Renormalisation of entanglement entropy

Marika Taylor

Mathematical Sciences and
STAG research centre, Southampton

August 17, 2016

Introduction

- This talk will be about defining renormalised entanglement entropy, both holographically and in quantum field theory.

Introduction: Entanglement entropy

- Consider a spatial region A and a density matrix ρ.
- Define ρ_{A} as the reduced matrix obtained by tracing out all degrees of freedom outside region A.
- The associated von Neumann entropy is the entanglement entropy i.e. $S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)$.

Properties of entanglement entropy

- Complementarity: S_{A} is equal to the entanglement entropy of the complement, S_{B}.
- UV divergences: in D spatial dimensions the leading UV divergence behaves as

$$
S_{A} \sim \frac{\operatorname{Area}_{\partial A}}{\epsilon^{D-1}}+\cdots
$$

where $\epsilon \ll 1$ is the UV cutoff. (Logarithmic in $D=1$.)

Regulator dependence

From a field theorist's perspective, strange to work with a regulated quantity!

- Non-universal divergences: power law divergences dependent on regularisation scheme (not seen with zeta function approach etc).
- Universal divergences: logarithmic divergences, related to conformal anomalies in CFTs.

Entanglement entropy in CMT

- Intrinsic UV cutoff: lattice spacing a.
- E.g. for ground state of quantum critical system described by 2d CFT

$$
S_{A}=\frac{c}{3} \ln \left(\frac{l}{a}\right)+c^{\prime}
$$

with c central charge, I length of interval and a lattice spacing.

- Usual to relate QFT computations to explicit calculations using eigenvalues of ρ_{A} :

$$
S_{A}=-\sum_{i} \lambda_{i} \ln \lambda_{i}
$$

Entanglement entropy in QFT

In a QFT, we usually define regulate divergences, introduce covariant counterterms and then renormalize by removing the regulator $(\epsilon \rightarrow 0) \ldots$. can we do this for EE?

Entanglement entropy in QFT

Reasons to define renormalized EE in QFT:
(1) Finite part of EE is related to F quantity in odd-dimensional CFT.
(2) Use of EE as an order parameter for phase transitions
(0) Black hole physics (see Strominger's talk)

Previous approaches

Based on differentiating with respect to parameters:

- For a slab domain in a local QFT, divergences in S must be independent of l.
- Therefore

$$
S_{l} \equiv \frac{\partial S}{\partial l}
$$

is UV finite.
(e.g. Cardy and Calabrese; Casini and Huerta)

Geometry dependence

- For a spherical region of radius r, divergences in S depend on r.
- For a 3d CFT (disk region) since

$$
S \sim \frac{r}{\epsilon}+\text { finite }
$$

the combination

$$
S(r)=\left(r \frac{\partial S}{\partial r}-S\right)
$$

is UV finite. (Liu and Mezei)

Limitations of such approaches

Current interest in dependence of entanglement entropy on shape and theory but:

- No definition for generic shape entangling region.
- Relation to usual QFT renormalization is unclear.
- Renormalization scheme dependence is obscure.

Background subtraction versus renormalization

- Can also obtain finite result by subtracting reference background:

$$
\Delta S=S_{A}-S_{A}^{\text {ref }},
$$

see Strominger for flat space example.

- Background subtraction is not renormalization in the usual QFT sense: counterterms, scheme dependence etc remain unclear.

References

- Marika Taylor and William Woodhead
(1) Renormalized entanglement entropy, 1604.06808
(2) The holographic F theorem, 1604.06809
(3) Renormalization of entanglement entropy in QFT, 1609.xxxxx
- Peter Jones and Marika Taylor
(1) Holographic renormalization of EE for non-conformal branes and asymptotically flat spacetimes, in progress.
- Holographic renormalization of entanglement entropy
- General approach to renormalization

Holographic entanglement entropy

Entanglement entropy can be computed geometrically for field theories admitting a gravity dual in one higher dimension.

- Holographic Ryu-Takayanagi (RT) prescription: area of codimension two minimal surface homologous to A

$$
S_{A}=\frac{\mathcal{A}}{4 G}
$$

Area renormalization

- The natural UV cutoff is $\rho=\epsilon \ll 1$.
- One can regulate the area of the minimal surface and define a renormalized area using appropriately covariant counterterms.

