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Motivation: non-equilibrium QFT dynamics

✦ There is a reasonably good phenomenological understanding, but the 
theoretical underpinnings are not yet fully understood.  

✦ Entanglement of the system with some external reservoir/purifier is central 
to the discussion.  

✦  There are many reasons to be interested in this question: 

✴ intrinsic interest from QFT and many-body physics standpoint. 

✴ dynamics of black holes via AdS/CFT. 

✴ cosmology.

 What is the framework for a consistent Wilsonian treatment of low energy 
dynamics in mixed states of a QFT?  



Schwinger-Keldysh formalism



A microscopic perspective

✦ Doubling: Mixed states of a QFT can be purified by introducing an ancillary 
system. Focus on pure states in tensor product Hilbert space. 

✦ Central to the Schwinger-Keldysh formalism developed to compute real 
time correlation functions in QFTs.

| i ! e�iHt | ih |! eiHth |
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Schwinger-Keldysh formalism

✦The Schwinger-Keldysh formalism computes time ordered correlation 
functions in a generic (mixed) state. 

✦  We double the degrees of freedom to account for the operator nature of 
the density matrix or equivalently work with a closed time contour:

Consequentially we work in an enlarged Hilbert space H = HR ⌦ HL with the action (�

denoting the collection of fields)

S

SK

= S[�R]� S[�L] . (2.5)

It will be crucial in the sequel to note the relative sign between the two copies, which

is predicated by the fact that while states are evolved forward (in the Schrödinger picture

say), their conjugates are evolved in reverse under standard unitary Hamiltonian evolution.

In particular, computing correlation functions involves turning on sources for the operators

on both sides with a relative sign, or equivalently working with a Lorentzian inner-product

in the source operator space, viz.,

�S

SK

=

ˆ
d

d

x

p�g (JR OR � JL OL) . (2.6)

This feature is manifest in the definition of the SK path integral Z
SK

given in Eq. (2.1).

2.2 Topological limit

The second defining feature is a specific boundary condition imposed on the double copy

correlators [14]. Usually this is stated as a technical condition that right-right correlators

are all time-ordered, left-left correlators are all anti-time ordered and the left operators are

always ordered to the left of the right operators; see Eq. (2.2). While technically su�cient,

this way of framing is somewhat unwieldy to deal with. For example, it is not immediately

clear how or why such an ordering structure should be preserved under renormalization.

We will thus rephrase this feature in a more useful form for doing e↵ective theory. A

consequence of the time-ordering prescription given above is that a certain class of operators,

viz., the di↵erence operators Odif = OR � OL, in the doubled theory have vanishing self-

correlations.5 This is a manifestation of unitarity in the underlying QFT. In order to see this,

we first note that, according to Eq. (2.6), di↵erence operator correlators are computed by

aligning the sources JR = JL = J . Looking at Eq. (2.1), it is clear that the SK path integral

degenerates in this limit to a trace over initial state Tr (⇢0) if the evolution with arbitrary

sources is unitary.6

Typically it is hard to protect an entire set of correlation functions against correction

without some symmetry principle. We therefore intuit there is underlying topological sym-

metry in play, since the above structure is insensitive to the particularities of the dynamics

of the QFT under consideration.

5 This statement is very familiar in the context of two point functions, where the advanced, retarded and

the symmetric correlator form a complete basis. One can check that this statement extends trivially in the

case of higher point functions, noting that it is a consequence of a simple identity involving time-ordering of

operators [14]. This identity is sometimes called the Veltman’s largest time equation in the context of Cutkosky

cutting rules [15].
6 This shows that SK path integral is the right framework to study unitarity in the evolution of mixed

states. This is to be contrasted with the thermofield double description which studies path integrals of the form

Tr
n

U [JR] ⇢
1
2
0 U†[JL] ⇢

1
2
0

o

and is hence ill-suited for studying single copy unitarity unless it is analytically

continued to a SK path integral.
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Generating functional Time ordered correlations

with the hydrodynamic fields being the Goldstone modes for spontaneously broken di↵erence

di↵eomorphism and flavour symmetries. For simplicity, we will only realize three of the eight

classes (including dissipation) in the eightfold classification of [13]. We also will demonstrate

the validity of the second law, by deriving the generalized fluctuation-dissipation result of

Jarzynski [35, 36] and Crooks [37, 38], invoking spontaneous breaking of microscopic time-

reversal as envisaged beautifully in [39–41]. The construction we describe in the main text

explicitly illustrates that the broad principles laid out in [32] su�ce to construct an e↵ective

field theory of dissipative hydrodynamics.

The rest of the paper is organized as follows: in §2 we outline the basic fields and

symmetries, arguing that a superspace functional is the easiest route to our goal. We explain

how these connect to the microscopic perspective in §3 and proceed to exhibit an explicit

construction for dissipative fluids in §4. We then demonstrate how to recover the generalized

fluctuation-dissipation statement in §5 and end with some comments in §6. We only sketch

the basic principles here; full details of the construction will appear elsewhere [42].

Note: Following [32], as this work was in progress, we received [43] who also construct an

action for dissipative hydrodynamics based on principles of SK path integrals.

2 Symmetries in SK description

We begin by examining the fundamental symmetries of a SK path integral. Given an initial

density matrix ⇢̂
initial

of a QFT, we define the SK generating functional

ZSK [JR, JL] ⌘ Tr
n

U [JR] ⇢̂
initial

(U [JL])
†
o

. (2.1)

U [J ] denotes the unitary evolution of the QFT, deformed by a source J . This form of SK

functional immediately leads to a set of essential properties which should be satisfied by any

SK e↵ective theory [32].

Features for generic mixed states: First, when we align the sources JR = JL = J , the

SK functional localizes to ⇢̂
initial

, viz.,

ZSK [JR = JL = J ] ⌘ Tr
n

⇢̂
initial

o

. (2.2)

This is a simple consequence of the unitarity of the underlying QFT. At the level of correlators,

this implies that the di↵erence operators, OR � OL, form a protected topological subsector

of the theory. This statement is equivalent to the largest time equation/cutting rule for the

corresponding correlator in the single copy theory. Thus imposing (2.2) in the low-energy

e↵ective theory ensures the cutting rule structure for its correlators.

This feature can be implemented in the SK e↵ective theory by demanding that when

sources align appropriately, the theory should exhibit topological invariance. Equivalently,

any SK e↵ective theory should be a source-deformed topological theory (TQFT). Such a

TQFT has two nilpotent, mutually anti-commuting, Grassmann odd topological charges
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evolution operators with a suitable sprinkling of both right and left sources JR and JL re-

spectively. Then one can via functional di↵erentiation with respect to these sources computes

the SK correlation functions, which take the schematic form:

Tr
⇣

⇢̂initial T̄
⇣

U †OLU
†OL . . .

⌘

T (UORUOR . . .)
⌘

, (3.5) eq:SKCorr

where T̄ denotes anti-time ordering, T denotes time-ordering and we note that left operators

are ordered to the left of the right operators (thus justifying the terminology). We will have

more to say about the SK time-ordering prescription momentarily.

The SK description should be contrasted against the more familiar Feynman path-integral

description of the QFT

ZFeynman[J ] ⌘ hVaccumt=1| U [J ] |Vaccumt=�1i , (3.6)

which computes time-ordered correlators of the form4

hVaccumt=1| T
⇣

UbOUbO . . .
⌘

|Vaccumt=�1i . (3.7)

As noted in §2 in a non-equilibrium or open quantum system have an inkling of what the

interacting final state of the system would be. The SK construction cleverly avoids this issue,

by reverting back at the end of the day to the initial state. This ensures that the entanglement

built into the initial density matrix ⇢̂initial, and the knowledge of the sources that one has

turned on, su�ces to compute the desired time ordered correlators.

3.2 Schwinger-Keldysh time ordering
sec:torder

check my usage of FO andGO. I think I fixed some erroneous statements, but would appreciate

a second check.

We now introduce a notion of SK time-ordering, which follows the contour ordering

prescription introduced in §2. To allow a general statement, let us first introduce the concept

of mutual Grassmann parity of operators. To so we first introduce the notion of a Grassmann

number for an operator (�1)GO, which is defined to be

(�1)GO =

(

+1 , O : Grassmann even

�1 , O : Grassmann odd
(3.8) eq:GOdef

In addition to the Grassmann number it is also useful to keep track on occasion of the

fermion number, which we denote (�1)FO. We define this as

(�1)FO =

(

+1 , O : bosonic

�1 , O : fermionic
(3.9) eq:FOdef

4 A note on our convention: operators of the original single copy microscopic theory are hatted, while the

doubled operators are denoted explicitly by appropriate subscripts. These operators could be either elementary

fields of the microscopic theory or more generally composite operators built from them.
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t
0

C OR

OL

Figure 2. SK time contour in the case where the initial state at time t0 is known and the latest
operator insertion happens at time t. The indicated operator insertions correspond to a real-time
correlator G<(x, x0). fig:contour2

initial conditions for the subsequent evolution and that for finite time computations, details

of how the system evolves to the future of all operator insertions are inessential.

We are now in a position to define the SK Green’s function. Following standard discussion,

we have

GC(x, x
0) = �ih⌦|TC

h

bO(x) bO†(x0)
i

|⌦i = �ih0|TC
h

UC bO(x) bO†(x0)
i

|0i . (2.5) eq:GSK

We note that with the contour ordering we no longer have a normalizing denominator any-

more, for the SK S-matrix doesn’t pick up a phase, UC |0i = |0i. This contour prescription

is su�cient to obtain the various Green’s functions that one is usually interested in. Let us

determine a prescription for these using the left-right basis of fields introduced above. Owing

to the complexification of the contour, and doubling of the degrees of freedom we immediately

see that we should have a 2 ⇥ 2 matrix of real-time Green’s functions, corresponding to the

choice of operator insertions on either segment. One thus defines:

G(x, x0) =

 

GRR GRL

GLR GLL

!

