"Inward Bound: Black holes and emergent spacetime" NORDITA, Stockholm, August 17-20, 2016

Nonextremal Black Holes, Subtracted Geometry and Holography

Mirjam Cvetič

Outline:

- I. General asymptotically flat black holes in four (&five) dimensions – prototype STU black holes thermodynamics, suggestive of conformal symmetry
- II. Subtracted Geometry: non-extremal black holes in asymptotically conical box manifest conformal symmetry
- III. Variational Principle & Subtracted Geometry conserved charges and thermodynamics
- IV. Holography via 2D Einstein-Maxwell-Dilaton gravity full holographic dictionary
- V. Outlook

Background:

- Initial work on subtracted geometry M.C., Finn Larsen 1106.3341, 1112.4846, 1406.4536 M.C., Gary Gibbons 1201.0601 M.C., Monica Guica, Zain Saleem 1301.7032
- Recent: variational principle, conserved charges and thermodynamics of subtracted geometry Ok Song An, M.C., Ioannis Papadimitriou, 1602.0150
- Most recent: subtracted geometry and AdS₂ holography M.C., Ioannis Papadimtiriou,1608..... (this week)
- c.f., Ioannis Papadimitriou's talk at the workshop

I. 4D non-extremal black holes in string theory w/ Λ =0

M-mass, Q_i- multi-charges, J- angular momentum

w/ M > $\Sigma_i |Q_i|$

Prototype solutions of a sector of maximally supersymmetric D=4 Supergravity

[effective action of toroidally compactified string theory] \rightarrow so-called STU model

STU Model Lagrangian

[A sector of toroidally compactified effective string theory]

w/ A^0 & three gauge fields A^a , the three dilatons η^a and the three axions χ^a

Black holes: explicit solutions of equations of motion for the above Lagrangian w/ metric, four gauge potentials and three axio-dilatons

Prototype, four-charge rotating black hole, originally obtained via solution generating techniques M.C., Youm 9603147 Chong, M.C., Lü, Pope 0411045

Four- SO(1,1) transfs.
$$H = \begin{pmatrix} \cosh \delta_i & \sinh \delta_i \\ \sinh \delta_i & \cosh \delta_i \end{pmatrix}$$

Full four-electric and four-magnetic charge solution only recently obtained Chow, Compère 1310.1295;1404.2602

Metric of rotating four-charge black holes in STU model M.C., Youm 9603147

Chong, M.C., Lü, Pope 0411045

$$ds_4^2 = -\Delta_0^{-1/2} G(dt + \mathcal{A})^2 + \Delta_0^{1/2} \left(\frac{dr^2}{X} + d\theta^2 + \frac{X}{G}\sin^2\theta d\phi^2\right)$$

3

$$\begin{split} X &= r^2 - 2mr + a^2 = 0 \text{ outer \& inner horizon} \\ G &= r^2 - 2mr + a^2 \cos^2 \theta \ , \\ \mathcal{A} &= \frac{2ma \sin^2 \theta}{G} \left[(\Pi_c - \Pi_s)r + 2m\Pi_s \right] d\phi \ , \\ \mathcal{A}_0 &= \prod_{I=0}^3 (r + 2m \sinh^2 \delta_I) + 2a^2 \cos^2 \theta [r^2 + mr \sum_{I=0}^3 \sinh^2 \delta_I + 4m^2 (\Pi_c - \Pi_s)\Pi_s \\ &- 2m^2 \sum_{I < J < K} \sinh^2 \delta_I \sinh^2 \delta_J \sinh^2 \delta_J \sinh^2 \delta_K \right] + a^4 \cos^4 \theta \ . \end{split}$$

$$G_{4}M = \frac{1}{4}m \sum_{I=0} \cosh 2\delta_{I}$$

$$G_{4}Q_{I} = \frac{1}{4}m \sinh 2\delta_{I}$$

$$(I = 0, 1, 2, 3)$$

$$Four charges$$

$$G_{4}J = ma(\Pi_{c} - \Pi_{s})$$

$$Angular momentum$$

$$Special cases:
$$\delta_{I} = \delta$$

$$Kerr-Newman
$$\& a = 0$$

$$Reisner-Nordström;
$$\delta_{I} = 0$$

$$Kerr$$

$$\& a = 0$$

$$Schwarzschild;$$

$$\delta_{I} \rightarrow \infty m \rightarrow 0 \text{ w/m exp}(2 \delta_{I}) \text{-finite}$$

$$extremal (BPS) \text{ black hole}$$$$$$$$

Thermodynamics - suggestive of weakly interacting 2-dim. CFT w/``left-" & ``right-moving" excitations M.C., Youm '96 M.C., Larsen '97

Area of outer horizon $S_{+} = S_{L} + S_{R}$ $S_{L} = \pi m^{2} (\Pi_{c} + \Pi_{s})$ [Area of inner horizon $S_{-} = S_{L} - S_{R}$] $S_{R} = \pi m \sqrt{m^{2} - a^{2}} (\Pi_{c} - \Pi_{s})$

Surface gravity (inverse temperature) of

outer horizon $\beta_{\rm H} = \frac{1}{2} \left(\beta_{\rm L} + \beta_{\rm R} \right)$ [inner horizon $\beta_{\rm L} = \frac{1}{2} \left(\beta_{\rm L} - \beta_{\rm R} \right)$] $\beta_R = \frac{2\pi m^2}{\sqrt{m^2 - a^2}} \left(\Pi_c + \Pi_s \right)$

Similar structure for angular velocities Ω_+ , Ω_- and momenta J_+ , J_- .

