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Motivation

The notion of entanglement has played a crucial role in our
understanding of quantum gravity and the emergence of spacetime

Key ingredients: BH thermodynamics, holography

dM =
κ

8πG
dA ←→ dE = TdS

For BHs with charge and angular momentum:

dE = TdS + ΩdJ + ΦdQ

What about a PV term? Einstein’s equation suggests:

P = − Λ

8πG

Considering Λ as an additional thermodynamical variable is known as
extended BH thermodynamics or BH chemistry [Kastor, Ray & Traschen],

[Cvetic, Gibbons, Kubiznak & Pope], [Dolan], [Kubiznak & Mann],...
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Motivation: extended BH thermodynamics

The ADM mass M is the enthalpy H:

M = H = U + PV

and the volume is defined as the thermodynamical conjugate to P:

V :=

(
∂H

∂P

)
S

In simple cases V coincides with a naive integration over the BH
interior V = 4

3πr
3
+ (in d = 3). Notice it depends on the foliation!

The extended first law is:

dM = TdS + ΩdJ + ΦdQ + VdP

However, the holographic interpretation is radically different...
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Motivation: holographic interpretation

First, note that P (or Λ) is a parameter of the gravity action, while
M, Q and J are just parameters of the solutions

In string/M theory constructions, Λ = −d(d − 1)/2L2 is set by the
value of the Planck length, and the number of branes N. In a Dp
system one generally finds:

Ld−1

G
∼ N2

Varying P changes N and hence changes the dual theory. Naively, V
can be interpreted as a chemical potential for color [Dolan]

However, varying P also changes the radius of curvature R of the
CFT metric (which also changes the theory) [Karch & Robinson]

∂N2 |R = ∂G−1 |L , ∂R |N2 = ∂L|L3/G .
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Motivation: the extended PV space
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Figure: Typical PV and TS diagrams of AdS-RN

Critical point can be specified by (Pc ,Vc , βc) or (βc , Sc ,Qc)

In the canonical ensemble:

Pc =
1

384πQ2
, Vc = 64

√
6πQ3 , βc = 6

√
6πQ

The EOS leaves us with one dimensionless parameter, e.g. ζ = β2P
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Motivation: the extended PV space
At fixed (Q,V ) we can vary either β or P to reach the CP

I Field theory interpretation is completely different! [Caceres, Nguyen & JP]

I Significance of the VdW transition also differs:

CP = T

(
∂S

∂T

)
P

≥ 0 , κT = − 1

V

(
∂V

∂P

)
T

≥ 0

I Also explains why is it possible to derive the generalized Smarr relation
from standard CFT thermodynamics [Karch & Robinson]

Varying P has also motivated the “holographic heat engines” [Johnson]
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Motivation: extended laws of entanglement?

Entanglement entropy for a subregion A also obeys a first law:

δSA = δ〈HA〉 .

where SA = −tr[ρA log ρA] and ρA ' e−HA

HA not know in general. For a spherical region in the vacuum:

HA = 2π

∫
A
dd−1x

R2 − |~x − ~x0|2

2R
T00

In holography, SA is strikingly similar to S [Ryu & Takayanagi]

SA =
A

4G

and the origin of the first law is well understood

Important: first law + RT = linearized EOM in the bulk! [Lashkari,

McDermott & Van Raamsdonk], [Faulkner, Guica, Hartman, Myers & Van Raamsdonk]
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Motivation: extended laws of entanglement?

Two natural questions we may ask:

Q1: Can we derive an extended version for the first law?
Q2: If so, what new information codifies?

In order to answer these we made use of the Iyer-Wald formalism...
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Review of Iyer-Wald

The Iyer-Wald formalism is an application of Noether’s Theorem to
diffeomorphism invariance

Consider a diffeomorphism-invariant theory of gravity, with
Lagrangian L, e.g. in Einstein gravity L = (R − 2Λ)ε

The algorithm is to compute 4 differential forms (in this order): Θ
(symplectic potential current), J (Noether current), Q (Noether
charge), and χ

Θ is the boundary term obtained by varying the Lagrangian under
some metric variation δg :

δL = (e.o.m.)δg + dΘ(δg)

For Einstein gravity:

Θ(δg) =
1

16πG
gacgbd(∇bδgcd −∇cδgbd)εa
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The Noether current J and Noether charge Q

Once we have Θ for an arbitrary perturbation, we specialize to the
case when δg is induced by a diffeomorphism:

δg = LXg

where X is the vector field generating the diffeomorphism

The Noether current is then:

J = Θ(LXg)− X · L

After some manipulation, J can be brought to the form:

J = dQ + e.o.m.

for some Noether charge form Q.

For Einstein gravity,

Q = − 1

16πG
∇aX bεab
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The form χ and the 1st law

Next, consider a different kind of δg : an arbitrary on-shell
perturbation (i.e. it satisfies the linearized e.o.m.), and define:

χ := δQ − X ·Θ(δg)

where Θ is evaluated for this new perturbation, and δQ is the
variation of Q under this new perturbation.

If X is a Killing vector field ξ then χ is closed:

dχ = 0

For BH thermodynamics ξ = ∂t . Stokes theorem yields:∫
∞
χ−

∫
H
χ = δE − δS = 0
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How to do Iyer-Wald with δΛ and δG?

Note that δΛ and δG are qualitatively different from δM, δQ, δJ: Λ
appears both as a coupling in the action and a parameter in the
solution; G only appears in the action.