⌘
 

GF G<

G> G
F̃

!

, (2.6) SK-CorrUnphys

where we indicate the various Green’s functions both by the contour positions of the operator

insertions and the more familiar notation. GF (x, x0) is the well known Feynman propagator,

G
˜F (x, x

0) is an anti-Feynman propagator with reversed time ordering and we have in addition

two new cross-contour correlators. These all have familiar definitions:

GF (x, x
0) = �ih⌦|T

h

bO(x)bO†(x0)
i

|⌦i ,
G

F̃
(x, x0) = �ih⌦|T̄

h

bO(x)bO†(x0)
i

|⌦i ,
G<(x, x

0) = ih⌦|bO†(x0)bO(x)|⌦i ,
G>(x, x

0) = �ih⌦|bO(x)bO†(x0)|⌦i .

(2.7)
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Topological limit

✦Lorentz signature inner product in R-L basis from forward/backward 
evolution implies:

ZSK [JR = JL = J ] = Tr
�
⇢̂initial

 

✦Equal sources on L-R collapses to a theory of initial conditions.

It is usual to give a regularizing prescription for what happens when the causal order

is indeterminate. In addition it is natural to demand that whatever the prescription be, it

should continue to obey the identity above (3.14).

Some of the commonly used regularizing prescriptions when the causal order is indeter-

minate are (Check this)

Itō : ⇥A>B = 1, ⇥A<B = 0.

(Fisk-) Stratonovich : ⇥A>B =
1

2
, ⇥A<B =

1

2
.

Hanggi- Klimentovich : ⇥A>B = 0, ⇥A<B = 1.

(3.15)

Since Stratanovich prescription is natural from the viewpoint of Fourier transforms and it is

a CPT invariant regulator, we will employ it in what follows. We then have ⇥A>B = ⇥A<B

everywhere.7

3.4 Keldysh basis correlators
sec:keldysh

We now have all the machinery to give an explicit formula for the Keldysh basis correlators

following [4]. The simplest correlator is the one containing only di↵erence operators and it

vanishes identically, viz.,

hTSK
Y

k

O(k)
dif

i ⌘ hTSK
Y

k

⇣

O(k)
R � O(k)

L

⌘

i ⌘ hTSK
Y

k

O(k)
advi = 0 (3.16) eq:diff0

This is in fact easy to see directly from the definition of the generating function ZSK [JR,JL].

First one notes that the di↵erence operators are sourced by the average sources Jav , which

means that we can w.l.o.g. set JR = JL in the generating function before taking any functional

derivatives. However, ZSK [J ,J ] = Tr (⇢̂initial), owing to the cyclicity of the trace.

Thus we learn that the functional derivative of this result will vanish, simply asserting

that the SK-path integral is unresponsive to a set of average sources, for it collapses to a

statement of initial conditions. It must be emphasized that this fact holds independent of the

dynamics, which after all, is contained in the unitary evolution operator U . The universality

of this statement, points to a fundamental symmetry principle. We will argue later that the

SK path integral behaves like a topological theory when restricted to this sector. In particular,

the di↵erence operators will be shown to be BRST exact, with the symmetry being traceable

back a set of field redefinitions inherent in the doubling from H to HR ⌦H⇤
L.

should we draw an analogy or make a connection with MHV amplitudes?

7 Sometimes for generalized Langevin theory in non-equilibrium physics and often in stochastic mathematics

(including mathematical finance) the Itō prescription is preferred. CPT exchanges Itō and Hanggi- Klimen-

tovich prescriptions and thus the CPT-violating nature of Itō has to then be compensated by CPT-violating

counter terms (as is usual with any symmetry violating regulator). The ghosts we will talk about later in this

text often decouple in the Itō prescription which is the probably the reason it is preferred in fields which do

not want to deal with ghosts.
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live in this extended space of states. The main caveat is that not all elements of HR⌦H⇤
L can

be normalized to give a mixed state whereas any non-zero element of H can be normalized

to a pure quantum state; recall that density matrix ⇢̂ of an admissible mixed state should be

(i). Hermitian with non-negative eigenvalues

(ii). should have non-zero but finite trace (which can then be normalized to unity).

We adapt a notation wherein standard operators on H (which are automatically elements

of HR ⌦H⇤
L ) by a hat. On the contrary there will be no hats on SK operators which act on

the entire space HR ⌦ H⇤
L. Operators in the extended system are sometimes referred to as

superoperators. some reference

Let Ô 2 HR ⌦H⇤
L be an operator acting on the state space H: we can then construct two

corresponding superoperators acting on HR ⌦H⇤
L of the form

OR ⌘ bO ⌦ I , OL ⌘ I ⌦ bO (3.1)

As described in §2 often one performs a Keldysh rotation to instead work with the di↵erence

and average operators defined via:

Odif ⌘ OR � OL , Oav ⌘ 1

2
(OR + OL) (3.2) eq:KeldyshDef

We note that, after Keldysh rotation the average sources are associated with di↵erence op-

erators and the di↵erence sources are associated with average operators. This a consequence

of the following relation relating right-left basis to Keldysh basis:

JR OR � JL OL = Jav Odif + Jdif Oav . (3.3) eq:KeldyshJ

One may view the statement as saying that the SK contour imparts a Lorentzian inner product

between the left and right segments, and the passage to the Keldysh basis is akin to choosing

light-cone variables. In any event, varying the SK action with respect to average sources gives

the correlators with di↵erence operators and vice-versa.

We should note here that in much of the literature the Keldysh basis introduced in (3.2)

is called the ‘ra’ basis. The average operators are called the r�operators and the di↵erence

operators are called a-operators. We find this terminology less intuitive. Moreover, when we

discuss thermal correlation functions, for ⇢̂initial being a thermal Gibbs density matrix, we

will encounter the retarded-advanced basis (we use ret � adv to denote them). To forestall

any potential confusion, we propose to refer the Keldysh basis as av � dif operators.

With these preliminaries in place let us define the SK generating functional ZSK which

is defined by the trace over the tensor product Hilbert space HR ⌦H⇤
L

ZSK [JR,JL] ⌘ Tr
⇣

U [JR] ⇢̂initial U
†[JL]

⌘

, (3.4) eq:ZSKdef

where ⇢̂initial is the initial density matrix of the system, U represents the unitary evolution

operator of the QFT, U † is its adjoint. We have allowed ourselves to deform the unitary
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✦Rather remarkable statement, which is agnostic of microscopic dynamics. 

✦Furthermore, a largest time equation is satisfied; difference operators 
cannot be future-most in any correlation function.



The Schwinger-Keldysh quartet

✦Difference operator correlation functions vanish because they are trivial 
elements of a BRST cohomology. 

✦There exists a pair of Grassmann odd charges which act on the doubled 
operator algebra.  

✦The SK theory is covariantly expressed in terms of a quartet of fields, 
which usual doubled formalism being a gauge  fixed version (ghosts =0).

In what follows it will be useful to keep track of ghost number for various operators.

The physical operators bO and their SK counterparts have zero ghost number. We will choose

to assign ghost number ±1 to OG and O
G

respectively. Ghost number conservation then

demands a compatible assignment to the supercharges. We make the following choice

gh(OG) = gh(QSK ) = +1 , gh(O
G
) = gh(QSK ) = �1 , (6.5) eq:ghnum

The action of the supercharges can be usefully captured in a diagrammatic form, viz.,

OR,OL

OG O
G

OR � OL

QSK Q
SK

Q
SK �QSK

(6.6) eq:qskaction

with the understanding QSK and QSK maps should be interpreted as a commutator action.

The one peculiarity of our ghost number assignment is that it increases right to left on

this diagram. While we have denoted both OL and OR on the top row, it is clear that both of

then are an overkill, and we could equivalently resort to the Keldysh basis of av-dif operators.

In the Keldysh basis, the action of the supercharges can be checked to take the form

[QSK ,Oav ]± = OG , [QSK ,OG ]± = 0,
⇥

QSK ,OG

⇤

±
= �Odif ,

⇥

QSK ,Odif

⇤

±
= 0 ,

⇥

QSK ,Oav

⇤

±
= O

G
,

⇥

QSK ,OG

⇤

±
= 0,

⇥

QSK ,OG

⇤

±
= Odif ,

⇥

QSK ,Odif

⇤

±
= 0 .

(6.7) eq:QSKdefKeld

The commutation relations make it clear in either case that Odif is both QSK and QSK exact,

thus assuring that their correlation functions vanish. In either presentation, is easy to check

that

Q2
SK

= Q2
SK

=
⇥

QSK ,QSK

⇤

±
= 0 (6.8) eq:qsksq

We note that the ghost operators O
G
and OG occur naturally as the ghosts corresponding to

the right-left symmetric shift generated by the SK supercharges.

It is worthwhile comparing the discussion above with the more familiar discussion of

BRST symmetries in gauge theories. In that case we introduce the ghosts by upgrading the

gauge transformation parameters. One usually defines a single BRST charge Qby requiring

that it perform a gauge transformation of the physical fields in along the ghost. With the

ghost number assignment as in (6.5) we have an alignment in the charge assignment of the

BRST operator and the ghost field. The partner anti-ghost field comes with an opposite

ghost charge, to ensure that we have a net vanishing of ghost number for terms that appear

in the action. Equivalently, when we exponentiate the Jacobian arising from the gauge fixing

condition, we have a pair of ghosts with equal and opposite ghost number; only one of them is

chosen to be obtained by gauge transforming the physical fields. Clearly there is an analogous

construction where we should invoke a BRST transformation in the anti-ghost direction, Q̄.
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or equivalently

Oav

OG O
G

Odif

Q
SK Q

SK

Q
SK

�Q
SK

(6.10) eq:qskactionAvDif

We can easily read o↵ how dSK , d̄SK act on av� dif operators by using [QSK , . . .]± = dSK(. . .)

and
⇥QSK , . . .