Depend only on four parameters: m, a, $\Pi_c \equiv \prod_{I=0}^3 \cosh \delta_I$, $\Pi_s \equiv \prod_{I=0}^3 \sinh \delta_I$

Shown more recently, all independent of the warp factor Δ_0 ! M.C., Larsen '11

II. Subtracted Geometry - Motivation

Quantify this ``conventional wisdom'' M.C., Larsen '97-'99 that also non-extremal black holes might have microscopic explanation in terms of dual 2D CFT

Focus on the black hole "by itself" \rightarrow enclose the black hole in a box (à la Gibbons Hawking) \rightarrow an equilibrium system w/ conformal symmetry manifest

> The box leads to a ``mildly" modified geometry changing only the warp factor $\Delta_0 \rightarrow \Delta$ (same horizon thermodynamic quantities) Subtracted Geometry M.C., Larsen '11

Determination of new warp factor $\Delta_0 \rightarrow \Delta$

via massless scalar field wave eq.: wave eq. separable & the radial part is solved by hypergeometric functions w/ SL(2,R)² (manifest conformal symmetry)

The general Laplacian (with warp factor Δ_0 – implicit):

$$\Delta_{0}^{-\frac{1}{2}} [\partial_{r} X \partial_{r} - \frac{1}{X} (\mathcal{A}_{red} \partial_{t} - \partial_{\phi})^{2} + \frac{\mathcal{A}_{red}^{2} - \Delta_{0}}{G} \partial_{t}^{2} + \frac{1}{\sin \theta} \partial_{\theta} \sin \theta \partial_{\theta} + \frac{1}{\sin^{2} \theta} \partial_{\phi}^{2}]$$
w/ $\mathcal{A}_{red} = \frac{G}{a \sin^{2} \theta} \mathcal{A} = 2m [(\Pi_{c} - \Pi_{s})r + 2m \Pi_{s}]$
 $G = r^{2} - 2mr + a^{2} \cos^{2} \theta$

 $\Delta_0 \rightarrow \Delta$ such that wave eq. is separable: $f(r) + g(\theta)$ (true for Δ_0 and Δ)

& the radial part is solved by hypergeometric functions: $f(r)+g(\theta)$ -const. \rightarrow uniquely fixes Δ M.C., Larsen 1112.4856 Subtracted geometry for rotating four-charge black holes

$$ds_4^2 = -\Delta_0^{-1/2} G(dt + \mathcal{A})^2 + \Delta_0^{1/2} \left(\frac{dr^2}{X} + d\theta^2 + \frac{X}{G} \sin^2 \theta d\phi^2 \right)$$

$$X = r^2 - 2mr + a^2 ,$$

$$G = r^2 - 2mr + a^2 \cos^2 \theta ,$$

$$\mathcal{A} = \frac{2ma \sin^2 \theta}{G} \left[(\Pi_c - \Pi_s)r + 2m\Pi_s \right] d\phi ,$$

$$\Delta_0 = \prod_{I=0}^3 (r + 2m \sinh^2 \delta_I) + 2a^2 \cos^2 \theta [r^2 + mr \sum_{I=0}^3 \sinh^2 \delta_I + 4m^2 (\Pi_c - \Pi_s)\Pi_s - 2m^2 \sum_{I < J < K} \sinh^2 \delta_I \sinh^2 \delta_J \sinh^2 \delta_K \right] + a^4 \cos^4 \theta .$$

$$\Delta_0 \to \Delta = (2m)^3 r (\Pi_c^2 - \Pi_s^2) + (2m)^4 \Pi_s^2 - (2m)^2 (\Pi_c - \Pi_s)^2 a^2 \cos^2 \theta d\phi^2$$

Comments: while $\Delta_0 \sim r^4$, $\Delta \sim r$ (not asymptotically flat!) subtracted geometry depends only on four parameters: m, a, $\Pi_c \equiv \prod_{I=0}^{3} \cosh \delta_I$, $\Pi_s \equiv \prod_{I=0}^{3} \sinh \delta_I$

Matter fields (gauge potentials and scalars) M.C., Gibbons 1201.0601

Scalars: η

$$\eta_1 = \eta_2 = \eta_3 \equiv \eta, \ \chi_1 = \chi_2 = \chi_3 \equiv \chi,$$