Earlier work on renormalized minimal surfaces:
(Henningson/Skenderis; Graham/Witten; Gross et al)

Renormalized entanglement entropy

- The Ryu-Takayanagi functional is

$$
S=\frac{1}{4 G} \int_{\Sigma} d^{d-1} x \sqrt{\gamma}
$$

- Use the equations for the minimal surface to expand the surface area asymptotically near the conformal boundary and regulate divergences.
- Covariant counterterms are

$$
S_{\mathrm{ct}} \sim \int_{\partial \Sigma} d^{d-2} x \sqrt{h} \mathcal{L}(\mathcal{R}, \mathcal{K})
$$

where \mathcal{K} is the extrinsic curvature of $\partial \Sigma$ into $\rho=\epsilon$.

Extrinsic curvature of entangling region

- Counterterms can depend on intrinsic and extrinsic curvature of ∂A.
- Complementarity: for A and B to have the same renormalized entanglement entropy, we can include only terms which are even in the extrinsic curvature.
- The renormalized EE for an entangling surface in AdS_{4} is

$$
S_{\mathrm{ren}}=\frac{1}{4 G} \int_{\Sigma} d^{2} x \sqrt{\gamma}-\frac{1}{4 G} \int_{\partial \Sigma} d x \sqrt{h}\left(1-c_{S} \mathcal{K}\right)
$$

with $\partial \sigma$ the boundary of the minimal surface.

- Here \mathcal{K} is the extrinsic curvature of the bounding curve.
- Complementarity implies that $c_{s}=0$ (finite counterterm fixed to be zero).

Disk entangling region

- Consider an entangling region which is a disk of radius r.

$$
S_{\mathrm{ren}}=-\frac{\pi}{2 G}
$$

where G is dimensionless.

- This EE is related to the free energy on the S^{3}, the F quantity, by the CHM map: $S_{\text {ren }}=-F$.
- Positivity of F implies negativity of $S_{\text {ren }}$.

Matching holographic renormalization schemes

- The renormalized onshell action for Euclidean AdS $_{4}$ indeed gives

$$
F=\frac{\pi}{2 G}=-S_{\mathrm{ren}}
$$

- Onshell action calculated using counterterms for AIAdS 4 manifolds (de Haro et al)

$$
I_{\mathrm{ct}}=\frac{1}{8 \pi G} \int d^{3} x \sqrt{-g}\left(K+2-\frac{R_{g}}{2}\right)
$$

There are no possible finite counterterms.

Generalizations of holographic procedure

Can generalize area renormalization of entangling surface to:

- RG flows
- Time dependent situations (HRT functional)
- Non AdS holography

Holographic RG flows

A holographic RG flow is described by:

- A "domain wall" geometry

$$
d s^{2}=d r^{2}+\exp (2 A(r)) d x^{\mu} d x_{\mu}
$$

- A set of scalar field profiles

$$
\phi_{a}(r)
$$

- First order equations of motion relating $A(r)$ and $\phi_{a}(r)$.

Consider four dimensional bulk ($d=3$), single scalar ϕ.

- Assume UV conformal, so potential can be expanded near boundary as

$$
V=6-\sum_{n=2}^{\infty} \frac{\lambda_{(n)}}{n!} \phi^{n}
$$

with $\lambda_{(2)}=M^{2}=\Delta(\Delta-3)$.

- First order form of equations

$$
\dot{A}=W \quad \dot{\phi}=-2 \partial_{\phi} W
$$

where V is a known expression quadratic in (fake) superpotential W.

- We need the following counterterms in the REE:

$$
S_{\mathrm{ct}}=-\frac{1}{4 G} \int d x \sqrt{h}\left(1+\frac{(3-\Delta)}{8(5-2 \Delta)} \phi^{2}+\cdots\right)
$$

where second term is needed for $\Delta>5 / 2$.

- The counterterms can be expressed in terms of the superpotential

$$
S_{\mathrm{ct}}=-\frac{1}{4 G} \int d x \sqrt{h} Y(\phi)
$$

where

$$
W(\phi) Y(\phi)+\frac{d W}{d \phi} \frac{d Y}{d \phi}=1
$$

Can explore REE along RG flows and its relation to F quantity along RG flows (on spheres)....

Outline

- Holographic renormalization of entanglement entropy
- General approach to renormalization

Definition of REE

The holographic area renormalization of minimal surfaces looks hard to connect with QFT renormalization....