⇤

±
= d̄SK(. . .). We get

dSKOav = OG , dSKOG = 0, dSKO
G
= �Odif , dSKOdif = 0 ,

d̄SKOav = O
G
, d̄SKO

G
= 0, d̄SKOG = Odif , d̄SKOdif = 0 .

(6.11) eq:dSKdefKeld

The commutation relations make it clear in either case that Odif is both QSK and QSK

exact, thus assuring that their correlation functions vanish. In either presentation, it is easy

to check that

Q2

SK
= Q2

SK
=

⇥QSK ,QSK

⇤

±
= 0 . (6.12) eq:qsksq

There is a similar relation for dSK , d̄SK which reads

d2
SK

= d̄2
SK

=
⇥

dSK , d̄SK

⇤

±
= 0 . (6.13) eq:dskalg

We note that the ghost operators O
G
and OG occur naturally as the ghosts corresponding to

the right-left symmetric shift generated by the SK supercharges.

It is worthwhile comparing the discussion above with the more familiar discussion of

BRST symmetries in gauge theories. In that case we introduce the ghosts by upgrading the

gauge transformation parameters. One usually defines a single BRST charge Q by requiring

that it perform a gauge transformation of the physical fields along the ghost. With the ghost

number assignment as in (6.7) we have an alignment in the charge assignment of the BRST

operator and the ghost field. The partner anti-ghost field comes with an opposite ghost charge,

to ensure that we have a net vanishing of ghost number for terms that appear in the action.

Equivalently, when we exponentiate the Jacobian arising from the gauge fixing condition, we

have a pair of ghosts with equal and opposite ghost number; only one of them is chosen to be

obtained by gauge transforming the physical fields. Clearly there is an analogous construction

where we should invoke a BRST transformation in the anti-ghost direction, Q̄. The two pairs

of BRST charges are individually nilpotent and should anti-commute among themselves. In

either case the Lagrange multiplier or the Nakanishi-Lautrup field, which enters through the

gauge fixing condition, is BRST exact – it is obtained as the Q action on the anti-ghost or

the Q̄ action on the ghost.

This is exactly the structure present in (6.5) or (6.8). The BRST charges QSK and QSK

perform field redefinitions of the SK fields in the ghost and anti-ghost directions respectively.

The di↵erence operator Odif is the Nakanishi-Lautrup field of this redefinition redundancy.
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The Superoperator algebra

✦Useful to organize the doubled operator algebra into an operator 
superalgebra on which the Grassmann charges act as derivations.

O̊ = Oav + ✓ O
G
+ ✓̄ OG + ✓̄✓ Odif

In this basis, the action of the fermionic supercharges can be summarized schematically as

O
ret

OG O
G

O
av

QSK Q
SK

Q
SK �QSK

O
adv

���OG ��O
G

����O
ret

QKMS Q
KMS

Q
KMS

�QKMS

(2.7) eq:qskkmsaction

where arrows indicate action via graded commutator, e.g., [QSK ,Oret

]± = OG etc.. We refer

the reader to [1] for the action of the other generators.

The six operators {QSK ,QSK ,QKMS ,QKMS , PKMS , RKMS} satisfy the following algebra:

Q2

SK
= Q2

SK
= Q2

KMS
= Q2

KMS
= 0 ,

[QSK ,QKMS ]± =
⇥

QSK ,QKMS

⇤

±
=

⇥

QSK ,QSK

⇤

±
=

⇥

QKMS ,QKMS

⇤

±
= 0 ,

⇥

QSK ,QKMS

⇤

±
=

⇥

QSK ,QKMS

⇤

±
= �PKMS , (2.8) eq:kmsalg

[QKMS , RKMS ]± =
⇥

QKMS , RKMS

⇤

±
= 0 ,

[QSK , RKMS ]± = �QKMS ,

⇥

QSK , RKMS

⇤

±
= QKMS .

We refer to this as the SK-KMS algebra. The goal of our present discussion is to obtain insight

into this algebraic structure. We will see that the natural language for this exploration is

terms of a graded algebra, with the grading being provided by the ghost number charge. This

leads us then into the study of equivariant cohomological algebras which arise in this context,

and extend the above structure mildly by making the KMS symmetries act locally.

2.2 A superspace description
sec:sspace

An extremely convenient way to view the SK-KMS algebra (2.8) is to express the operations

directly in superspace. The superspace we need is a simple one with two Grassmann odd

coordinates denoted ✓, ✓̄. We will take them to have equal and opposite ghost number, with

gh(✓) = +1.3 The quadruplet of operators associated with a single-copy operator bO, (2.3) be
encapsulated into a single SK-superfield. Working in the adv-ret basis introduced above, we

have:4

O̊ ⌘ O
ret

+ ✓ O
G
+ ✓̄ OG + ✓̄✓ O

adv

. (2.9)

In superspace, the action of {QSK ,QSK} is realized as derivations along the Grassmann-

odd directions; these operators implement supertranslations. We define

dSK ⌘ @

¯

✓

, d̄SK ⌘ @

✓

, (2.10)

3 We emphasize that the BRST symmetries are cohomological in nature. When we refer to superspace or

supersymmetry we refer to such structures and not to standard supersymmetric field theories. Our superco-

ordinates therefore are Lorentz scalars and carry no Lorentz spin labels.
4 Following [24] we will use an accent “̊ ” to denote superfields. We will elaborate on superspace conventions

further in §4 and §5.1.

– 7 –

✦This representation is useful to recover the time-ordering rules of the 
Schwinger-Keldysh construction directly from superspace.

where ⇢̂
initial

is the initial density matrix of the system, U denotes the unitary evolution

operator of the QFT, and U † is its adjoint. We have allowed ourselves to deform the uni-

tary evolution operators with a suitable sprinkling of both right and left sources JR and JL

respectively.

9 Superspace Keldysh rules

sec:superrules

Given the elegance of the SK superspace formalism, it is desirable to understand better how

the time ordering prescription of Schwinger-Keldysh contours is compatible with it. Ideally we

would like to derive from the superfields the Keldysh bracket rules that give us an algorithm to

convert the Schwinger-Keldysh two-sided correlation functions into the single-copy correlation

functions. Along the way we should also determine all correlation functions involving the ghost

fields we introduced to complete the Schwinger-Keldysh multiplet. All told we expect there

should be a natural superspace prescription for determining all ghost correlators in terms of

the physical single-copy correlators (nested commutators and anti-commutators). We now

describe in some detail how this works.

9.1 Correlation functions in SK superspace
sec:supcorr

Let us study a superspace n-point function with a super-SK time ordering T̊SK which we need

to determine. We use the following notation for such super-correlators:

hT̊SK Å
1

Å
2

· · · Åni = hT̊SK
n
Y

k=1

⇣

Ak
av + ✓k Ak

G
+ ✓̄k Ak

G
+ ✓̄k ✓k Ak

dif

⌘

i . (9.1) eq:GeneralSKScorr

We can expand the left hand side in the Grassmann odd coordinates, such that each compo-

nent will then involve various combination of the physical fields and the ghost partners. To

keep the equations readable we will make some notational simplifications by writing:

ai ⌘ Ai
av , ḡi ⌘ Ai

G
, gi ⌘ Ai

G
, di ⌘ Ai

dif (9.2) eq:skredefs

The above correlation functions should satisfy some basic requirements. For instance,

the fact that the Schwinger-Keldysh path integral is invariant under QSK and QSK implies

that the correlation functions have supertranslational invariance in the Grassmann-odd direc-

tions. Recall here that the operators dSK , d̄SK act as derivations in superspace. However, this

statement will only give non-trivial answers for observables once we determine an appropriate

measure for the path integral.

As is well known in topological field theories, the integration over the Grassmann-odd

directions often involves zero modes for the ghost fields. If we do not soak up these ghost

zero modes we will end up with a trivial correlation function. Before getting into the details,

let us motivate a concern: the naive superspace correlation function (9.1) will end up being

trivial unless we determine the correct measure. This in particular entails that we ascertain

the correct set of admissible boundary conditions.
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✦Requiring the supercorrelator to be supertranslation invariance, we obtain 
the standard Keldysh rules, modulo ambiguities for the partner ghost 
correlators. 



Thermal density matrices and KMS condition

✦Thermal density matrices                            define stationary equilibrium 
configurations. 

✦Correlation functions have analyticity properties which allows for a 
Euclidean (Matsubara) formulation, cf.,

4 Thermal correlation functions in SK formalism

sec:skthemal

Our discussion thus far has focused on an initial density matrix ⇢̂initial which was arbitrary.

The initial state of the quantum system is mainly setting up for us an appropriate entangle-

ment pattern for the degrees of freedom in H. With this information we can only go as far

as the discussion in §3.
However, not all density matrices are created equal, with some being more special than

others. In what follows we will switch our focus on to thermal density matrices which enjoy

some nice properties. To understand these, let us start by considering a QFT at finite

temperature T . Should our theory contain some global symmetries we can also include some

chemical potentials. One thus is considering the state of the system to be a Gibbs density

matrix, which gives the probabilities to find states with a given energy and charge: � or �?