Running dilaton:
$$e^{\eta} = \frac{(2m)^2}{\sqrt{\Delta}}, \qquad \chi = \frac{a\left(\Pi_c - \Pi_s\right)}{2m}\cos\theta$$

Gauge potentials: $A^1 = A^2 = A^3 \equiv A$.

$$A^{0} = \frac{(2m)^{4}a\left(\Pi_{c} - \Pi_{s}\right)}{\Delta} \sin^{2}\theta d\phi + \frac{(2ma)^{2}\cos^{2}\theta\left(\Pi_{c} - \Pi_{s}\right)^{2} + (2m)^{4}\Pi_{c}\Pi_{s}}{\left(\Pi_{c}^{2} - \Pi_{s}^{2}\right)\Delta} dt,$$
$$A = \frac{2m\cos\theta}{\Delta} \left(\left[\Delta - (2ma)^{2}(\Pi_{c} - \Pi_{s})^{2}\sin^{2}\theta \right] d\phi - 2ma\left(2m\Pi_{s} + r(\Pi_{c} - \Pi_{s})\right) dt \right)$$
Magnetic frame

Non-extremal black hole immersed in constant magnetic field

w/
$$\Delta = (2m)^3 (\Pi_c^2 - \Pi_s^2) r + (2m)^4 \Pi_s^2 - (2ma)^2 (\Pi_c - \Pi_s)^2 \cos^2 \theta$$

Remarks:

Asymptotic geometry of subtracted geometry is of Lifshitz-type w/ a deficit angle:

$$ds^{2} = -\left(\frac{R}{R_{0}}\right)^{2p} dt^{2} + B^{2} dR^{2} + R^{2} \left(d\theta^{2} + \sin^{2}\theta^{2} d\phi^{2}\right) \qquad p=3, B=4$$

→ black hole in an ``asymptotically conical box" M.C., Gibbons 1201.0601

- \rightarrow the box conformal to AdS₂ x S²
- → confining, but ``softer" than AdS

Origin of subtracted geometry

i. Subtracted geometry – as a scaling limit of near-horizon black hole w/ three-large charges Q, (mapped on m, a, Π_c , Π_s)

$$\tilde{r} = r\epsilon, \quad \tilde{t} = t\epsilon^{-1}, \quad \tilde{m} = m\epsilon, \quad \tilde{a} = a\epsilon \qquad \text{M.C., Gibbons 1201.0601}$$

$$\epsilon \to 0 \qquad 2\tilde{m}\sinh^2\tilde{\delta} \equiv Q = 2m\epsilon^{-1/3}(\Pi_c^2 - \Pi_s^2)^{1/3}, \quad \sinh^2\tilde{\delta}_0 = \frac{\Pi_s^2}{\Pi^2 - \Pi^2}$$

ii. Subtracted geometry - as an infinite boost Harrisontransformations on the original BHM.C., Gibbons 1201.0601SO(1,1): $H \sim \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix}$ $\beta \rightarrow 1$ Sahay, Virmani 1305.2800M.C., Guica, Saleem 1302.7032..

iii. Subtracted geometry – as turning off certain integration constants in harmonic functions of asymptotically flat black holes

> Baggio, de Boer, Jottar, Mayerson 1210.7695 An, M.C., Papardimitriou 1602.0150

non-extremal black hole microscopic properties associated with its horizon are captured by a dual field theory of subtracted geometry

Lift of subtracted geometry

M.C., Larsen 1112.4856

on a circle S¹ to five-dimension turns out to locally factorize $AdS_3 \times S^2$ ([SL(2,R)² x SO(3)]/Z₂ symmetry)

[globally S² fibered over Bañados-Teitelboim-Zanelli (BTZ) black hole w/ mass M₃, angular momentum J₃ & 3d cosmol. const. $\Lambda = \ell^3$]

$$\begin{aligned} ds_{5}^{2} &= \left(ds_{S^{2}}^{2} + ds_{BTZ}^{2} \right) \\ ds_{S^{2}}^{2} &= \frac{1}{4} \ell^{2} \left(d\theta^{2} + \sin^{2} \theta d\bar{\phi}^{2} \right) \\ ds_{BTZ}^{2} &= -\frac{\left(r_{3}^{2} - r_{3+}^{2} \right) \left(r_{3}^{2} - r_{3-}^{2} \right)}{\ell^{2} r_{3}^{2}} dt_{3}^{2} + \frac{\ell^{2} r_{3}^{2}}{\left(r_{3}^{2} - r_{3+}^{2} \right) \left(r_{3}^{2} - r_{3-}^{2} \right)} dr_{3}^{2} + r_{3}^{2} (d\phi_{3} + \frac{r_{3} + r_{3-}}{\ell r_{3}^{2}} dt_{3})^{2} \\ \phi_{3} &= \frac{z}{R} , \\ t_{3} &= \frac{\ell}{R} t , \\ r_{3}^{2} &= \frac{16(2mR)^{2}}{\ell^{4}} \left[2m(\Pi_{c}^{2} - \Pi_{s}^{2})r + (2m)^{2}\Pi_{s}^{2} - a^{2}(\Pi_{c} - \Pi_{s})^{2} \right] \end{aligned}$$

