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Introduction

This talk will be about defining renormalised entanglement
entropy, both holographically and in quantum field theory.
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Introduction: Entanglement entropy

Bρ = 0

A∂A

t = const.

QFTd

(Al)AdSd+1

Consider a spatial region A and a density matrix ρ.
Define ρA as the reduced matrix obtained by tracing out all
degrees of freedom outside region A.
The associated von Neumann entropy is the entanglement
entropy i.e. SA = −Tr(ρA log ρA).
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Properties of entanglement entropy

Complementarity: SA is equal to the entanglement entropy
of the complement, SB.
UV divergences: in D spatial dimensions the leading UV
divergence behaves as

SA ∼
Area∂A

εD−1 + · · ·

where ε� 1 is the UV cutoff. (Logarithmic in D = 1.)
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Regulator dependence

From a field theorist’s perspective, strange to work with a
regulated quantity!

Non-universal divergences: power law divergences
dependent on regularisation scheme (not seen with zeta
function approach etc).
Universal divergences: logarithmic divergences, related to
conformal anomalies in CFTs.
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Entanglement entropy in CMT

Intrinsic UV cutoff: lattice spacing a.
E.g. for ground state of quantum critical system described
by 2d CFT

SA =
c
3

ln
(

l
a

)
+ c′

with c central charge, l length of interval and a lattice
spacing.
Usual to relate QFT computations to explicit calculations
using eigenvalues of ρA:

SA = −
∑

i

λi lnλi
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Entanglement entropy in QFT

In a QFT, we usually define regulate divergences, introduce co-
variant counterterms and then renormalize by removing the reg-
ulator (ε→ 0)..... can we do this for EE?
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Entanglement entropy in QFT

Reasons to define renormalized EE in QFT:
1 Finite part of EE is related to F quantity in odd-dimensional

CFT.
2 Use of EE as an order parameter for phase transitions
3 Black hole physics (see Strominger’s talk)
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Previous approaches

Based on differentiating with respect to parameters:

l
L2 L2

For a slab domain in a local QFT,
divergences in S must be
independent of l .
Therefore

Sl ≡
∂S
∂l

is UV finite.
(e.g. Cardy and Calabrese; Casini
and Huerta)
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Geometry dependence

For a spherical region of radius r ,
divergences in S depend on r .
For a 3d CFT (disk region) since

S ∼ r
ε

+ finite

the combination

S(r) =

(
r
∂S
∂r
− S

)
is UV finite. (Liu and Mezei)

r
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Limitations of such approaches

Current interest in dependence of entanglement entropy on
shape and theory but:

No definition for generic shape
entangling region.
Relation to usual QFT
renormalization is unclear.
Renormalization scheme
dependence is obscure.
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Background subtraction versus renormalization

Can also obtain finite result by subtracting reference
background:

∆S = SA − Sref
A ,

see Strominger for flat space example.
Background subtraction is not renormalization in the usual
QFT sense: counterterms, scheme dependence etc
remain unclear.
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Outline

Holographic renormalization of entanglement entropy
General approach to renormalization
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Holographic entanglement entropy

Entanglement entropy can be computed geometrically for field
theories admitting a gravity dual in one higher dimension.

Bρ = 0

A∂Σ ∼ ∂A

Σ

t = const.

QFTd

ρ

(Al)AdSd+1

Holographic Ryu-Takayanagi
(RT) prescription: area of
codimension two minimal surface
homologous to A

SA =
A

4G
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Area renormalization

ρ = ε

Bρ = 0

A∂Σ = ∂A

∂Σε

Σε

t = const.

QFTd

ρ

(Al)AdSd+1

The natural UV cutoff is
ρ = ε� 1.
One can regulate the area
of the minimal surface and
define a renormalized area
using appropriately
covariant counterterms.

Earlier work on renormalized minimal surfaces:
(Henningson/Skenderis; Graham/Witten; Gross et al)
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Renormalized entanglement entropy

The Ryu-Takayanagi functional is

S =
1

4G

∫
Σ

dd−1x
√
γ

Use the equations for the minimal surface to expand the
surface area asymptotically near the conformal boundary
and regulate divergences.
Covariant counterterms are

Sct ∼
∫
∂Σ

dd−2x
√

hL(R,K)

where K is the extrinsic curvature of ∂Σ into ρ = ε.
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Extrinsic curvature of entangling region

Bρ = 0

A∂A

t = const.

QFTd

(Al)AdSd+1

Counterterms can depend on intrinsic and extrinsic
curvature of ∂A.
Complementarity: for A and B to have the same
renormalized entanglement entropy, we can include only
terms which are even in the extrinsic curvature.
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Results for 3d CFT

The renormalized EE for an entangling surface in AdS4 is

Sren =
1

4G

∫
Σ

d2x
√
γ − 1

4G

∫
∂Σ

dx
√

h(1− csK)

with ∂σ the boundary of the minimal surface.
Here K is the extrinsic curvature of the bounding curve.
Complementarity implies that cs = 0 (finite counterterm
fixed to be zero).
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Disk entangling region

Consider an entangling region which is a disk of radius r .

Sren = − π

2G
,

where G is dimensionless.
This EE is related to the free energy on the S3, the F
quantity, by the CHM map: Sren = −F .
Positivity of F implies negativity of Sren.
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Matching holographic renormalization schemes

The renormalized onshell action for Euclidean AdS4
indeed gives

F =
π

2G
= −Sren.