⇢̂T = e�� (bH�µI
bQI) (4.1)

Here bH is the Hamiltonian for the quantum theory and bQ the flavour charge operator. We

have chosen not to normalize the density matrix; the trace over the states then gives us the

thermal partition function

ZT (�, µI ) = Tr (⇢̂T ) (4.2) eq:thermalZ

Usually one discusses thermal field theories in Minkowski spacetime Rd�1,1. One fur-

thermore, makes heavy use of the connection between thermal quantum field theories in

d-spacetime dimensions and classical statistical mechanics in (d� 1) dimensions by realizing

the operator ⇢̂T as performing Hamiltonian evolution in imaginary time tE by an amount set

by the inverse temperature �. The role of the chemical potential then is to twist the charge

fields by an amount set by the charge as they are taken around this imaginary Euclidean

time.10

With this information we are now ready to understand the thermal boundary conditions

implicit in ⇢̂T . For any single-copy operator lying on the initial time slice ⌃M we require

that the Kubo-Martin-Schwinger (KMS) periodicity condition [21, 22], be satisfied.11 The

KMS condition says that bosonic operators are periodic under traversal of the thermal circle

while fermionic operators are anti-periodic. We will now try to capture this information in a

covariant form that will be useful in the sequel.

4.1 Thermal equilibrium in stationary curved spacetimes
sec:styT

However, insofar as thermal equilibrium is concerned, all one requires is that the system be

stationary – one does not require a globally constant temperature or chemical potentials. To

10 In classical statistical mechanics, the operator ⇢̂T serves to determine the transfer matrix and the only

information necessary to determine it are the Boltzmann weights, which give the relative probabilities for the

occurrence of various energy levels.
11 This condition was first discussed independently in papers by Kubo [21] and by Martin-Schwinger [22].

However, the name was coined a bit afterward by Haag et. al., [23] who applied this idea in the context of

defining equilibrium configurations in axiomatic QFT.
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However, insofar as thermal equilibrium is concerned, all one requires is that the system be
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ZT [JR,JL] = Tr
⇣
U [JR] ⇢̂T (U [JL])

†
⌘

✦KMS condition asserts that the correlation functions are analytic in the 
time strip                          .  

✦Equivalently within correlation functions, operators and their KMS 
conjugates (or thermal translates) are equivalent.

0 < =(t) < �

t
0

+ i("� �
0

)

t
0

t
0

+ i"
C OR

OL

Figure 3. SK time contour in thermal physics, where the initial state is a thermal state with an
entanglement pattern encoded in a Euclidean partition function. The starting and end points of the
contour are identified. The associated Euclidean (imaginary time) periodicity is set by the inverse
temperature �0. fig:contour3

path integral. Performing a field redefinition we pass onto the average-di↵erence basis:
 

�av

�
dif

!

=

 

1

2

(�R + �L)

�R � �L

!

,

 

Jav

Jdif

!

=

 

1

2

(JR + JL)

JR � JL

!

. (2.12)

The generating functional then becomes

Z[Jav(x),Jdif (x)] = h⌦|TC ei
´ t=1
t=�1 L[�av+

1

2

�

dif
]�L[�av�

1

2

�

dif
]+Jav(x)�dif

+Jdif (x)�av |⌦i .
(2.13)

The main fact we wish to highlight is that the di↵erence source Jdif (x) generates the response

as a functional of the physical average field �av(x), while the average/common source Jav(x)

in turn does the same for the di↵erence or fluctuation field �
dif

(x).

With future applications in mind, we briefly mention the special case of thermal initial

conditions. For systems starting their evolution in a thermal state with inverse temperature

�
0

at time t
0

, the time contour can be illustrated as in Fig. 3. This presentation of the

contour, which is necessary to consistently take into account initial state correlations, is

sometimes referred to as Kadano↵-Baym contour. That is, the thermal state generated by

some Hamiltonian bH
0

is described by an un-normalized initial density matrix ⇢̂T = e��0bH0 .

Such a state readily allows for a Euclidean description in terms of a partition function

ZT (�0) = Tr
⇣

e��0bH0

⌘

. (2.14)

It is then clear that such a Euclidean path integral codifies the correlations (or the entangle-

ment pattern) of the initial state, and it corresponds to a Euclidean segment of evolution in
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KMS conjugates & thermal sum rules

✦To extract the physical content of the KMS condition, let us define the KMS 
conjugate operator:

✦One corollary of the KMS condition and the structure of the SK correlation 
functions discussed earlier is the sum rule

KMS conjugate ÕL are equivalent in correlation functions. The SK construction requires that

the correlation functions of di↵erence operators OR � OL vanishes, (3.16). Using OL = ÕL

inside correlation functions one immediately concludes that

hTSK
n
Y

k=1

⇣

O(k)
R � Õ(k)

L

⌘

i = 0 (4.19) eqdiff1

One can check that this statement is compatible with our earlier statement phrased in terms

of two-point functions (4.6). The general statement may of course be derived directly from

there; a clear statement worded in terms of thermal sum rules appears in [19].

4.4 The retarded-advanced basis
sec:retadv

One consequence of the KMS condition which relates operators related by a thermal trans-

lation, is that one expects the set of identities (??) hold in correlation functions. These sum

rules which have been derived for example in [19] can be succinctly stated by working in yet

another basis of operators. This new basis is called the retarded-advanced basis, which is

sometimes also referred to as the RA basis.13 It is defined by the the linear combination of

the SK operators , OR,OL and their KMS shifted counterparts ÕL. Without loss of generality

we make the choice:

Oadv ⌘ OR � OL , Oret ⌘
1

1� (�1)FOe�i��

⇣

OR � (�1)FOe�i�� OL

⌘

. (4.20) eq:RADef

Note that the retarded operator Oret is actually defined with an inverse of �� , so it should

actually be thought of as a solution to the di↵erential equation

i��Oret = OR � (�1)FOe�i�� OL (4.21)

which is solved with some initial condition. We will choose our initial conditions to be

Oret(t = ti) = OR(t = ti) = OL(t = ti) = bO(t = ti)

Oadv(t = ti) = OR(t = ti)� OL(t = ti) = 0 .
(4.22)

It is a common practice to explicitly include the statistics of the operator in question

in the definition. Recall that, for thermal correlation functions we should include the cor-

rect distribution function for bosons or fermions (which follows in turn from the periodicity

conditions). This may be done by introducing another di↵erential operator corresponding to

Bose-Einstein or Fermi-Dirac distribution

f� ⌘ 1

ei�� � (�1)F
. (4.23) eq:fDef

13 As noted after Eq. (3.3), the Keldysh basis itself in some circles is referred to as the ra basis. We

understand that this nomenclature originates from some historical confusion about the connections between

the two bases. We will avoid this confusion altogether by sticking to the usage of ‘retarded-advanced’ basis.
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hTSK
nY

i=1

Oreti = 0

✦The retarded operators are the thermal analogs of differences and satisfy 
a differential equation:

ÕL(t) = OL(t� i�) = e�i �� OL

i��Oret = OR � e�i�� OL
i��Oret = 1� e�i��



The KMS supercharge

✦Deviation from the KMS condition is naturally measured by       .  

✦This must extend to as a KMS superoperator acting on the operator 
superalgebra: a thermal supertranslation

✦Together with the SK differentials these operations generate a (super) 
algebra

��

Free scalar in superspace: Another advantage of introducing the superfields is that the

action can be written compactly in terms of a superspace integral. For example the scalar

field theory discussed in §6.4 can be written in terms of the superfield

�̊ = �av + ✓̄ c+ ✓ c̄+ ✓̄✓ �
dif

. (6.35) eq:phisf

The action (6.20) in superspace is simply

� S
scalar+ghosts

=

ˆ
ddx

p�g

ˆ
d✓ d✓̄

✓

1

2
@µ�̊

† @µ�̊

◆

, (6.36)

up to a total derivative. The integration over superspace is then just the statement that

the action is QSK and QSK exact. This way, working in superspace automatically ensures a

formalism that is manifestly SK field redefinition invariant.

KMS super-translations: In the case of thermal states, the KMS shift operator �� has

a natural generalisation to an operation on superfields. Given a parameter superfield ⇤̊ we

can define a super-KMS derivative acting on various superfields through the action

IKMS

˚

⇤

⌘ ⇤̊�� =
⇣

⇤+ ✓̄⇤ + ✓⇤
¯ + ✓̄✓ ⇤̃

⌘

�� , (6.37) eq:KMSsuper

The definition is pretty much inspired by the superspace structure; we are simply using the

KMS deviation operator �� viewed as a di↵erential operator in the manner described and lift-

ing it to superspace by multiplying it with an appropriate superfield. At this stage is appears

that we are more or less simply asking for a KMS superderivation that acts multiplicatively

in the superspace directions.

One we have the super-KMS derivation IKMS

˚

⇤

we can ask how its action combines with

that of the SK di↵erentials dSK , d̄SK . It is a simple matter to check that the action gives rise

to the following algebra among the derivations acting on superfields:

(IKMS

¯✓ )2 = (IKMS

✓ )2 =
h

IKMS

✓ , IKMS

¯✓✓

i

±
=

h

IKMS

¯✓ , IKMS

¯✓✓

i

±
= 0 ,

h

dSK , I
KMS

✓

i

±
=

h

d̄SK , I
KMS

¯✓

i

±
=

h

IKMS

✓ , IKMS

¯✓

i

±
= 0 ,

h

dSK , I
KMS

¯✓

i

±
=

h

d̄SK , I
KMS

✓

i

±
= IKMS

1

,
h

dSK , I
KMS

¯✓✓

i

±
= IKMS

✓ ,
h

d̄SK , I
KMS

¯✓✓

i

±
= �IKMS

¯✓ .

(6.38) eq:kmsalgA

To keep things simple we have broken up the KMS super-derviation into its superspace

components independently, so that IKMS

1

= �� , I
KMS

✓ = ✓�� , etc..

One can write a compact expression combining these our earlier result for dSK , d̄SK (6.13).