Conformal symmetry of AdS₃ can be promoted to Virasoro algebra of dual two-dimensional CFT à la Brown-Hennaux Standard statistical entropy (via AdS₃/CFT₂) à la Cardy → Reproduces entropy of 4D black holes Subtracted geometry $[\Delta_0 \rightarrow \Delta = A r + B \cos^2\theta + C; A, B, C-horrendous]$ also works for most general black holes of the STU Model (specified by mass, four electric and four magnetics charges and angular momentum) Chow, Compère 1310.1295;1404.2602

M.C., Larsen 1106.3341

All also works in parallel for subtracted geometry of most general five-dimensional black holes (specified by mass, three charges and two angular momenta)

M.C., Youm 9603100

Further developments

Quantum aspects of subtracted geometries:

 Quasi-normal modes - exact results for scalar fields two damped branches → no black hole bomb

M.C., Gibbons 1312.2250, M.C., Gibbons, Saleem 1401.0544

ii) Entanglement entropy –minimally coupled scalar M.C., Satz, Saleem 1407.0310

 iii) Vacuum polarization <φ²> analytic expressions at the horizon: static M.C., Gibbons, Saleem, Satz 1411.4658 rotating M.C., Satz, Saleem 1506.07189 outside & inside horizon: rotating M.C., Satz 1609....

iv) Thermodynamics of subtracted geometry via Komar integral: M.C., Gibbons, Saleem 1412.5996 (PRL)

III. Thermodynamics via variational principle

An, M.C., Papadimitriou 1602.0150

Following lessons from AdS geometries

Heningson, Skenderis '98; Balasubramanian ,Kraus '99; deBoer ,Verlinde² '99,... achieved through an algorithmic procedure for subtracted geometry:

- Integration constants, parameterizing solutions of the eqs. of motion, separated into `normalizable' - free to vary & 'non-normalizable' modes – fixed
- Non-normalizable modes fixed only up to transformations induced by local symmetries of the bulk theory (radial diffeomorphisms & gauge transf.)
- Covariant boundary term, S_{ct}, to the bulk action determined by solving asymptotically the radial Hamilton-Jacobi eqn. →

Skenderis,Papadimitriou '04, Papadimitriou '05 Total action S+S_{ct} independent of the radial coordinate

- First class constraints of Hamiltonian formalism lead to conserved charges associated with Killing vectors.
- Conserved charges satisfy the first law of thermodynamics

• Identify normalizable and non-rormalizable modes:

Introduce new coordinates:

Rescaled radial coord.: $\ell^4 r \leftarrow (2m)^3 (\Pi_c^2 - \Pi_s^2) r + (2m)^4 \Pi_s^2 - (2ma)^2 (\Pi_c - \Pi_s)^2$, Rescaled time: $\frac{k}{\ell^3} t \leftarrow \frac{1}{(2m)^3 (\Pi_c^2 - \Pi_s^2)} t$,

Trade four parameters m, a, Π_c , Π_s for:

$$\ell^4 r_{\pm} = (2m)^3 m (\Pi_c^2 + \Pi_s^2) - (2ma)^2 (\Pi_c - \Pi_s)^2 \pm \sqrt{m^2 - a^2} (2m)^3 (\Pi_c^2 - \Pi_s^2)$$

$$\ell^3 \omega = 2ma (\Pi_c - \Pi_s), \qquad B = 2m,$$

r_{+}, r_{-}, ω - normalizable modes

B - non-renormalizable mode

(fixed up to bulk diffeomorphisms & global gauge symmetries)

``Vacuum" solution

obtained by turning off r_+ , r_- , ω – three normalizable modes:

Asymptotically conical box – conformal to $AdS_2 xS^2$

$$ds^{2} = \sqrt{r} \left(\ell^{2} \frac{dr^{2}}{r^{2}} - rk^{2} dt^{2} + \ell^{2} d\theta^{2} + \ell^{2} \sin^{2} \theta d\phi^{2} \right)$$
$$e^{\eta} = \frac{B^{2}/\ell^{2}}{\sqrt{r}}, \qquad \chi = 0, \qquad A^{0} = 0, \qquad A = B \cos \theta d\phi$$

Non-normalizable (fourth) mode B, along with ℓ and k, fixed up to radial diffeomorphism:

$$r \to \lambda^{-4} r$$
 $k \to \lambda^3 k, \quad \ell \to \lambda \ell, \quad B \to B$

and global U(1) symmetry:

$$e^{\eta} \to \mu^2 e^{\eta}, \quad \chi \to \mu^{-2} \chi, \quad A^0 \to \mu^3 A^0, \quad A \to \mu A, \quad ds^2 \to ds^2$$

which keep kB^3/ℓ^3 - fixed

• Radial Hamiltonian formalism to determine S_{ct}, to the bulk action S

Suitable radial coordinate u, such that constant-u slices Σ_{u}

$$\Sigma_{u} \rightarrow \partial \mathcal{M}$$
 as $u \rightarrow \infty$.

