTS

Veronika Hubeny

Physics Department & center for Quantum Mathematics and Physics

NORDITA, Aug.20, 2016

based on earlier works w/ {M. Headrick, A. Lawrence, H. Maxfield, M. Rangamani, T. Takayanagi, E. Tonni} & on work in progress w/ M. Headrick

Motivation

- Elucidate holography
 - Fundamental nature of spacetime & its relation to entanglement
 - Structure/characterization of CFTs (& states) w/ gravity dual
- Start w/ situations with large amount of symmetry (e.g. pure AdS)
 - Explicit calculations possible, can obtain analytical expressions
 - Use these to guess duality relations → entry in gauge/gravity dictionary
- But this has limitations
 - How to generalize? (e.g. time dependence)
 - Often symmetry brings degeneracy between logically distinct concepts
- Need to "covariantize"
 - Define a quantity which is purely geometrical (e.g. independent of any choice of coordinate systems) and fully general

Utility of covariant constructs

- Gives a general prescription
 - Definition of a quantity is equally robust on both sides of duality
 - Once beyond analytically tractable cases, might as well go for full generality (within the class of systems we want to consider)
- Time dependence interesting in its own right
 - Novel phenomena in out-of-equilibrium systems
 - New insight into the structure of the theory
- Breaks degeneracy between distinct constructs
 - Allows us to identify the true dual → underlying nature of the map
- Natural covariant constructs motivate new relations
 - Even if a given construct is not the sought dual, it eventually finds its use

Example: Holographic EE

Proposal [RT=Ryu & Takayanagi, '06] for static configurations:

In the bulk, entanglement entropy $S_{\mathcal{A}}$ for a boundary region \mathcal{A} is captured by the area of a minimal co-dimension-2 bulk surface \mathbf{m} at constant t anchored on entangling surface $\partial \mathcal{A}$ & homologous to \mathcal{A}

$$S_{\mathcal{A}} = \min_{\partial \mathfrak{m} = \partial \mathcal{A}} \frac{\operatorname{Area}(\mathfrak{m})}{4 G_{N}}$$

Covariant Holographic EE

But the RT prescription is not well-defined outside the context of static configurations:

- In Lorentzian geometry, we can decrease the area arbitrarily by timelike deformations
- In time-dependent context, no natural notion of "const. t" slice...

In time-dependent situations, RT prescription must be covariantized:

Simplest candidate: [HRT = VH, Rangamani, Takayanagi '07]

minimal surface m at constant time

in the full bulk

This gives a well-defined quantity in any (arbitrarily time-dependent asymptotically AdS) spacetime

⇒ equally robust as in CFT

Covariant Holographic EE

In fact, [Hubeny, Rangamani, Takayanagi '07] identified 4 natural candidates: (all co-dim.2 surfaces ending on ∂A , and coincident for ball regions A in pure AdS)

- \mathfrak{E} = Extremal surface
- \bullet Ψ = Minimal-area surface on maximal-volume slice
- Φ = Surface with zero null expansions
- Ξ = Causal wedge rim

Later known as Causal Information Surface; w/ area = causal holographic information χ [Hubeny, Rangamani '12]

 $\mathfrak{E} = \Phi$

is correct

= 'HRT prescription'

Power of covariant constructs

- 'Natural' geometrical constructs (defined for general bulk spacetimes, independent of coordinates) provide useful candidates for dual of 'natural' quantities in CFT
- e.g. dual of $\rho_{\mathcal{A}}$? [Bousso, Leichenauer, Rosenhaus; Czech, Karczmarek, Nogueira, Van Raamsdonk;...]
- In generic Lorentzian spacetime, null congruences which define a causal set provide useful characterization of 'natural' bulk regions.

$D[\mathcal{A}] \rightarrow \text{Causal Wedge:}$

= future and past causally-separated from bdy region determined by $\rho_{\mathcal{A}}$ [VH & Rangamani]

𝔄 → Entanglement Wedge:

= spacelike-separated (toward \mathcal{A}) from \mathfrak{E} [Headrick,VH, Lawrence, Rangamani]

NB: in pure AdS, & for spherical \mathcal{A} , these coincide, but not in general.

Causal wedge vs. Entanglement wedge

• Even in pure AdS3, these can differ for composite regions $\,{\cal A}={\cal A}_1\cup{\cal A}_2\,$

Causal wedge vs. Entanglement wedge

• crucial difference: in which direction can null generators cross...

 $D[\mathcal{A}] \rightarrow \text{Causal Wedge:}$

𝔄 → Entanglement Wedge:

Power of covariant constructs

 $D[\mathcal{A}] \rightarrow \text{Causal Wedge:}$

𝔄 → Entanglement Wedge:

...continued past Ξ : \rightarrow Causal Shadow $Q_{\partial A}$

We can prove the inclusion property [Headrick, VH, Lawrence, Rangamani; Wall]

CW C EW

or equivalently, $\mathfrak{E}\subset\mathcal{Q}_{\partial\mathcal{A}}$

- Consequences:
 - HRT is consistent with CFT causality (= non-trivial check of HRT)
 - Entanglement plateaux
 - Entanglement wedge can reach deep inside a black hole!