To wit,

[dSK , dSK ]± =
⇥

dSK , d̄SK

⇤

±
=

⇥

d̄SK , d̄SK

⇤

±
=

h

IKMS

˚

⇤

, IKMS

˚

⇤

i

±
= 0 ,

h

dSK , I
KMS

˚

⇤

i

±
= IKMS

@✓̄
˚

⇤

,
h

d̄SK , I
KMS

˚

⇤

i

±
= IKMS

@✓˚⇤
.

(6.39) eq:derSFAlg
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Along the lines of (6.39) we can write down a closed form expression for the non-vanishing

commutation relations in the superspace derivation algebra. This time however we will gen-

eralize slightly and allow for the possibility for the IKMS
action to involve di↵erent superfields

say ⇤̊ and ⇤̊0. With this understanding we learn that we can embed (6.39) into the SK-KMS

algebra:
h

dSK , I
KMS

˚

⇤

i

±
= IKMS

@✓̄
˚

⇤

,
h

d̄SK , I
KMS

˚

⇤

i

±
= IKMS

@✓˚⇤
,

h

IKMS

˚

⇤

, IKMS

˚

⇤

0

i

±
= IKMS

(

˚

⇤,˚⇤0
)�

. (7.16) eq:kmsalgC

Two successive KMS operations with di↵erent parameters no longer anti-commute, but rather

leads to a KMS operation along a new supefield. The new object requires the definition of a

‘thermal commutator ’ of two supefields:

(⇤̊, ⇤̊0)� ⌘ ⇤̊�� ⇤̊
0 � ⇤̊0�� ⇤̊ . (7.17) eq:betacomm

This confirms that there is a natural and simple representation of the entire SK-KMS algebraic

structure in the superspace.

The interesting point to note is that the KMS operator�� plays the role of a Hamiltonian

which commutes with all the supercharges. The structure here should be reminiscent of the

standard discussion of supersymmetric quantum mechanics [46], which as we shall see in the

sequel is not entirely accidental. What remains implicit and obscure from the algebra (7.14)

is the non-local nature of the KMS supercharges.

Let us finally try to get an intuitive understanding of the thermal commutator (7.17). So

far we have only allowed ourselves the possibility of thermally translating an operator a single

period around the thermal circle, i.e., PKMS only acts to map O(t) 7! O(t � i�). However,

if we open up the imaginary time direction and view the Euclidean time direction as being

latticized S1

� = R/Z, then we can extend our consideration to operators located at various

lattice points. For instance we can consider O(t � im�) with m 2 Z as being arbitrary

KMS translates of the operator O. This structure would su�ce for global equilibrium on

Minkowski spacetime, but more generally when discussing thermal field theory on curved

spacetime backgrounds following the arguments in §4, we would led to upgrading m 7! m(x)

an integer valued function on the background geometry.

Allowing arbitrary thermal translations has two important consequences. Firstly, this

implies that we can grade the KMS charges by another integer, which tells us how many

thermal periods we have traversed. By the above logic, we are then naturally led to considering

operations {Q(m)

KMS
,Q(m)

KMS
, R(m)

KMS
, P (m)

KMS
} which provide further refinement to the structure

hitherto introduced.

Secondly, once we consider thermal translations by periods that depend on the spacetime

location, we have to face up to the non-trivial fact that two successive thermal translations do

not commute once we introduce inhomogeneities. This can be immediately inferred by noting

that PKMS for instance acts by Lie dragging the operator around the thermal circle, so two Lie

drags by m(x)�µ(x) and n(x)�µ(x) will have a non-trivial commutator. We can check that

the resulting behaviour of the commutator of two such transformations is along the thermal
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Along the lines of (6.39) we can write down a closed form expression for the non-vanishing

commutation relations in the superspace derivation algebra. This time however we will gen-

eralize slightly and allow for the possibility for the IKMS
action to involve di↵erent superfields

say ⇤̊ and ⇤̊0. With this understanding we learn that we can embed (6.39) into the SK-KMS

algebra:
h

dSK , I
KMS

˚

⇤

i

±
= IKMS

@✓̄
˚

⇤

,
h

d̄SK , I
KMS

˚

⇤

i

±
= IKMS

@✓˚⇤
,

h

IKMS

˚

⇤

, IKMS

˚

⇤

0

i

±
= IKMS

(

˚

⇤,˚⇤0
)�

. (7.16) eq:kmsalgC

Two successive KMS operations with di↵erent parameters no longer anti-commute, but rather

leads to a KMS operation along a new supefield. The new object requires the definition of a

‘thermal commutator ’ of two supefields:

(⇤̊, ⇤̊0)� ⌘ ⇤̊�� ⇤̊
0 � ⇤̊0�� ⇤̊ . (7.17) eq:betacomm

This confirms that there is a natural and simple representation of the entire SK-KMS algebraic

structure in the superspace.

The interesting point to note is that the KMS operator�� plays the role of a Hamiltonian

which commutes with all the supercharges. The structure here should be reminiscent of the

standard discussion of supersymmetric quantum mechanics [46], which as we shall see in the

sequel is not entirely accidental. What remains implicit and obscure from the algebra (7.14)

is the non-local nature of the KMS supercharges.

Let us finally try to get an intuitive understanding of the thermal commutator (7.17). So

far we have only allowed ourselves the possibility of thermally translating an operator a single

period around the thermal circle, i.e., PKMS only acts to map O(t) 7! O(t � i�). However,

if we open up the imaginary time direction and view the Euclidean time direction as being

latticized S1

� = R/Z, then we can extend our consideration to operators located at various

lattice points. For instance we can consider O(t � im�) with m 2 Z as being arbitrary

KMS translates of the operator O. This structure would su�ce for global equilibrium on

Minkowski spacetime, but more generally when discussing thermal field theory on curved

spacetime backgrounds following the arguments in §4, we would led to upgrading m 7! m(x)

an integer valued function on the background geometry.

Allowing arbitrary thermal translations has two important consequences. Firstly, this

implies that we can grade the KMS charges by another integer, which tells us how many

thermal periods we have traversed. By the above logic, we are then naturally led to considering

operations {Q(m)

KMS
,Q(m)

KMS
, R(m)

KMS
, P (m)

KMS
} which provide further refinement to the structure

hitherto introduced.

Secondly, once we consider thermal translations by periods that depend on the spacetime

location, we have to face up to the non-trivial fact that two successive thermal translations do

not commute once we introduce inhomogeneities. This can be immediately inferred by noting

that PKMS for instance acts by Lie dragging the operator around the thermal circle, so two Lie

drags by m(x)�µ(x) and n(x)�µ(x) will have a non-trivial commutator. We can check that

the resulting behaviour of the commutator of two such transformations is along the thermal
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✦Successive thermal supertranslations do not commute if we assume that 
transformation parameters vary spatio-temporally 



The SK-KMS superalgebra

✦The algebra of the SK and KMS differentials  is a known topological 
algebra                extended equivariant cohomology algebra.NT = 2

Vafa, Witten ’94 
Dijkgraaf, Moore ‘96 

NT = 1✦The                algebra is realized as the standard Weil algebra satisfied by 
the de Rham complex involving exterior derivatives, Lie derivative and 
interior contraction.

7.2 The quadruplet of thermal translations
sec:quadruplet

We have derived the existence of Grassmann-odd supercharges {QSK ,QSK}, which encode

the field redefinition symmetry inherent in the Schwinger-Keldysh construction, and we have

argued that the KMS condition leads to BRST supercharges {QKMS ,QKMS} in the same vein.

We now motivate the introduction of a new operator RKMS , which together with the KMS

charges, and the thermal translation operator PKMS (which we recall acts as ��) forms a

quartet of super-KMS transformations.

Firstly, realize that by construction {QKMS ,QKMS} provide two Grassmann-odd gener-

ators of thermal translations, with gh(QKMS ) = +1 and gh(QKMS ) = �1 respectively. We

furthermore have a Grassmann-even thermal translation operator PKMS defined in (4.16)

which measures deviations from the KMS condition. Its action on the entire SK multiplet

which we reproduce here for convenience is simply

[PKMS ,O]± = ��O , O 2 {OR,OL,OG ,OG
} (7.6) eq:Qbetadef2

which follows by virtue of gh(PKMS ) = 0. It is easy to check by explicit evaluation that the

operations introduced so far satisfy

⇥QSK ,QKMS

⇤

±
=

⇥QSK ,QKMS

⇤

±
= �PKMS , (7.7) eq:

with all other graded commutators vanishing. In particular note that PKMS has vanishing

commutators with {QSK ,QSK ,QKMS ,QKMS}.
But we now encounter a problem – the three KMS operators fail to generate a super-

multiplet of actions. Based on the superfield construction in §6.5 we might expect to find

a fourth generator that completes them into a multiplet of super-transformations, on which

QSK and QSK act naturally as super-derivations along the lines of (6.29). This prompts us

to ascertain a new Grassmann-even generator, RKMS , which completes the KMS operations

into a multiplet.

The easiest way to proceed is to intuit that RKMS action should only involve the KMS

deviation di↵erential operator �� and it should suitably intertwine with the other generators.

Given that there is no passage from QSK to QKMS using PKMS or likewise for their partners

(the only ghost number conserving possibilities), we can ask if there is an operator RKMS

that intertwines with QSK to produce QKMS . One simple way to proceed is to require that

the quartet of KMS operations fits into a diagram of the form (6.8), viz.,

RKMS

�QKMS QKMS

PKMS

Q
SK Q

SK

Q
SK

�Q
SK

(7.8) eq:QzeroDiag
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IKMS
1

IKMS
✓

IKMS
✓̄✓

IKMS
✓̄

✦The KMS symmetries act as local gauge symmetries: they generate 
diffeomorphisms along the Euclidean thermal circle.