Decomposition of the metric and gauge fields:

$$ds^{2} = (N^{2} + N_{i}N^{i})du^{2} + 2N_{i}dudx^{i} + \gamma_{ij}dx^{i}dx^{j}$$
$$A^{L} = a^{\Lambda}du + A^{\Lambda}_{i}dx^{i},$$

Decomposition leads to the radial Lagrangian L w/ canonical momenta:

$$\pi^{ij} = \frac{\delta L}{\delta \dot{\gamma}_{ij}}$$
$$\pi_I = \frac{\delta L}{\delta \dot{\varphi}^I}$$
$$\pi_{\Lambda}^i = \frac{\delta L}{\delta \dot{A}_i^{\Lambda}}$$

w/ momenta conjugate to N, N_i, and a_{Λ} vanish.

Hamiltonian:

$$H = \int \mathrm{d}^{3}\mathbf{x} \left(\pi^{ij} \dot{\gamma}_{ij} + \pi_{I} \dot{\varphi}^{I} + \pi^{i}_{\Lambda} \dot{A}^{\Lambda}_{i} \right) - L = \int \mathrm{d}^{3}\mathbf{x} \left(N\mathcal{H} + N_{i}\mathcal{H}^{i} + a^{\Lambda}\mathcal{F}_{\Lambda} \right)$$

First class constraints $\mathcal{H} = \mathcal{H}^i = \mathcal{F}_\Lambda = 0$, - Hamilton Jacobi eqs.:

& Momenta as gradients of Hamilton's principal function $S(\gamma, A^{\wedge}, \phi^{\downarrow})$:

$$\pi^{ij} = \frac{\delta L}{\delta \dot{\gamma}_{ij}} \qquad \pi^{ij} = \frac{\delta S}{\delta \gamma_{ij}}, \quad \pi^i_{\Lambda} = \frac{\delta S}{\delta A^{\Lambda}_i}, \quad \pi_I = \frac{\delta S}{\delta \varphi^I}.$$
w/ original.
$$\pi_I = \frac{\delta L}{\delta \dot{\varphi}^I} \qquad \pi^i_{\Lambda} = \frac{\delta L}{\delta \dot{A}^{\Lambda}_i}$$

deBoer, Verlinde² '99,...Skenderis, Papadimitriou '04,...

Solve asymptotically (for `vacuum' asymptotic solutions) for

$$S(\gamma, A^{\Lambda}, \phi^{I}) = -S_{ct}$$
 !

 $S(\gamma, A^{\Lambda}, \phi^{I})$ coincides with the on-shell action, up to terms that remain finite as $\Sigma_{u} \rightarrow \partial \mathcal{M}$. In particular, divergent part of $S[\gamma, A^{\Lambda}, \phi^{I}]$ coincides with that of the on-shell action.

Hamiltonian Formalism with ``Renormalized'' Action

$$S_{\rm reg} = S_4 + S_{\rm ct}$$
 $S_{\rm ren} = \lim_{r \to \infty} S_{\rm reg}$ Finite-independent of r

Covariant S_{ct} calculated for vacuum asymptotic sol. (for non-flat, conformal to $AdS_2 \times S^2$ geometry)

$$S_{\rm ct} = -\frac{1}{\kappa_4^2} \int d^3 \mathbf{x} \sqrt{-\gamma} \, \frac{B}{4} e^{\eta/2} \left(\frac{4-\alpha}{B^2} + (\alpha-1)e^{-\eta}R[\gamma] - \frac{\alpha}{2}e^{-2\eta}F_{ij}F^{ij} + \frac{1}{4}e^{-4\eta}F_{ij}^0F^{0ij} \right)$$

Renormalized canonical momenta:

$$\Pi^{ij} = \pi^{ij} + \frac{\delta S_{\rm ct}}{\delta \gamma_{ij}}, \quad \Pi^i_{\Lambda} = \pi^i_{\Lambda} + \frac{\delta S_{\rm ct}}{\delta A^{\Lambda}_i}, \quad \Pi_I = \pi_I + \frac{\delta S_{\rm ct}}{\delta \varphi^I}$$

• Conserved Charges:

Conserved currents, a consequence of the first class constraints

 $\mathcal{H}_{\rm i} = \mathbf{0} \quad \text{Conserved currents:} - 2D_j \Pi_i^j + \Pi_\eta \partial_i \eta + \Pi_\chi \partial_i \chi + F_{ij}^0 \Pi^{0j} + F_{ij} \Pi^j \approx 0$