Onshell action calculated using counterterms for AlAdS4
manifolds (de Haro et al)

Ict =
1

8πG

∫
d3x
√
−g(K + 2−

Rg

2
)

There are no possible finite counterterms.
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Generalizations of holographic procedure

Can generalize area renormalization of entangling surface to:

RG flows
Time dependent situations (HRT functional)
Non AdS holography
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Holographic RG flows

A holographic RG flow is described by:
A "domain wall" geometry

ds2 = dr2 + exp(2A(r))dxµdxµ

A set of scalar field profiles

φa(r)

First order equations of motion relating A(r) and φa(r).
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RG flow of 3d field theory

Consider four dimensional bulk (d = 3), single scalar φ.
Assume UV conformal, so potential can be expanded near
boundary as

V = 6−
∞∑

n=2

λ(n)

n!
φn

with λ(2) = M2 = ∆(∆− 3).
First order form of equations

Ȧ = W φ̇ = −2∂φW

where V is a known expression quadratic in (fake)
superpotential W .
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REE for relevant deformations

We need the following counterterms in the REE:

Sct = − 1
4G

∫
dx
√

h(1 +
(3−∆)

8(5− 2∆)
φ2 + · · · )

where second term is needed for ∆ > 5/2.
The counterterms can be expressed in terms of the
superpotential

Sct = − 1
4G

∫
dx
√

hY (φ)

where
W (φ)Y (φ) +

dW
dφ

dY
dφ

= 1.
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REE for RG flows

Can explore REE along RG flows and its relation to F quantity
along RG flows (on spheres)....
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Outline

Holographic renormalization of entanglement entropy
General approach to renormalization
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Definition of REE

The holographic area renormalization of minimal surfaces looks
hard to connect with QFT renormalization....
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Replica trick

Entanglement entropy is often computed using the replica
trick:

S = −n∂n [log Z (n)− n log Z (1)]n=1

where Z (1) is the usual partition function and Z (n) is the
partition function on the replica space in which a circle
coordinate has periodicity 2πn.
Holographically log Z (n) is computed by the renormalised
onshell action I(n) for a geometry with a conical singularity.
(Lewkowycz and Maldacena)
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Replica trick

3d field theory: on replica
space τ has periodicity 2πn. Visualisation of n = 3 replica

space.
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Lewkowycz-Maldacena derivation

Bulk term in onshell action is

I(n) =
1

16πG

∫
dd+1x

√
gRn

Working perturbatively in (n − 1), the Ricci scalar is
(Solodukhin)

Rn = R + 4π(n − 1)δΣ + · · ·

where δΣ is localised on the codimension two conical
singularity.
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Lewkowycz-Maldacena derivation

Leading contributions cancel in replica formula, leaving

S =
∂n(n − 1)n=1

4G

∫
dd+1x

√
gδΣ =

1
4G

∫
Σ

dd−1x
√
γ,

i.e. the Ryu-Takayanagi formula.
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Holographic renormalization

The renormalized entanglement entropy can be calculated using
the replica trick on the renormalized onshell action.
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Holographic renormalization

For example, for an asymptotically locally AdS4 spacetime
the action counterterms are

Ict =
1

8πG

∫
d3x
√

g(K + 2− R
2

)

with R the curvature of the boundary metric.
For the replica space

Rn = R+ 4π(n − 1)δ∂Σ +O(n − 1)2

where ∂Σ is the boundary of the entangling surface.
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Holographic renormalization

Applying the replica formula to the counterterms then
leads to exactly

Sct = − 1
4G

∫
∂Σ

dx
√
γ

i.e. our counterterm localized on the boundary of the
entangling surface.
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Holographic renormalization

Procedure works for (AdS) Einstein gravity in any
dimension:

Sct = − 1
4(D − 1)G

∫
∂Σ

dD−1x
√
γ

(
1 +

1
(D − 1)(D − 3)

K2 + · · ·
)

as well as theories with matter and higher derivative
theories such as Gauss-Bonnet.
Direct matching of renormalization scheme for EE with that
of action!
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General definition using replica method

We can define renormalized entanglement entropy as:

Sren = −n∂n [log Zren(n)− n log Zren(1)]n=1

where the partition functions are renormalized by any
appropriate method.
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QFT renormalization

Holographic regulator corresponds to explicit cutoff:

log Z ∼ a0
Vd

εd
+

a2

εd−2

∫ √
gddxR+ · · ·

with EE counterterms inherited from curvature terms.
Zeta functions, dimensional regularisation etc have
different "non-universal" divergent terms and hence
counterterms.
Scheme dependence inherited from partition function.
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Weyl transformations of REE

Under a Weyl transformation δgij = 2σgij the CFT partition
function transforms as

δ(log Z ) = σ

∫
ddx
√

g〈T i
i 〉

i.e. in terms of the conformal anomaly 〈T i
i 〉.

Using the replica trick this implies Weyl transformation of
REE e.g. d = 2

δSren = −c
6
σ
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Conclusions and outlook

Renormalized entanglement entropy is useful in field theory
applications of entanglement entropy.

To explore further:

Applications of REE to phase transitions, time dependent
situations etc.
Holographic definition of renormalized EE for more general
asymptotics (including flat space?).
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