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Introduction

@ This talk will be about defining renormalised entanglement
entropy, both holographically and in quantum field theory.
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Introduction: Entanglement entropy

t = const.

@ Consider a spatial region A and a density matrix p.

@ Define p4 as the reduced matrix obtained by tracing out all
degrees of freedom outside region A.

@ The associated von Neumann entropy is the entanglement
entropy i.e. Sp = —Tr(palog pa).

B QFT4
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Properties of entanglement entropy

@ Complementarity: Sy is equal to the entanglement entropy
of the complement, Sg.

@ UV divergences: in D spatial dimensions the leading UV
divergence behaves as

Areaa A

Sp~ —5—
AT T D

where ¢ < 1 is the UV cutoff. (Logarithmicin D =1.)
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Regulator dependence

From a field theorist’s perspective, strange to work with a
regulated quantity!

@ Non-universal divergences: power law divergences
dependent on regularisation scheme (not seen with zeta
function approach etc).

@ Universal divergences: logarithmic divergences, related to
conformal anomalies in CFTs.
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Entanglement entropy in CMT

@ Intrinsic UV cutoff: lattice spacing a.

@ E.g. for ground state of quantum critical system described

by 2d CFT
c /
:7| —_ /
Sa 3 n(a)+c

with ¢ central charge, / length of interval and a lattice
spacing.

@ Usual to relate QF T computations to explicit calculations
using eigenvalues of pa:

SAZ—Z)\HHA,'
i
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Entanglement entropy in QFT

variant counterterms and then renormalize by removing the reg-

In a QFT, we usually define regulate divergences, introduce co-
ulator (¢ — 0)..... can we do this for EE? J
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Entanglement entropy in QFT

Reasons to define renormalized EE in QFT:

@ Finite part of EE is related to F quantity in odd-dimensional
CFT.

© Use of EE as an order parameter for phase transitions
© Black hole physics (see Strominger’s talk)
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Previous approaches

Based on differentiating with respect to parameters:

@ For a slab domain in a local QFT,
divergences in S must be
independent of /.

@ Therefore

e S 0S

is UV finite.
(e.g. Cardy and Calabrese; Casini
and Huerta)
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Geometry dependence

@ For a spherical region of radius r,
divergences in S depend on r.

@ For a 3d CFT (disk region) since
S~ r + finite
€
the combination
oS
S(r) = (rar — S)
is UV finite. (Liu and Mezei)
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Limitations of such approaches

Current interest in dependence of entanglement entropy on
shape and theory but:

@ No definition for generic shape
entangling region.

@ Relation to usual QFT
renormalization is unclear.

@ Renormalization scheme
dependence is obscure.
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Background subtraction versus renormalization

@ Can also obtain finite result by subtracting reference
background:
AS = Sy — S5

see Strominger for flat space example.

@ Background subtraction is not renormalization in the usual
QFT sense: counterterms, scheme dependence etc
remain unclear.
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@ Holographic renormalization of entanglement entropy
@ General approach to renormalization
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Holographic entanglement entropy

Entanglement entropy can be computed geometrically for field
theories admitting a gravity dual in one higher dimension.

@ Holographic Ryu-Takayanagi
(RT) prescription: area of
codimension two minimal surface
p=0 B QFT4

homologous to A
U ‘ Sp= A

(AAdS 41 4G

9% ~ 9A
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Area renormalization

@ The natural UV cutoff is
e e O 7 p=e<1.

@ One can regulate the area

of the minimal surface and
) define a renormalized area
using appropriately
(ADAdS covariant counterterms.

Earlier work on renormalized minimal surfaces:
(Henningson/Skenderis; Graham/Witten; Gross et al)
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Renormalized entanglement entropy

@ The Ryu-Takayanagi functional is

_ 1 [ o
S_4G/):d X/

@ Use the equations for the minimal surface to expand the
surface area asymptotically near the conformal boundary
and regulate divergences.

@ Covariant counterterms are

S~ [ d92xVhL(R,K)
oxr

where K is the extrinsic curvature of 0% into p = e.
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Extrinsic curvature of entangling region

@ Counterterms can depend on intrinsic and extrinsic
curvature of 0A.

t = const.

B QFT4

@ Complementarity: for A and B to have the same
renormalized entanglement entropy, we can include only
terms which are even in the extrinsic curvature.
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Results for 3d CFT

@ The renormalized EE for an entangling surface in AdS, is

1 ) 1
= — S h(1 —
Sen 4G/de’y 16 6zc/xf( csk)

with do the boundary of the minimal surface.
@ Here K is the extrinsic curvature of the bounding curve.

@ Complementarity implies that ¢s = 0 (finite counterterm
fixed to be zero).
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Disk entangling region

@ Consider an entangling region which is a disk of radius r.

™

Sen = —=——

ren 2G?
where G is dimensionless.

@ This EE is related to the free energy on the S3, the F
quantity, by the CHM map: S,en = —F.