Conserved ``charges'':
$$\mathcal{Q}[\zeta] = \int_{\partial \mathcal{M} \cap C} \mathrm{d}^2 \mathbf{x} \left(2\Pi_j^t + \Pi^{0t} A_j^0 + \Pi^t A_j \right) \zeta^j$$

Asymptotic Killing vector ξ_i

Mass:
$$M_4 = -\int_{\partial \mathcal{M} \cap C} \mathrm{d}^2 \mathbf{x} \left(2\Pi_t^t + \Pi_0^t A_t^0 + \Pi^t A_t\right) = \frac{\ell k}{8G_4} (r_+ + r_-)$$

Angular Momentum: $J_4 = \int_{\partial \mathcal{M} \cap C} \mathrm{d}^2 \mathbf{x} \left(2\Pi_\phi^t + \Pi_0^t A_\phi^0 + \Pi^t A_\phi\right) = -\frac{\omega \ell^3}{2G_4}$

Thermodynamic relations and the first law

Free Energy:
$$I_4 = S_{\text{ren}}^{\text{E}} = -S_{\text{ren}} = \beta_4 \mathcal{G}_4 = \frac{\beta_4 \ell k}{8G_4} \left((r_- - r_+) + 2\omega^2 \ell^2 \sqrt{\frac{r_-}{r_+}} \right)$$

Quantum statistical relation: $\mathcal{G}_4 = M_4 - T_4 S_4 - \Omega_4 J_4 - \Phi^{0(e)} Q^{0(e)}$

First law:
$$dM_4 - T_4 dS_4 - \Omega_4 dJ_4 - \Phi_4^{0(e)} dQ_4^{0(e)} - \Phi_4^{(m)} dQ_4^{(m)} = 0$$

Smarr's Formula: $M_4 = 2S_4T_4 + 2\Omega_4J_4 + Q_4^{0(e)}\Phi_4^{0(e)} + Q_4^{(m)}\Phi_4^{(m)}$

Varying parameters: r_+ , r_- , ω , and B, k, ℓ subject to kB^3/ℓ^3 –fixed original parameters m, a, Π_c , Π_s & a scaling parameter

IV. Holography via 2D Einstein-Maxwell-Dilaton

For more details, c.f., Ioannis Papadimitriou's talk M.C., Papadimitriou 1608.....

4D STU fields can be consistently Kaluza-Klein reduced on S² by one-parameter family of Ansätze:

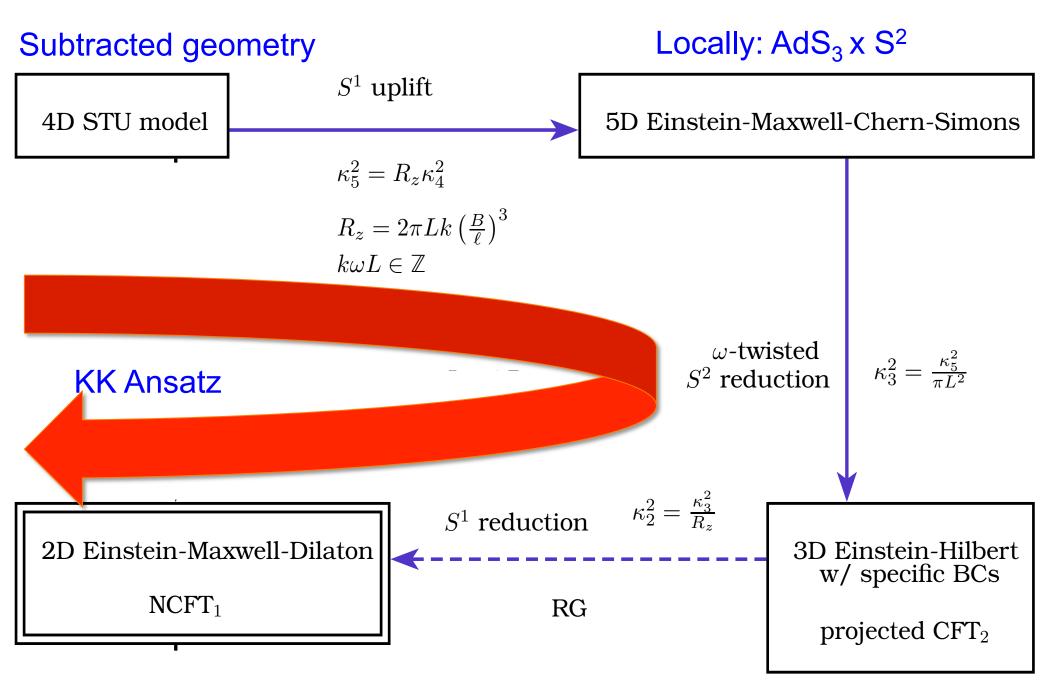
$$e^{-2\eta} = e^{-2\psi} + \lambda^2 B^2 \sin^2 \theta, \qquad \chi = \lambda B \cos \theta$$
$$e^{-2\eta} A^0 = e^{-2\psi} A^{(2)} + \lambda B^2 \sin^2 \theta d\phi, \qquad A + \chi A^0 = B \cos \theta d\phi$$
$$e^{\eta} ds_4^2 = ds_2^2 + B^2 \left(d\theta^2 + \frac{\sin^2 \theta}{1 + \lambda^2 B^2 e^{2\psi} \sin^2 \theta} (d\phi - \lambda A^{(2)})^2 \right)$$