Replica trick

- Entanglement entropy is often computed using the replica trick:

$$
S=-n \partial_{n}[\log Z(n)-n \log Z(1)]_{n=1}
$$

where $Z(1)$ is the usual partition function and $Z(n)$ is the partition function on the replica space in which a circle coordinate has periodicity $2 \pi n$.

- Holographically $\log Z(n)$ is computed by the renormalised onshell action $I(n)$ for a geometry with a conical singularity. (Lewkowycz and Maldacena)

Replica trick

3d field theory: on replica space τ has periodicity $2 \pi n$.

Visualisation of $n=3$ replica space.

Lewkowycz-Maldacena derivation

- Bulk term in onshell action is

$$
I(n)=\frac{1}{16 \pi G} \int d^{d+1} x \sqrt{g} R_{n}
$$

- Working perturbatively in $(n-1)$, the Ricci scalar is (Solodukhin)

$$
R_{n}=R+4 \pi(n-1) \delta_{\Sigma}+\cdots
$$

where δ_{Σ} is localised on the codimension two conical singularity.

Lewkowycz-Maldacena derivation

- Leading contributions cancel in replica formula, leaving

$$
S=\frac{\partial_{n}(n-1)_{n=1}}{4 G} \int d^{d+1} x \sqrt{g} \delta_{\Sigma}=\frac{1}{4 G} \int_{\Sigma} d^{d-1} x \sqrt{\gamma}
$$

i.e. the Ryu-Takayanagi formula.

Holographic renormalization

The renormalized entanglement entropy can be calculated using the replica trick on the renormalized onshell action.

- For example, for an asymptotically locally AdS_{4} spacetime the action counterterms are

$$
I_{\mathrm{ct}}=\frac{1}{8 \pi G} \int d^{3} x \sqrt{g}\left(K+2-\frac{\mathcal{R}}{2}\right)
$$

with \mathcal{R} the curvature of the boundary metric.

- For the replica space

$$
\mathcal{R}_{n}=\mathcal{R}+4 \pi(n-1) \delta_{\partial \Sigma}+\mathcal{O}(n-1)^{2}
$$

where $\partial \Sigma$ is the boundary of the entangling surface.

Holographic renormalization

- Applying the replica formula to the counterterms then leads to exactly

$$
S_{\mathrm{ct}}=-\frac{1}{4 G} \int_{\partial \Sigma} d x \sqrt{\gamma}
$$

i.e. our counterterm localized on the boundary of the entangling surface.

- Procedure works for (AdS) Einstein gravity in any dimension:

$$
S_{\mathrm{ct}}=-\frac{1}{4(D-1) G} \int_{\partial \Sigma} d^{D-1} x \sqrt{\gamma}\left(1+\frac{1}{(D-1)(D-3)} \mathcal{K}^{2}+\cdots\right)
$$

as well as theories with matter and higher derivative theories such as Gauss-Bonnet.

- Direct matching of renormalization scheme for EE with that of action!

General definition using replica method

- We can define renormalized entanglement entropy as:

$$
S_{\mathrm{ren}}=-n \partial_{n}\left[\log Z_{\mathrm{ren}}(n)-n \log Z_{\mathrm{ren}}(1)\right]_{n=1}
$$

where the partition functions are renormalized by any appropriate method.

QFT renormalization

- Holographic regulator corresponds to explicit cutoff:

$$
\log Z \sim a_{0} \frac{V_{d}}{\epsilon^{d}}+\frac{a_{2}}{\epsilon^{d-2}} \int \sqrt{g} d^{d} x \mathcal{R}+\cdots
$$

with EE counterterms inherited from curvature terms.

- Zeta functions, dimensional regularisation etc have different "non-universal" divergent terms and hence counterterms.
- Scheme dependence inherited from partition function.

Weyl transformations of REE

- Under a Weyl transformation $\delta g_{i j}=2 \sigma g_{i j}$ the CFT partition function transforms as

$$
\delta(\log Z)=\sigma \int d^{d} x \sqrt{g}\left\langle T_{i}^{i}\right\rangle
$$

i.e. in terms of the conformal anomaly $\left\langle T_{i}^{i}\right\rangle$.

- Using the replica trick this implies Weyl transformation of REE e.g. $d=2$

$$
\delta S_{\mathrm{ren}}=-\frac{c}{6} \sigma
$$

Conclusions and outlook

Renormalized entanglement entropy is useful in field theory applications of entanglement entropy.

To explore further:

- Applications of REE to phase transitions, time dependent situations etc.
- Holographic definition of renormalized EE for more general asymptotics (including flat space?).