Application 1: Hydrodynamics



Fluid dynamics as a sigma model

✦Hydrodynamics: low energy dynamics of conserved currents in near 
equilibrium situations. 

✦Dynamical variables for an effective action: Goldstone modes for 
spontaneously broken difference diffeomorphisms and difference gauge 
transformation (charge current).

physical 
fluid

worldvolume 
reference  
configuration

�a

gab

�a�µ

gµ⌫

Xµ Xµ(�a)

�µ =
uµ

T

✦The SK-KMS algebra constrains the effective action and provides a 
guiding principle for the emergence of the low energy dynamics.



Brownian particles

✦Dynamics of a Brownian particle immersed in a fluid is a simple starting 
point (generalizes to Brownian branes).

✦Data for the worldvolume theory: 

✤matter multiplet: a quadruplet 

✤gauge multiplet: a dodecuplet

X̊ = {X,X , X ̄, X̃}just write

Å ⌘ Å
t

dt+ Å
✓

d✓ + Å
¯

✓

d✓̄

⌘
�

✓ �

T
+ ✓̄ �

0

T
+ ✓̄✓ ⌘̄

�

d✓ +
�

✓̄ �T � ✓̄✓ ⌘

�

d✓̄ ,

(6.23) eq:AWZ

Likewise the full position supermultiplet (6.20) reduces to the more familiar form (6.9).

In this Wess-Zumino gauge we can easily evaluate the Cartan charge action. We would

write as before

d = dSK + IKMS

¯

✓ �T
� IKMS

¯

✓✓ ⌘

,

d̄ = d̄SK + IKMS

✓ �

T

+ IKMS

¯

✓ �

0
T
+ IKMS

¯

✓✓ ⌘̄

.

(6.24) eq:QClangevin

so that on the position multiplet the action by {Q,Q} is given by

[Q, X]± ⌘ D̊
¯

✓

X̊| = X

 

,

h

Q, X

 

i

±
⌘ D̊

¯

✓

D̊
✓

X̊| = �X̃ + �

0

T
��X ,

[Q, X

 

]± ⌘ D̊
¯

✓

D̊
¯

✓

X̊| = �T��X ,

h

Q, X̃

i

±
⌘ D̊

¯

✓

D̊
✓

D̊
¯

✓

X̊| = �

0

T
��X 

� �T��X
 

+ ⌘��X ,

⇥

Q, X

⇤

±
⌘ D̊

✓

X̊| = X

 

,

h

Q, X

 

i

±
⌘ D̊

✓

D̊
✓

X̊| = �

T
��X ,

⇥

Q, X

 

⇤

±
⌘ D̊

✓

D̊
¯

✓

X̊| = X̃ ,

h

Q, X̃

i

±
⌘ D̊

✓

D̊
✓

D̊
¯

✓

X̊| = �

T
��X 

.

(6.25) eq:PositionCartan

This set of equations was previously written down in [10]. Similarly, (6.22) defines also the

action on the ghost of ghost quintet. Using the identities (5.8) for gauge invariant field

strength components, one can readily verify the following relations:

⇥

Q,�

0

T

⇤

±
⌘ D̊

¯

✓

F̊
✓

¯

✓

| = ⌘ ,

⇥

Q,�

0

T

⇤

±
⌘ D̊

✓

F̊
✓

¯

✓

| = ⌘̄ ,

[Q,�T ]± ⌘ D̊
¯

✓

F̊
¯

✓

¯

✓

| = 0 ,
⇥

Q,�T

⇤

±
⌘ D̊

✓

F̊
¯

✓

¯

✓

| = �⌘ ,

⇥

Q,�

T

⇤

±
⌘ D̊

¯

✓

F̊
✓✓

| = �⌘̄ ,

⇥

Q,�

T

⇤

±
⌘ D̊

✓

F̊
✓✓

| = 0 ,

[Q, ⌘]± ⌘ D̊2

¯

✓

F̊
✓

¯

✓

| = (�,�0

T
)� ,

⇥

Q, ⌘

⇤

±
⌘ D̊

✓

D̊
¯

✓

F̊
✓

¯

✓

| = (�T ,�T
)� ,

[Q, ⌘̄]± ⌘ D̊
¯

✓

D̊
✓

F̊
✓

¯

✓

| = (�
T
,�T)� ,

⇥

Q, ⌘̄

⇤

±
⌘ D̊2

✓

F̊
✓

¯

✓

| = (�
T
,�

0

T
)� .

(6.26) eq:GaugeCartan

[should we perhaps give more details about F
IJ

and its derivatives and Bianchi identity?]

Note that all these transformations ensure that Q2, Q2

,
⇥

Q,Q
⇤

±
are pure gauge, i.e., they

generate time translations with gauge parameters �T , �T
, �0

T
respectively. We have now all

the ingredients to formulate the Schwinger-Keldysh e↵ective theory of Langevin dynamics,

using equivariant language.

6.4 E↵ective action and fluctuation-dissipation
sec:LangActions

Our philosophy is to write down a worldvolume theory of the Brownian particle that explicitly

makes manifest the full N
T

= 2 symmetry. To this end we have already identified the various
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✦Effective action: a full superspace integral built out of gauge covariant 
objects (covariant derivatives and field strengths)

bracket, which acts to gauge transform all the matter fields. Given a gauge parameter ⇤̊ we

denote a gauge transformation of a matter multiplet X̊ via

(⇤̊, X̊)� = ⇤̊£�X̊ = ⇤̊��X̊ = ⇤̊�
d

dt

X̊ . (6.15) eq:betabrkX

One may view this as the action of the gauge symmetry on the fundamental representation.

We can work out the analog of the adjoint representation by examining the Wess-Zumino

commutator of the successive gauge transformations. The Jacobi identity, for instance, fixes

the action of thermal bracket on adjoint superfields, so that under U(1)T transformation

⇤̊0 7! ⇤̊0 + (⇤̊, ⇤̊0)� with

(⇤̊, ⇤̊0)� = ⇤̊£�⇤̊
0 � ⇤̊0£�⇤̊ . (6.16) eq:adbetabrk

We are now in a position to remedy the lack of explicit action of the U(1)T symmetry

in §6.2 by incorporating the gauge dodecuplet into the construction. We introduce the gauge

superfield superspace one-form as in (5.3) and associated field strength and covariant deriva-

tive. The main change from Eqs. (5.4) and (5.5) is that the gauge algebra is generated by

the thermal bracket (6.16) as appropriate for adjoint-valued gauge fields.

While it is possible to write down the full gauge field one-form, to keep the present

discussion under control we are going to exploit the following fact. The Brownian particle

has a one-dimensional worldline which means that any gauge field associated with it can be

trivially gauge fixed to zero. This implies that we can w.l.o.g. set the temporal component

Å
t

= 0. Then we are only required to deal with the octet of fields in the Å
✓

and Å
¯

✓

superfields.

The structure of the Weil charge action discussed in §5.2 leads to the construction

Å
¯

✓

⌘ GT + ✓̄

⇢

�T � 1

2
(GT , GT)�

�

+ ✓

⇢

BT � 1

2
(GT , GT)�

�

� ✓̄✓

⇢

⌘ + (GT ,�T)� � (GT , BT)� +
1

2
(GT , (GT , GT)�)�

�

Å
✓

⌘ GT + ✓

⇢

�

T
� 1

2
(GT , GT)�

�

+ ✓̄

⇢

�

0

T
�BT � 1

2
(GT , GT)�

�

+ ✓̄✓

⇢

⌘ + (GT ,�
0

T
)� � (GT ,�

0

T
�BT)� +

1

2
(GT , (GT , GT)�)�

�

(6.17) eq:Asuper

In writing the above we have given a subscript T to the gauge multiplets to denote their

origin from the thermal KMS invariance. The thermal bracket acts on the Grassmann-odd

parameters as in (6.16), but with the usual extra sign; to wit,

(Â, B̂)� ⌘ Â�� B̂ � (�)AB B̂�� Â (6.18)

for adjoint operators such as GT , BT , GT ,�T , ⌘,�
0

T
,�

T
, ⌘̄.

With the gauge superfield Å at hand, we can immediately define a gauge invariant field

strength in complete analogy with the field strength in generic extended equivariant coho-

mology, c.f. Eq. (5.5):

F̊
IJ

⌘ (1� 1

2
�

IJ

)
⇣

@

I

Å
J

� (�)IJ@
J

Å
I

+ (Å
I

, Å
J

)�
⌘

. (6.19)
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gauge covariant derivative to act as

D̊
I

= @

I

+ [Å
I

, · ] , (5.4) eq:covDI

which implies that the field strength is given by

F̊
IJ

⌘ (1� 1

2
�

IJ

)
⇣

@

I

Å
J

� (�)IJ @
J

Å
I

+ [Å
I

, Å
J

]
⌘

, (5.5) eq:fdef

In addition it is also convenient to define the following non-covariant object:

B̊
✓

¯

✓

⌘ @

✓

Å
¯

✓

+
1

2
[Å

✓

, Å
¯

✓

] . (5.6)

This will be useful to pick out a particular non-gauge covariant field. Our definition explicitly

breaks the symmetry between ✓ and ✓̄, for under an exchange of these super-coordinates we

have B̊
✓

¯

✓

7! F̊
✓

¯

✓

� B̊
✓

¯

✓

.