 ds_2^2 , Ψ , $A^{(2)}$ -fields of 2D Einstein-Maxwell-Dilaton Gravity:

$$S_{2D} = \frac{1}{2\kappa_2^2} \left(\int \mathrm{d}^2 \mathbf{x} \sqrt{-g} \ e^{-\psi} \left(R[g] + \frac{2}{L^2} - \frac{1}{4} e^{-2\psi} F_{ab} F^{ab} \right) + \int \mathrm{d}t \sqrt{-\gamma} \ e^{-\psi} 2K \right)$$

B = 2L; λ-independent $\lambda = \omega \ell^3 / B^3$ rotational parameter of subtracted geometry

Web of Theories



General solution of 2D EMD Gravity – running dilaton Feffeman-Graham gauge: $ds^2 = du^2 + \gamma_{tt}(u, t)dt^2$, $A_u = 0$ Anaytic general solution:

$$e^{-\psi} = \beta(t)e^{u/L} \sqrt{\left(1 + \frac{m - \beta'^2(t)/\alpha^2(t)}{4\beta^2(t)}L^2 e^{-2u/L}\right)^2 - \frac{Q^2 L^2}{4\beta^4(t)}e^{-4u/L}}$$
$$\sqrt{-\gamma} = \frac{\alpha(t)}{\alpha(t)}\partial_t e^{-\psi}$$

$$\beta'(t)$$

$$A_t = \mu(t) + \frac{\alpha(t)}{2\beta'(t)} \partial_t \log\left(\frac{4L^{-2}e^{2u/L}\beta^2(t) + m - \beta'^2(t)/\alpha^2(t) - 2Q/L}{4L^{-2}e^{2u/L}\beta^2(t) + m - \beta'^2(t)/\alpha^2(t) + 2Q/L}\right)$$

Leading asymptotic behavior:

 $\gamma_{tt} = -\alpha^2(t)e^{2u/L} + \mathcal{O}(1), \quad e^{-\psi} \sim \beta(t)e^{u/L} + \mathcal{O}(e^{-u/L}), \quad A_t = \mu(t) + \mathcal{O}(e^{-2u/L})$ running dilaton

- Arbitrary functions $\alpha(t)$, $\beta(t)$ and $\mu(t)$ identified with the sources of the corresponding dual operators
- 4D uplift results in asymptotically conformally AdS₂×S² subtracted geometries, generalized to include arbitrary time-dependent sources

Repeat Radial Hamiltonian Formalism in 2D

Radial ADM decomposition: $ds^2 = (N^2 + N_t N^t) du^2 + 2N_t du dt + \gamma_{tt} dt^2$

Countertern Action: $S_{\rm ct} = -\frac{1}{\kappa_2^2} \int dt \sqrt{-\gamma} \ L^{-1} \left(1 - u_o L \Box_t\right) e^{-\psi}$

Renormalized one-point functions: $\mathcal{T} = 2\widehat{\pi}_t^t$, $\mathcal{O}_{\psi} = -\widehat{\pi}_{\psi}$, $\mathcal{J}^t = -\widehat{\pi}^t$

$$\widehat{\pi}_{t}^{t} = \frac{1}{2\kappa_{2}^{2}} \lim_{u \to \infty} e^{u/L} \left(\partial_{u} e^{-\psi} - e^{-\psi} L^{-1} \right)$$

$$\widehat{\pi}_{t}^{t} = \lim_{u \to \infty} \frac{e^{u/L}}{\sqrt{-\gamma}} \pi^{t}$$

$$\widehat{\pi}_{\psi} = -\frac{1}{\kappa_{2}^{2}} \lim_{u \to \infty} e^{u/L} e^{-\psi} \left(K - L^{-1} \right)$$

