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Motivation: non-equilibrium QFT dynamics

& What is the framework for a consistent Wilsonian treatment of low energy
dynamics in mixed states of a QFT?

+ There is a reasonably good phenomenological understanding, but the
theoretical underpinnings are not yet fully understood.

+ Entanglement of the system with some external reservoir/purifier is central
to the discussion.

+ There are many reasons to be interested in this question:
* intrinsic interest from QFT and many-body physics standpoint.

* dynamics of black holes via AdS/CFT.

* cosmology.



Schwinger-Keldysh formalism



A MICroscopic perspective

+ Doubling: Mixed states of a QFT can be purified by introducing an ancillary
system. Focus on pure states in tensor product Hilbert space.

+ Central to the Schwinger-Keldysh formalism developed to compute real
time correlation functions in QFTs.

Hpnys C Hr Q Hi

p=l) (= e [Y) (] e




Schwinger-Keldysh formalism

+ The Schwinger-Keldysh formalism computes time ordered correlation
functions in a generic (mixed) state.

+ We double the degrees of freedom to account for the operator nature of
the density matrix or equivalently work with a closed time contour:
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Generating functional Time ordered correlations
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Topological limit

+ Lorentz signature inner product in R-L basis from forward/backward
evolution implies:

2ok |Tw = T = T) = Tr{ Pinitia }

+ Equal sources on L-R collapses to a theory of initial conditions.
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+ Keldysh (light-cone) basis O,, =0y -0, , 0O =

1
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+Rather remarkable statement, which is agnostic of microscopic dynamics.

+ Furthermore, a largest time equation is satisfied; difference operators
cannot be future-most in any correlation function.



The Schwinger-Keldysh quartet

+ Difference operator correlation functions vanish because they are trivial
elements of a BRST cohomology.

+ There exists a pair of Grassmann odd charges which act on the doubled
operator algebra.

+The SK theory is covariantly expressed in terms of a quartet of fields,
which usual doubled formalism being a gauge fixed version (ghosts =0).
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The Superoperator algebra

+ Useful to organize the doubled operator algebra into an operator
superalgebra on which the Grassmann charges act as derivations.
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+This representation is useful to recover the time-ordering rules of the
Schwinger-Keldysh construction directly from superspace.
(Tsrc AvAs Ay = (Tore T (Ak, + 0k AL + AL + 0,0, AL )
k=1
+Requiring the supercorrelator to be supertranslation invariance, we obtain
the standard Keldysh rules, modulo ambiguities for the partner ghost
correlators.



Thermal density matrices and KMS condition

+ Thermal density matrices p, = #(H-#: Q) define stationary equilibrium
configurations.

+ Correlation functions have analyticity properties which allows for a
Euclidean (Matsubara) formulation, cf., Z,.(6,u,) = Tr (o)
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+ KMS condition asserts that the correlation functions are analytic in the
time strip 0 < G(t) < B.

+ Equivalently within correlation functions, operators and their KMS
conjugates (or thermal translates) are equivalent.



KMS conjugates & thermal sum rules

+ To extract the physical content of the KMS condition, let us define the KMS
conjugate operator:

~

OL(t) — OL(t - ZB) — e_i% O

+ One corollary of the KMS condition and the structure of the SK correlation
functions discussed earlier is the sum rule

(Tsk H (Og{) — éﬁk))> =0 (Tsx H Opet) = 0

+The retarded operators are the thermal analogs of differences and satisty
a differential equation:
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The KMS supercharge

+ Deviation from the KMS condition is naturally measured by A,.

+ This must extend to as a KMS superoperator acting on the operator
superalgebra: a thermal supertranslation

7. =AA, = (A+§A¢+9A@+§9]\> A,

+ Together with the SK differentials these operations generate a (super)
algebra
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+Successive thermal supertranslations do not commute if we assume that
transformation parameters vary spatio-temporally

(A, A=A, i — A i



The SK-KMS superalgelbra

+The algebra of the SK and KMS differentials is a known topological
algebra N7 =2 extended equivariant cohomology algebra.

IQKQMS Vafa, Witten '94
KMS Dijkgraaf, Moore ‘96
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+The N1 =1 algebra is realized as the standard Weil algebra satisfied by
the de Rham complex involving exterior derivatives, Lie derivative and
Interior contraction.

+ The KMS symmetries act as local gauge symmetries: they generate
diffeomorphisms along the Euclidean thermal circle.



Application 1: Hydrodynamics



Fluid dynamics as a sigma model

+Hydrodynamics: low energy dynamics of conserved currents in near

equilibrium situations.

+Dynamical variables for an effective action: Goldstone modes for

spontaneously broken difference diffeomorphisms and difference gauge

transformation (charge current).
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+The SK-KMS algebra constrains the effective action and provides a

guiding principle for the emergence of the low energy dynamics.



Srownian particles

+Dynamics of a Brownian particle immersed in a fluid is a simple starting
point (generalizes to Brownian branes).

