
Quirks of 3d physics
A candidate WGC in 3d

The Weak Gravity Conjecture
in different spacetimes

M. Montero

Instituto de Física Teórica UAM-CSIC

Inward Bound
Nordita, August 17th 2016

M. Montero WGC in different spacetimes



Quirks of 3d physics
A candidate WGC in 3d

The WGC

Weak Gravity Conjecture [(Arkani-Hamed)-Motl-Nicolis-Vafa ’06]: Consistent
EFTs have a superextremal particle

m ≤ g√
GN

Q

Swampland: Constrains EFT without full knowledge of UV
completion [See Hartman’s talk]

Used recently to constrain large field inflation models and
relaxation [De La Fuente-Saraswat-Sundrum ’14, Rudelius ’14,’15, MM-Uranga-Valenzuela ’15,

Brown-Cottrell-Shiu-Soler ’15 (x2), Bachlechner-Long-McAllister ’15,

Hebecker-Mangat-Rompineve-Witkowski ’15, Junghans ’15, Heidenreich-Reece-Rudelius ’15 (x3), Palti ’15,

Kooner-Parameswaran-Zavala ’15, Ibañez-Montero-Uranga-Valenzuela ’15,

Hebecker-Rompineve-Westphal ’15, Fonseca-de Lima-Machado-Matheus ’16,

Parameswaran-Tasinato-Zavala ’16, Baume-Palti ’16, (García-Valdecasas)-Uranga ’16].

M. Montero WGC in different spacetimes



Quirks of 3d physics
A candidate WGC in 3d

The WGC

Original heuristics: Decay of charged black holes (mild
form)
EFT constraints require strong forms [Brown-Cottrell-Shiu-Soler ’15,

Heidenreich-Reece-Rudelius ’15].
WGC works in every string theory example so far.
Yet no formal, general proof! Progress with G. Shiu and P.
Soler (UW-Madison) along this direction [MM-Shiu-Soler ’16].
[Heidenreich-Reece-Rudelius ’16] uses similar techniques. Results
consistent with ours.
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The setup

We will look at the WGC in AdS spacetimes. . . [Nakayama-Nomura ’15]

. . . and in three dimensions.

Pros & cons:
Behavior of gravity & gauge fields much simpler.
Greatly enhanced CFT symmetry group.
Extra constraints on CFT, such as modular invariance.
Main con: d = 3 so different from d > 3 that any
relationship to higher d WGC is uncertain at best.
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Gravity in three dimensions

In d = 3, gravity is topological, since Rµναβ is a function of the
metric. In AdS ∃ black hole [Bañados, Teitelboim, Zanelli ’92]

ds2 = −
(
−8GM +

r2

l2
+

J2

4r2

)
dt2 +

dr2

−8GM + r2

l2 + J2

4r2

+ r2
(

dφ− Jdt
2r2

)2

with horizon at

r+ = l

4GM

1 +

√
1−

(
J

Ml

)2
 1

2

.

Notice horizon is of cosmological size!
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Gauge fields in 3d

Consider a compact U(1) gauge theory in 3d. Major points:
In 3d, compact U(1) confines [Polyakov ’77] unless we add a
Chern-Simons term

µ

2

∫
F ∧ A, µ ≡ N

2π2 e2

This modifies e.o.m:

d ∗ F = ∗je + µF

And Gauss’ Law: ∫
S1
∗F = Qe + µ

∫
S1

A

Total charge can be measured by holonomy of A on S1 at
infinity.
Chern-Simons term actually required from AdS/CFT. [Kraus ’07]
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Charged BTZ black holes

BTZ black holes can support electric charge in the form of a flat
connection

Qe = −µ2
∫

S1
A

This is the 3d analog of the black hole with B-field hair.
[Bowick-Giddings-Harvey-Horowitz-Strominger ’88]

No backreaction on metric, even w. higher derivative
corrections. Contrast with d > 3. Related to scalar no-hair.
No apparent extremality bound for Q.
WGC talks about superextremal particles.
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The CFT perspective

Weakly coupled AdS3 is dual to CFT2 at large central charge

c =
3l
2G

.

Bulk U(1) is dual to CFT current j(z) at level N:

[jm, jp] = Nδm+n,0, [Lm, jp] = −pjp+m.

j0 is proportional to Q, bulk electric charge.
[L0,Q] = [L̃0,Q] = 0: Electric charge is exactly conserved.
Universal contribution (Sugawara construction) to L0:

L0 = L′0 +
Q2

2N
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BH threshold

Standard lore: Only very high dimension CFT operators can be
dual to a BH geometry. We find

L0 ≥
c

24
+

Q2

2N
.

This is the black hole threshold.
It is an extremality-like bound: Charged states below are
lighter than any black hole (hence superextremal).
WGC↔ show ∃ operators below BH threshold.
Also required by agreement of CFT result (Cardy formula)
and semiclassical entropy computation.
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Modular invariance

The CFT partition with chemical potential

Z(τ, z) = Tr
(

qL0− c
24 q̄L̃0− c̃

24 e2πizQ
)

satisfies Z(τ, z) = Z(τ, z + 1) due to charge quantization.
Modular invariance implies

Z(τ ′, z′) = exp
(

iπN
z2

cτ + d

)
Z(τ, z), τ → aτ + b

cτ + d
, z→ z

cτ + d

Together, these mean

Z(τ, τ) = exp(iπNτ)Z(τ, 0).

or

Z(τ, 0) = Tr
(

qL0− c
24+Q+N

2 q̄L̃0− c̃
24

)
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Modular invariance II

Conclusion: the spectrum is invariant under spectral flow by N
units

L0 → L0 + Q +
N
2
, Q→ Q + N, L̃0 → L̃0.

Acting on the vacuum, spectral flow produces a state of charge

Q = kN and L0 = k2 N
2
,

which are below the BH threshold: These states satisfy the
(strong & (sub)Lattice) WGC in three dimensions.
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The ZN charge
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The ZN charge

Mod. invariance only gives lights states with Q = kN: Remnant
ZN charge does not have a WGC.

BH charge observable via Aharonov-Bohm kind of
experiments (BH with discrete electric hair [Coleman, Preskill, Wilczek

’92])
Some constraints on spectrum from modular invariance
(modular bootrstrap [Benjamin, Dyer, Fitzpatrick, Kachru ’16]), but
Not enough to establish WGC in 3d (explicit
counterexample).

No reason (stringy or remnants-based) to expect WGC for
discrete symmetries anyway, even in d > 3.
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Summary

Drastic differences for charged BH’s in 3d.
Modular invariance + compact gauge group =
Strong/Lattice WGC in 3d.
Black hole heuristics not relevant/applicable
Remnant ZN charge does not have WGC from modular
invariance alone

Outlook:
How much can we take to d > 3?
Any heuristic motivation for 3d WGC?
Extension to axion WGC in d ≥ 3?
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Thank you very much!
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