Explicit one-point functions:

$$\begin{aligned} \mathcal{T} &= -\frac{L}{2\kappa_2^2} \left(\frac{m}{\beta} - \frac{\beta'^2}{\beta\alpha^2} \right), \quad \mathcal{J}^t = \frac{1}{\kappa_2^2} \frac{Q}{\alpha}, \quad \mathcal{O}_{\psi} = \frac{L}{2\kappa_2^2} \left(\frac{m}{\beta} - \frac{\beta'^2}{\beta\alpha^2} - 2\frac{\beta'\alpha'}{\alpha^3} + 2\frac{\beta''}{\alpha^2} \right) \\ \text{Ward Identities:} \quad \partial_t \mathcal{T} - \mathcal{O}_{\psi} \partial_t \log \beta = 0, \qquad \mathcal{D}_t \mathcal{J}^t = 0 \\ \text{Conformal anomaly:} \quad \mathcal{T} + \mathcal{O}_{\psi} = \frac{L}{\kappa_2^2} \left(\frac{\beta''}{\alpha^2} - \frac{\beta'\alpha'}{\alpha^3} \right) = \frac{L}{\kappa_2^2 \alpha} \partial_t \left(\frac{\beta'}{\alpha} \right) \equiv \mathcal{A} \\ \text{Exact generating function} \left(\mathcal{T} = \frac{\delta S_{\text{ren}}}{\delta\alpha}, \quad \mathcal{O}_{\psi} = \frac{\beta}{\alpha} \frac{\delta S_{\text{ren}}}{\delta\beta}, \quad \mathcal{J}^t = -\frac{1}{\alpha} \frac{\delta S_{\text{ren}}}{\delta\mu} \right) \\ S_{\text{ren}}[\alpha, \beta, \mu] = -\frac{L}{2\kappa_2^2} \int dt \left(\frac{m\alpha}{\beta} + \frac{\beta'^2}{\beta\alpha} + \frac{2\mu Q}{L} \right) \\ \text{Legandre transformed generating function} \left(\mathbf{w} \ \alpha(t) = \beta(t) \right) \\ \Gamma_{\text{eff}} = S_{\text{ren}} + \int dt \ \alpha \left(\mathcal{T} + \mathcal{O}_{\psi} \right) = \frac{L}{\kappa_2^2} \int dt \left(\{\tau, t\} - \mu Q/L - m \right) \\ \mathbf{w}_{\text{dynamic time''}} \\ \{\tau, t\} = \frac{\tau'''}{\tau'} - \frac{3}{2} \frac{\tau'^2}{\tau'^2} \quad \text{Schwarzian derivative} \qquad -\alpha^2(t) dt^2 = -(d\tau(t))^2 \end{aligned}$$

c.f., Sadchev-Ye-Kitaev'93,... Almeheiri-Polochinski'14;Maldacena, Stanford, Yang'16, Engelsoy,Merens,Verlinde'16,...

Asymptotic symmetries and conserved charges

Asymptotic symmetries: subset of Penrose-Brown-Henneaux (PBH) transformations (diffeomorphisms and gauge transformations preserving the Fefferman-Graham gauge) that preserve boundary conditions:

 $\delta_{\rm PBH}\alpha = \partial_t(\varepsilon\alpha) + \alpha\sigma/L, \qquad \delta_{\rm PBH}\beta = \varepsilon\beta' + \beta\sigma/L, \qquad \delta_{\rm PBH}\mu = \partial_t(\varepsilon\mu + \varphi)$

 δ_{PBH} (sources) = 0 \rightarrow constrain functions ϵ (t), σ (t) and ϕ (t) in term of two constants $\xi_{1,2}$

Conserved Charges: boundary terms obtained by varying the action with respect to the asymptotic symmetries (and Ward identities) \rightarrow

U(1)xU(1):
$$Q_1 = -\left(\beta T - \frac{L}{2\kappa_2^2} \frac{\beta'^2}{\alpha^2}\right) = \frac{mL}{2\kappa_2^2}, \qquad Q_2 = \alpha \mathcal{J}^t = \frac{Q}{\kappa_2^2}.$$

3D perspective: two copies of the Virasoro algebra with the Brown-Henneaux central charge. Only L_{0}^{\pm} are realized non-trivially in 2D.

Constant dilaton solutions and AdS₂ holography

c.f., Strominger'98, ...Castro, Grumiller, Larsen, McNees '08,... Compère, Song, Strominger '13,...Castro, Song'14,...

Holography depends on the structure of non-extremal constant dilaton solutions and choice of boundary conditions \rightarrow

Provided systematic holographic dictionary for each choice c.f., Papadimitriou's talk &1608.... No Time

Note: non-extremal running dilaton solution → extremal running-dilaton solution with RG flow to IR fixed point VEV of irrelevant scalar op. extremal constant dilaton solution → non-extremal constant dilaton branch (`Coulomb phase')

(does not lift into subtracted geometry)

Summary/Outlook with focus on AdS₂ Holography

- Provided a family of consistent KK Ansätze that allow us to uplift any solution of 2D EMD gravity to 4D STU solutions, which are non-extremal 4D black holes, asymptotically (conformally) AdS₂ × S² subtracted geometry. [Should work also for 5D solutions asymptotically (conformally) AdS₂ x S³.]
- Constructed complete holographic dictionary of 2D EMD gravity theory obtained by an S² reduction of 4D STU subtracted geometry & constant dilaton solutions.
- 2D EMD gravity has a well defined UV fixed point, described by a sector of 2D CFT.
- Many aspects of the holographic description are generic and should apply to more generic 2D dilaton gravity theories.