+ Data for the worldvolume theory:
+matter multiplet: a quadruplet X = {X, Xy, X5, X}

#gauge multiplet: a dodecuplet A = Ay dt + Agdf + Ay db

+ Effective action: a full superspace integral built out of gauge covariant
objects (covariant derivatives and field strengths)
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Langevin dynamics

+ A BRST supersymmetric formulation of stochastic dynamics is well known

and is usually derived by an analog of the familiar Faddeev-Popov trick.
Martin, Siggia, Rose ‘73

+The superspace formalism gives us a SK-KMS covariant presentation.

+ Stochasticity/dissipation arises because of spontaneous CPT symmetry

breaking. o |
061) — 1

+ Useful moral: dissipation = ghost condensation.

+ BRST supersymmetry + spontaneous CPT |leads to Jarzynski relation which
is a generalized fluctuation dissipation relation

Sgo > Sgo — i (Fpgl) B (AG+W) = (e PW) = ¢ FAC



Dissipative hydrodynamic actions

+ Working in superspace the symmetries suffice to constrain the terms that
can appear in the worldvolume sigma model
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+Integrating over superspace one ends up with a simple Lagrangian
density that generalizes the adiabatic Lagrangian to include dissipation:
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see also Kovtun, Moore, Romatschke ’13; Crossley, Glorioso, Liu ‘15

+ Dissipative dynamics again spontaneously breaks CPT, with the KMS field
strength picking up a vev (ghost condensate).



Application 2: Covariant entanglement entropy



Sackground

+ Given the boundary region A the prescription to compute entanglement
holographically involves finding a bulk extremal surface €4 which is anchored

on 0Aand is homologous to A.
B Area(é’ A) Ryu, Takayanagi ‘06

SA Hubeny, MR, Takayanagi ‘07
4G N

+Time independent proposal of RT derived by finding bulk dual of replica

construction and invoking the saddle point expression.
Lewkowycz, Maldacena ‘13

+ Deriving the covariant prescription requires us to consider generalization
of Schwinger-Keldysh contours to implement replica for consistency with
causality.

+An implementation of the bulk Schwinger-Keldysh replica leads to the
proposal.




Real time replica: Boundary

+We cut open the path integral along the region A on the Cauchy slice ;.

+Imposing suitable boundary conditions in the future/past segments leads to
the matrix elements of the reduced density matrix (p.4)+.

Z, symmetric gluing conditions



The bulk ansatz

+ Prescription: Pick some bulk
Cauchy slice ¥, within the FRW
wedge.

+We will glue copies of the
geometry past of ¥, to obtain
the dual of the SK contour.

+ The choice of 3 is irrelevant for
computing time-ordered
correlation functions.

+ For entanglement entropy we
will find that X; is forced to
contain the extremal surface.

Skenderis, Van Rees ‘08



Bulk density matrix elements
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Gravitational dynamics

+Once we have the ansatz and the replica boundary conditions, all that
remains is to solve the bulk equations of motion. Work in local coordinates
adapted to the normal bundle of the singular locus:

ds® = (qurz — r? d7'2> -+ (%-j +2 K5 r9cosht + 2 Kfj r?sinh T) dy* dy’
+ {qu (¢—1) _ 1} 8g, dzt dz” + - -

+Bulk equations of motion then fix the geometry of the singular locus. To
leading order in g-1 we fix the geometry. In Einstein-Hilbert theory this
gives the extremal surface condition
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The on-shell gravitational action

+|n addition to ascertaining the saddle point solution, we have to also
compute the on-shell action atop it.

+ It is useful to compute directly the modular entropy which localizes:

~ 1
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Dong ‘16

+While there are some slight subtleties, at the end of the day the result for
the on-shell action computed directly in the Lorentzian replica geometry
leads to the expected answer:
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4Gy

~ Area(e
an[Mq] — ( Q)

Z 4¢°Gn A




L.ooking ahead...

+ An understanding of the microscopic symmetries in the SK construction,
and the symmetry breaking pattern, results in an universal low energy
dynamical theory of fluids.

+ The macrophysics derived is consistent with phenomenological
expectations (yet to make contact with the eightfold classification).

+ Perhaps the most important lesson here is that microscopic unitary which
enforces fluctuation-dissipation etc., is upheld thanks to the ghost
couplings. Lessons for gravity?

+ General principles for gravitational implementation of Schwinger-
Keldysh?



A roadmap for the framework

Microscopic Schwinger-Keldysh construction

* doubling of degrees of freedom
* entanglement structure in initial state

%

I\/Iacrophy’i»cs: cf., hydrodynamics

Black hole dynamics

7

* no doubling! .
* emergence of horizons?

* emergent IR collective fields .  venlity of the oo
* entropy & second law of Fluid/Gravity !

thermodynamics




Holographic fluids

+Known second order transport of holographic fluids follows from:

o\ d
_ A/ — 5 4 T ) d o o o o
LWV = Ceoff /d@ do & { <7; > (1 — _;71' PC<an>d DQéab Déécd)

(e} d_2 (@]
A7 T R 1 2 1
— <7;> [m + y Harmonic (a — 1) 52 4+ §w2] }

+How does the bulk gravity theory realize this effective action?

+Recent attempts get the ideal fluid part correct, but no clear story
beyond...

Nickel, Son ‘10

Crossley, Glorioso, Liu, Wang ’15; deBoer, Heller, Pinzani-Fokeeva ‘15
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