@ Positivity of F implies negativity of S;.
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Matching holographic renormalization schemes

@ The renormalized onshell action for Euclidean AdS,

indeed gives
T

F= % = _Sren-

@ Onshell action calculated using counterterms for AIAdS,
manifolds (de Haro et al)

_ 1 3 _Rg
ICt_87rG/d xv—g(K+2 ?)

There are no possible finite counterterms.
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Generalizations of holographic procedure

Can generalize area renormalization of entangling surface to:

@ RG flows
@ Time dependent situations (HRT functional)
@ Non AdS holography
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Holographic RG flows

A holographic RG flow is described by:
@ A "domain wall" geometry

ds? = dr? + exp(2A(r))dx*dx,,
@ A set of scalar field profiles

pa(r)

@ First order equations of motion relating A(r) and ¢4(r).
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RG flow of 3d field theory

Consider four dimensional bulk (d = 3), single scalar ¢.
@ Assume UV conformal, so potential can be expanded near

boundary as
A
V=6-2 "¢
n=

with A2y = M? = A(A - 3).
@ First order form of equations
A=W  ¢$=-20,W

where V is a known expression quadratic in (fake)
superpotential W.
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REE for relevant deformations

@ We need the following counterterms in the REE:

A)
/d\f 5 86 20" T )

where second term is needed for A > 5/2.

@ The counterterms can be expressed in terms of the
superpotential

S = —:G/dxxth(gb)

where
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REE for RG flows

Can explore REE along RG flows and its relation to F quantity
along RG flows (on spheres).... J
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@ Holographic renormalization of entanglement entropy
@ General approach to renormalization
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Definition of REE

The holographic area renormalization of minimal surfaces looks
hard to connect with QFT renormalization.... J
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Replica trick

@ Entanglement entropy is often computed using the replica
trick:
S = —nop[log Z(n) — nlog Z(1)],,_4

where Z(1) is the usual partition function and Z(n) is the
partition function on the replica space in which a circle
coordinate has periodicity 27 n.

@ Holographically log Z(n) is computed by the renormalised
onshell action /(n) for a geometry with a conical singularity.
(Lewkowycz and Maldacena)
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Replica trick

3d field theory: on replica

space 7 has periodicity 2. Visualisation of n = 3 replica
space.
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Lewkowycz-Maldacena derivation

@ Bulk term in onshell action is

1

@ Working perturbatively in (n — 1), the Ricci scalar is
(Solodukhin)

R,=R+4n(n—1)ox + - --
where Jy is localised on the codimension two conical

singularity.
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Lewkowycz-Maldacena derivation

@ Leading contributions cancel in replica formula, leaving

On

_ (n_1)n—1/ d+1 _1/ d—1
S= 4G d X\Fgéz—“.G ):d Xﬁ,

i.e. the Ryu-Takayanagi formula.
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Holographic renormalization

The renormalized entanglement entropy can be calculated using
the replica trick on the renormalized onshell action. J
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Holographic renormalization

@ For example, for an asymptotically locally AdS, spacetime
the action counterterms are

_ 1 3 R
’“_&re/d VK +2-7)

with R the curvature of the boundary metric.
@ For the replica space

Rp=R+4n(n—1)ds5x + O(n—1)2

where 0% is the boundary of the entangling surface.
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Holographic renormalization

@ Applying the replica formula to the counterterms then
leads to exactly

1
Sct — *E o5 dXﬁ

i.e. our counterterm localized on the boundary of the
entangling surface.
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Holographic renormalization

@ Procedure works for (AdS) Einstein gravity in any
dimension:

1 _ 1
w06 L (oot )

as well as theories with matter and higher derivative
theories such as Gauss-Bonnet.

@ Direct matching of renormalization scheme for EE with that
of action!

Sct =
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General definition using replica method

@ We can define renormalized entanglement entropy as:
Sren = *nan [|09 Zren(n) —n |Og Zren(1 )]n:1

where the partition functions are renormalized by any
appropriate method.
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QFT renormalization

@ Holographic regulator corresponds to explicit cutoff:

IogZ~ao " /\fddeJr

with EE counterterms inherited from curvature terms.

@ Zeta functions, dimensional regularisation etc have
different "non-universal" divergent terms and hence
counterterms.

@ Scheme dependence inherited from partition function.
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Weyl transformations of REE

@ Under a Weyl transformation dg; = 20gj; the CFT partition
function transforms as

é(logZ) =0 / d?x,/g(T})

i.e. in terms of the conformal anomaly (T7).

@ Using the replica trick this implies Weyl transformation of

REEeg. d=2
0Sten = _go'
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Conclusions and outlook

Renormalized entanglement entropy is useful in field theory
applications of entanglement entropy. J

To explore further:

@ Applications of REE to phase transitions, time dependent
situations etc.

@ Holographic definition of renormalized EE for more general
asymptotics (including flat space?).
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