The covariant derivatives along the super-coordinates {✓, ✓̄} can be treated as the Cartan

charges: dC = D̊
¯

✓

, dC = D̊
✓

. This enables us to use the field strengths to define the covariant

fields that we will employ to parameterize the extended cohomological structure. As in our

previous discussion, the bottom component of the superfields Å
✓

and Å
¯

✓

will be taken to be

ghost fields (with opposite ghost numbers). The other components of the gauge multiplets

can be filled out in terms of the field strengths. We find it useful to parameterize the super-

components (the ghosts and ghosts for ghosts) in the following fashion. First we pick out the

gauge non-invariant combinations and use them to define the various ghost fields (i.e., ghost

valued connection forms):

Å
¯

✓

| = G , Å
✓

| = Ḡ , B̊
✓

¯

✓

| = B . (5.7) eq:triplet

We will refer to these fields as the Faddeev-Popov ghost triplet.

The remaining five fields which make up the superfields Å
✓

and Å
¯

✓

are captured and

denoted as follows:

F̊
¯

✓

¯

✓

| = � , F̊
✓✓

| = � , F̊
✓

¯

✓

| = �

0

,

D̊
¯

✓

F̊
✓

¯

✓

| = ⌘ , D̊
✓

F̊
✓

¯

✓

| = ⌘ . (5.8) eq:quintet

We will henceforth refer to them as the Vafa-Witten ghost of ghost quintet following [18] where

this structure was first described. Finally, we have four more (vector) fields in the gauge

potential Å
a

, making up the vector quartet which we parameterize in a covariant fashion as

Å
a

| = A
a

, F̊
¯

✓a

| = �

a

, F̊
✓a

| = �

a

, D̊
✓

F̊
¯

✓a

| = F
a

. (5.9) eq:quartet

The ghost charge assignments for these fields can be worked out once we pick a convention

that assigns

gh(✓) = +1 , gh(✓̄) = �1 , (5.10) eq:ghththb
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SB0 =

ˆ
dt d✓ d✓̄

(
m

2

⇣
D̊tX̊

⌘2
� U(X̊)� i ⌫ D̊✓X̊D̊✓̄X̊

)



Langevin dynamics

✦A BRST supersymmetric formulation of stochastic dynamics is well known 
and is usually derived by an analog of the familiar Faddeev-Popov trick.

Martin, Siggia, Rose ‘73 

✦The superspace formalism gives us a SK-KMS covariant presentation.  

✦Stochasticity/dissipation arises because of spontaneous CPT symmetry 
breaking. 

hF̊✓✓̄|i = �i

✦Useful moral: dissipation = ghost condensation.

✦BRST supersymmetry + spontaneous CPT leads to Jarzynski relation which 
is a generalized fluctuation dissipation relation

SB0 7! SB0 � i hF̊✓✓̄|i� (�G+W ) =) he��W i = e���G



Dissipative hydrodynamic actions

✦  Working in superspace the symmetries suffice to constrain the terms that 
can appear in the worldvolume sigma model

4 Non-linear dissipative fluids

With the basic fields and symmetries in place, we are now in a position to construct an e↵ective

action. The symmetries 1-4 can be manifestly implemented by working in superspace. We

then have focus on the target space symmetries A and B of §3.

We begin by noting that the target space di↵eomorphism invariance forbids a standard

superpotential term, i.e., a function of the fields X̊µ. Consequentially, the simplest allowed

term is a worldvolume scalar density superpotential, L̊ [̊gab,�a], which is a functional of the

pull-back metric superfield g̊IJ . Such terms (up to on-shell equivalence) comprise the Landau-

Ginzburg Class L (HS [HS) in the classification of [13]. They however are adiabatic and do

not capture dissipative dynamics.

To see dissipation, consider the superfields D̊✓g̊ab and D̊

¯✓g̊cd which carry non-zero (and

opposite) ghost number. While neither of them can individually appear in the Lagrangian

given our symmetries 1-4, we can combine them with an intertwining tensor, ⌘̊(ab)(cd), of

vanishing ghost number. In general this intertwiner may be taken to be a tensor valued

di↵erential operator, ⌘̊(ab)(cd) [̊gab,�a, D̊I ] as in [13] but we will focus on simple examples

where it will su�ce to think of it as a worldvolume tensor superfield.

We therefore claim that the following worldvolume superspace action functional captures

dissipative hydrodynamic e↵ective field theories:

S
wv

⌘

ˆ
dd�L

wv

, L

wv

=

ˆ
d✓ d✓̄

p

�̊g

1 + �eÅe

✓

L̊�

i

4
⌘̊(ab)(cd)

D̊✓g̊ab D̊¯✓g̊cd

◆

, (4.1)

where the measure is dictated by U(1)T invariance.8 CPT invariance forces the tensor ⌘(ab)(cd)

to satisfy the generalized Onsager reciprocity relations [50, 51]:

⌘̊(ab)(cd) = [⌘̊(cd)(ab)]CPT , (4.2)

where the superscript CPT on the right hand side denotes taking the CPT conjugate.

Let us first recover the familiar form of the hydrodynamic constitutive relations. To this

end, we begin by defining

T

ab
L ⌘

2
p

�g

�

�gab
[
p

�g L] ,

N

a
L ⌘ �

(1 + �eAe)
p

�g

�

�Aa

⇥

p

�g

(1 + �fAf )
L
⇤

,

(4.3)

8 Note that the extra factor in the measure is just what is expected when working with a U(1)T covariant

pulled-back metric, for

dd�

p
�̊g

1 + �aÅa

= dd�
p

�̊g
det [@aX̊

µ]

det [D̊aX̊µ]
= ddX̊

p
�g .
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✦ Integrating over superspace one ends up with a simple Lagrangian 
density that generalizes the adiabatic Lagrangian to include dissipation:

Lwv =

p
�g

1 + �eAe

⇢
1

2


Tab

L � i

2
⌘(ab)(cd) (F✓✓̄, gcd)�

�
g̃ab �Na

LÃa

+
i

8

⇣
⌘(ab)(cd) + ⌘(cd)(ab)

⌘
g̃ab g̃cd + . . .

�
,

Class LT Lagrangian
Noise fluctuations

✦Dissipative dynamics again spontaneously breaks CPT, with the KMS field 
strength picking up a vev (ghost condensate).

see also Kovtun, Moore, Romatschke ’13; Crossley, Glorioso, Liu ‘15



Application 2: Covariant entanglement entropy



Background
✦Given the boundary region      the prescription to compute entanglement 

holographically involves finding a bulk extremal surface        which is anchored 
on         and is homologous to    .

A

@A A
EA

truncates to that of Einstein gravity, possibly coupled to matter which we will assume

satisfies the null energy condition.

The dynamics of the QFT on B is described by classical gravitational dynamics

on a bulk asymptotically locally AdS spacetime M with conformal boundary B, the
spacetime where the field theory lives. We define M̃ := M [ B. M̃ is endowed with a

metric g̃
ab

which is related by a Weyl transformation to the physical metric g
ab

on M,

g̃
ab

= ⌦2g
ab

, where ⌦ ! 0 on B.9 Causal domains on M̃ will be denoted with a tilde to

distinguish them from their boundary counterparts, e.g., J̃±(p) will denote the causal

future and past of a point p in M̃ and D̃[R] will denote the domain of dependence of

some set R ⇢ M̃.

It will also be useful to introduce a compact notation to indicate when two points

p and q are spacelike-separated; for this we adopt the notation ⇣, i.e.

p ⇣ q , @ a causal curve between p and q. (2.2)

Moreover, to denote regions that are spacelike separated from a point, we will use S(p)
and S̃(p) in the boundary and bulk respectively,

S(p) := {q | p ⇣ q} =
�
J+(p) [ J�(p)

�
c

and S̃(p) :=
⇣
J̃+(p) [ J̃�(p)

⌘
c

.

(2.3)

Just as for other causal sets, we can extend these definitions to any region R, namely

S[R] := \
p2RS(p) is the set of points which are causally disconnected from the entire

region R, etc.

Having established our notation for general causal relations, let us now specify the

notation relevant for holographic entanglement entropy. As before we will fix a region

A on the boundary. The HRT proposal [3] states that the entanglement entropy SA is

holographically computed by the area of a bulk codimension-two extremal surface EA
that is anchored on @A; specifically,

SA =
Area(EA)
4G

N

. (2.4)

In the static (RT) case, it is known that the extremal surface is required to be homol-

ogous to A, meaning that there exists a bulk region RA such that @RA = A [ EA.
So far, it has not been entirely clear what the correct covariant generalization of this

condition is. In particular, should it merely be a topological condition, or should one

impose geometrical or causal requirements on RA, for example, that it be spacelike?

(A critical discussion of the issues involved can be found in [32].) In this paper, we

9 These are necessary but not su�cient conditions for the spacetime to be asymptotically AdS.
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Hubeny, MR, Takayanagi ‘07
Ryu, Takayanagi ‘06

✦Time independent proposal of RT derived by finding bulk dual of replica 
construction and invoking the saddle point expression. 

✦Deriving the covariant prescription requires us to consider generalization 
of Schwinger-Keldysh contours to implement replica for consistency with 
causality. 

✦An implementation of the bulk Schwinger-Keldysh replica leads to the 
proposal.

Lewkowycz, Maldacena ‘13



Real time replica: Boundary

t

A

@A

A
@AAc

Ac

⌃t⌃t

⌧ + 2⇡i

⌧
⌧ + ⇡i

t

✦We cut open the path integral along the region     on the Cauchy slice      .   

✦ Imposing suitable boundary conditions in the future/past segments leads to 
the matrix elements of the reduced density matrix             .    

A ⌃t

(⇢A)±

@A

@A

@A

⌧1

⌧2

⌧3

⌧3 + 2⇡i

⌧2 + 2⇡i

⌧1 + 2⇡i

Zq symmetric gluing conditions



The bulk ansatz

A Ac

RA

⌃̃t

RAc

@A

e

(b)(a)

✦ Prescription: Pick some bulk 
Cauchy slice      within the FRW 
wedge.  