Covariant re-formulations

- Covariance is pre-requisite to construct being physically meaningful, but it need not be unique
 - Distinct geometrical formulations can turn out equivalent (cf. $\mathfrak{E} = \Phi$)

- This redundancy is useful
 - Each formulation can have its own advantages
 - e.g. different properties may be manifest in different formulations (cf. gauge / coordinate choice)
 - Re-formulation can reveal deeper relations (cf. ER=EPR [Maldacena, Susskind])

Covariant re-formulations of HEE

- \mathfrak{E} = Extremal surface
 - (relatively) easy to find
 - minimal set of ingredients required in specification
 - need to include homology constraint as extra requirement

- Φ = Surface with zero null expansions
 - (cf. light sheet construction & covariant entropy bound [Bousso, '99]: Bulk entropy through light sheet of surface $\sigma \leq \text{Area}(\sigma)/4$ $\Phi = \text{surface admitting a light sheet closest to bdy}$

- Maximin surface [Wall, '12]
 - maximize over minimal-area surface on a spacelike slice
 - requires the entire collection of slices & surfaces
 - implements homology constraint automatically
 - useful for proofs (e.g. SSA)
- · But none of these elucidate the relation to quantum information

Bit thread picture of (static) EE

- Reformulate EE in terms of flux of flow lines [Freedman & Headrick, '16]
 - let v be a vector field satisfying $\,
 abla \cdot v = 0 \,$ and $\, |v| \leq 1$. Then EE is given by

$$S_{\mathcal{A}} = \max_{v} \int_{\mathcal{A}} v$$

 By Max Flow - Min Cut theorem, equivalent to RT: (bottleneck for flow = minimal surface)

- Useful reformulation of holographic EE
 - flow continuous under varying region (cf. minimal surfaces can jump discontinuously)
 - implements QI meaning of EE and its inequalities more naturally
 - provides more intuition: think of each bit thread as connecting an EPR pair
- How does this extend to time-dependent settings?

Covariantizing bit threads

I. Identify the correct geometrical quantities of interest

Analogous to flow lines (vector field \boldsymbol{v}) in

2. Identify the constraints they must satisfy

Analogous to
$$\ \, \nabla \cdot v = 0 \,\, {\rm and} \,\, |v| \leq 1$$

3. Identify the expression for EE obtained from these

Analogous to
$$S_{\mathcal{A}} = \max_{v} \int_{\mathcal{A}} v$$

- 4. Test that it fulfills all requisite requirements
- 5. Extract lessons / implications

Two natural possibilities

Step I:

extend threads in time flow sheets

keep I-d threads flow lines

Requirements on constructs

Imperative:

- Reduces to bit threads in static case
- Equivalent to HRT (when null energy condition (NEC) is obeyed)
- Depends only on $D[\mathcal{A}]$ (i.e. $\partial \mathcal{A}$ + orientation), not on \mathcal{A} itself

Useful:

- Manifests CFT causality (directly rather than via equivalence to HRT)
- Manifests area law, positivity, subadditivity, SSA, etc.
- Elucidates role of NEC
- Elucidates role of homology constraint w/ time-dependence

Flow sheets

- Most "obvious" generalization of bit threads
 - entanglement lasts in time & cannot be changed a-causally 🗸
- Danger:
 - Potentially too global (e.g. future singularity may prevent sheets in past)
 - Too many sheets through D[A] by local boost

Flow lines

Require:

- flow lines are spacelike everywhere
- flow lines don't end: i.e. keep v s.t. $\nabla \cdot v = 0$
- but use integrated norm bound: For a unit normal vector w on any worldline γ , $\int_{\gamma} w \cdot v \leq 1$

.. Over full lifetime, any observer sees at most 1 thread / 4 Planck areas

EE counts bit threads in D[A]: $S_A = \max_v \int_{D[A]} v$

- Covariant construct which works...
 - reduces to bit threads at const time in static case 🗸
 - threads must all pass through extremal surface (for max flow)
 - endpoints are floppy and can lie anywhere within D[A]
 - Bonus: naturally picks out the entanglement wedge
 - does not depend on spacetime in the far future

Flow lines

But what is the QI interpretation?

- Entanglement entropy counted by events?
 - \bullet e.g. # of indep. measurements that can be performed within $D[\mathcal{A}]$
 - novel interpretation...
- Why are I-d structures natural?
 - why is a specific measurement connected to another instantaneous event somewhere in \mathcal{A}^c ?