Solution: [Urano, Tomimatsu & Saida]

I Extend the definition of δL at the beginning to account for δΛ:

δL = (e.o.m)δg +
∂L
∂Λ

δΛ +
∂L
∂G

δG

I Compute the contribution to χ due to a shift of δΛ in the metric.

In the end, we find the modified statement:

δΛ

∫
Σ

∂L
∂Λ

ξ · ε+ δG

∫
Σ

∂L
∂G

ξ · ε+

∫
∞
χ−

∫
H
χ = 0
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Application: deriving the black hole volume

Consider the 4D AdS-Schwarzschild solution:

ds2 = −
(

1− 2M

r
+

r2

L2

)
dt2 +

dr2(
1− 2M

r + r2

L2

) + r2dΩ2

In this case:

δΛ

∫
Σ

∂L
∂Λ

ξ · ε = − δΛ

8πG

∫ ∞
r+

√
−gdrdΩ = − δΛ

6G
(r3

c − r3
+)

where rc >> r+ is a radial cutoff → divergent!

This divergence cancels with another one:∫
∞
χ =

r3
c

6G
δΛ

We find the term
r3
+

6G δΛ or V δP with V = 4
3πr

3
+

→ we recovered the thermodynamical volume!
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Entanglement thermodynamics in Einstein gravity

Recall that δSA = δ〈HA〉, with SA = −tr[ρA log ρA] and ρA ' e−HA

For a spherical boundary region, HA is flow
along a conformal Killing vector field:

ζ = −2π

R
tx i∂i +

π

R
(R2 − ~x2 − t2)∂t

The flow is confined to the causal
development D of the ball.

For pure AdS, the CKVF ζ extends into a bifurcate KVF in the bulk:

ξ = −2π

R
t(z∂z + x i∂i ) +

π

R
(R2 − ~x2 − t2 − z2)∂t

such that the bifurcation surface is the RT surface

Iyer-Wald formalism can be applied to derive 1st law!
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Entanglement chemistry in Einstein gravity

At the end we get (see paper for details):

δSA = δ〈HA〉+ SA

(
(d − 1)

δL

L
− δG

G

)
I Extra terms are due to change of the parameters of the theory!
I Variations in δL, δG can be easily written in terms of δN, δR
I Can be conveniently written in terms of central charges:

(d = 2) c =
3L

2G

(d = 4) c = a =
45πL3

G

δSA = δ〈HA〉+
SA
c
δc

which follows from scaling of SA with c . Compare to [Karch & Robinson]

Does it buy us anything from bulk perspective? Yes: L and G appear
explicitly so we can retrieve the gravity couplings
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Entanglement chemistry in higher derivative gravity

Q: Why is higher derivative gravity interesting in this context?
→ New and exotic phase transitions, e.g. multiple reentrant phase
transitions and isolated critical points [Frassino, Kubiznak, Mann & Simovic],

[Hennigar, Brenna & Mann], [Dolan, Kostouki, Kubiznak & Mann]

Prototypical example: Gauss-Bonnet theory:

L =
R − 2Λ

16πG
+ α

(
RabcdR

abcd − 4RabR
ab + R2

)
GB serves as a toy model for a theory with different central charges

c =
45πL3

G

(
1− 64πGα

L2

)

a =
45πL3

G

(
1− 192πGα

L2

)
Scaling of thermodynamical quantities with a and c is not universal.
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Entanglement chemistry in higher derivative gravity

In higher derivative gravity the EE functional is modified [Dong], [Camps]

In Gauss-Bonnet gravity:

S =
1

4G

∫
dd−1x

√
h[1 + 32πGαR]

For a spherical boundary region, the surface is same as in Einstein
gravity i.e. a hemisphere → same Killing vector field can be used.

Since the surface is a Killing horizon, its extrinsic curvature vanishes
→ EE coincides with the Wald entropy→ Iyer-Wald can be used!

To study entanglement chemistry consider δΛ, δG and δα.

Can be easily generalized to Lovelock theories (see the paper for
further details)
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Entanglement chemistry in higher derivative gravity

For Gauss-Bonnet in arbitrary dimensions the result is:

δSA = δ〈HA〉+ SA (ΨLδL−ΨGδG −Ψαδα)

where

ΨL =
(d − 1)

L

(
L2 − 32πGα(d − 2)(d − 3)

L2 − 32πGα(d − 1)(d − 2)

)
ΨG =

1

G

(
L2

L2 − (d − 1)(d − 2)32πGα

)
Ψα = − 32πG (d − 1)(d − 2)

L2 − (d − 1)(d − 2)32πGα

Again, extended first law includes information about gravity couplings

In d = 3 GB is topological → EOM the same as in Einstein gravity.
Varying the coupling α gives a non-trivial effect

Results agree with [Kastor, Ray & Traschen] based on the Hamiltonian
formulation of GR
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Outlook

Still a lot of work to do:

Shape dependence [Faulkner, Leigh, Parrikar & Wang]

Extended first law for excited states [Bhattacharya, Nozaki, Takayanagi &

Ugajin], [Allahbakhshi, Alishahiha & Naseh], [Wong, Klich, Pando-Zayas & Vaman],
explain VdW transition [Caceres, Nguyen, JP]

General higher derivative theories

Examples of the extended first law in field theory

Interplay with quantum corrections [Faulkner, Lewkowycz & Maldacena],

[Engelhardt & Wall]

String/M theory realizations [Dolan], [Belhaj, Chabab, Moumni, Masmar &

Sedra], [Chabab, Moumni & Masmar]

Relation with complexity? [Alishahiha], [Brown, Roberts, Susskind, Swingle &

Zhao], [Momeni, Myrzakulov & Myrzakulov]
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