✦ We will glue copies of the 
geometry past of       to obtain 
the dual of the SK contour. 

✦ The choice of       is irrelevant for 
computing time-ordered 
correlation  functions. 

✦ For entanglement entropy we 
will find that       is forced to 
contain the extremal surface.

⌃̃t

⌃̃t

⌃̃t

⌃̃t

Skenderis, Van Rees ‘08
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@A
A

@A

RA

Ac

identify

identify

identify
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Mq

M̂q = Mq/Zq

A Ac

RA

⌃̃t

@A

A

@A

RA

Ac

⌃̃t

identify

Bulk density matrix elements

A Ac

RA

⌃̃t

@A

A

@A

RA

Ac

⌃̃t

identify

M

B B



Gravitational dynamics

✦Once we have the ansatz and the replica boundary conditions, all that 
remains is to solve the bulk equations of motion. Work in local coordinates 
adapted to the normal bundle of the singular locus:

this by extending the boundary contour into the bulk in the most straightforward manner:

gluing purely Lorentzian segments and imposing the proper boundary conditions. This is a

natural extension of [22] which we assume without further justification in what follows. [this

part is fine.]

[I made some changes below] One of the features of the Schwinger-Keldysh construction

is a redundancy built into the construction. This can be understood from the ability to imple-

ment field redefinitions in the doubled theory, cf., [29]. This allows certain deformations of the

contour which nevertheless end up giving the same physical answers for observables (includ-

ing the on-shell action). Readers may be familiar with a related statement in thermal field

theory, where there is a one-parameter family of Schwinger-Keldysh contours, characterized

by the two Lorentzian contours separated by a arbitrary Euclidean distance, with the proviso

that the total contour be periodic in imaginary time with period �. Though this argument

typically relies on analyticity of thermal correlators, we cannot rule out in general a deformed

contour in the bulk which computes the Rényi entropies of interest. These may perhaps have

additional Euclidean segments, but the general expectation is that these will also have the

same on-shell action as the configuration we favour with minimal Euclidean excursions (just

those necessary for a correct i✏ prescription). It would be interesting to examine this issue

further.

3.2.2 Dynamics: equations of motion and extremal surfaces
sec:dynL

In §3.2.1, we have used the kinematic data at hand to set up the problem. When all the

dust has settled, we have essentially reduced our attention to a fundamental domain M̂q

of the bulk under the replica Zq symmetry, namely a Schwinger-Keldysh double geometry

constructing the dual of the trace of the total density matrix Tr⇢(t) with a Zq symmetric

fixed point set, eq, localized on the Cauchy surface ⌃̃t . The remaining task at hand is to

employ the bulk equations of motion, see what they imply for eq, and compute the on-shell

action thereafter.

1. The extremality condition: We have described the boundary conditions that we need

to satisfy in §3.2.1. As in §3.1 it is useful to switch to Rindler-like coordinates {r, ⌧} for the

normal bundle of eq in the bulk. In the following discussion, we will focus on the forward

segment of the Schwinger-Keldysh contour (⌧ < 0).29 Analogous to (3.4) in §3.1, the metric

is constrained by the Zq symmetry, boundary conditions, and regularity for integer q to have

the following expansion in the vicinity of eq:

ds2 =
�
q2dr2 � r2 d⌧2

�
+
�
�ij + 2 Kx

ij rq cosh ⌧ + 2 Kt
ij rq sinh ⌧

�
dyi dyj

+
h
rfq (q�1) � 1

i
�gµ⌫ dxµ dx⌫ + · · · (3.11) eq:lmL

where we denote the coe�cients of the rq terms as Ka
ij because in the q ! 1 limit they give

the extrinsic curvature.
29Since the analysis is local below ⌃̃t , we do not need to worry about the kink. [Commented discussion,

remove if agree]
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✦Bulk equations of motion then fix the geometry of the singular locus. To 
leading order in q-1 we fix the geometry. In Einstein-Hilbert theory this 
gives the extremal surface condition

With this ansatz for the geometry, we can now analyze the consequences of the equa-

tions of motion. This is in fact quite easy, since the local geometry resembles the Euclidean

discussion. We have a deviation away from flat space (in Rindler coordinates) owing to an

instantonic brane source with tension set by q. The gravitational equations of motion away

from eq however do not care for this.

Indeed, evaluating the terms in the equations of motion for Einstein-Hilbert dynamics in

the bulk, we find potentially divergent terms proportional to [I just put indices]

EOMa / q � 1

r
Ka + regulara (3.12) eq:eomL

for small q � 1 [Removed �g in previous equation]. Basically, the presence of

the extrinsic curvature terms in (3.11) leads to potentially singular behaviour of the Ricci

tensor in the neighbourhood of r = 0. These cannot be compensated for by any correction

to the metric that respects the Zq symmetry and boundary conditions. One then learns

that the trace of the extrinsic curvature in each of the normal directions must vanish, i.e.,

Kt = Kx = 0. While this statement refers to the trace in the timelike (Kt) and spacelike

(Kx) directions respectively, we can by taking suitable linear combinations express this in

terms of the null expansions which are more natural for codimension-2 spacelike surfaces

in Lorentzian manifolds. Defining x± = 1p
2

�
x0 ± x1

�
we thus have the extremal surface

condition postulated in [3], viz.,30

Ka = 0 =) ✓± =
1p
2

�
K0 ± K1

�
= 0 ,

=) lim
q!1

eq = EA , EA 2 M is extremal.
(3.13) eq:extremalEom

Having ascertained the dynamical constraint on eq in the limit q ! 1, let us return to our

earlier discussion. We originally argued in §3.2.1 that eq should, by virtue of the replica

symmetry assumption, lie on the Cauchy surface ⌃̃t which we pick to construct the density

matrix ⇢(t) for the entire system. As indicated in that context, the choice of ⌃̃t is restricted

by the fact that it be spacelike to ⌃t and @⌃̃t = ⌃t , but is otherwise unconstrained. However,

the dynamics indicates that not all such ⌃̃t would be acceptable in semiclassical saddle point

solutions to the gravitational path integral. While an arbitrary ⌃̃t in the FRW wedge of

the boundary Cauchy surface may be used a priori to construct Tr⇢(t), the semiclassical

saddle point of the Lorentzian path integral for Tr(⇢Aq) (near q ⇠ 1) only chooses those that

pass through the extremal surface, see Fig. 2. More pertinently, we conclude that Tr(⇢Aq)

can be constructed by the Lorentzian prescription provided EA ⇢ ⌃̃t . This restriction does

not originate from the general Schwinger-Keldysh construction, but rather is specific to the

process of tracing out the degrees of freedom in Ac. More explicitly, it originates from the

fact that we are e↵ectively introducing a singularity along eq.

30 Note here that K

0
ij is the component of the extrinsic curvature in the timelike normal direction to a

codimension-2 surface (likewise K

1
ij is the corresponding spacelike component) and should not be confused

with the extrinsic curvature for ⌃̃t (which has a timelike normal), for which we use the symbol K when

necessary.
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can be constructed by the Lorentzian prescription provided EA ⇢ ⌃̃t . This restriction does

not originate from the general Schwinger-Keldysh construction, but rather is specific to the

process of tracing out the degrees of freedom in Ac. More explicitly, it originates from the

fact that we are e↵ectively introducing a singularity along eq.
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The on-shell gravitational action

✦ In addition to ascertaining the saddle point solution, we have to also 
compute the on-shell action atop it. 

✦ It is useful to compute directly the modular entropy which localizes:

done over the 4q temporal domains, which are conveniently encapsulated by the single ⌧ coor-

dinate. We would like to reiterate what it means for fields to be periodic in ⌧ with period 2⇡iq.

In the QFT path integral we integrate over all allowed field configurations. The ⌧ domain of

the fields consists of 4q disconnected horizontal lines in the complex ⌧ plane, each with imag-

inary part i⇡2m, m = 0, 1, · · · , 4q �1. We then impose boundary conditions at the asymptotic

infinities of these horizontal lines. It is easiest to do this in the language of asymptotically

incoming/outgoing modes. The coe�cients of these mode must match between ⌧ = m⇡i+1
and ⌧ = (m + 1

2)⇡i + 1, and between ⌧ = (m + 1
2)⇡i � 1 and ⌧ = (m + 1)⇡i � 1, for all

m = 0, 1, · · · , 2q � 1. Note that in saying this, we are identifying ⌧ = 2⇡iq �1 with ⌧ = �1
– this is what we mean by the periodicity ⌧ ⇠ ⌧ + 2⇡iq. To recap: we are gluing q copies

of the reduced density matrix, with region A identified across the copies. This can be just

as well stated in the {xJ , tJ} coordinates, but the ⌧ coordinate is more useful for delineating

the analogous boundary conditions in gravity.

While the general focus here is on the computation of the Rényi entropies themselves,

it will transpire that the gravitational computation is nicer for the derivative of the Rényi

entropy with respect to its index. Define thus a related quantity [25], which we will call the

modular entropy :

S̃
(q)
A = �q2 @q


1

q
log TrA(⇢A)q

�
(2.6)

In writing this expression we have already assumed that we can analytically continue the

Rényi entropies away from the integer values of the index q. To our knowledge, this object

has not been considered before in the quantum information literature, but it is rather natural.

For instance, if we take ⇢A to be of thermal (as for spherical domains for CFTs in Rd�1,1),

and view q to be a measure of the inverse temperature, then S̃
(q)
A is the thermal entropy. The

qth modular entropy is the the appropriate Legendre transform of the qth Rényi entropy.

Finally, there is a Zq symmetry relating the various replicas, with @A being the fixed point

of its geometric action on Bq. In the rest of the paper, we will assume that this symmetry is

unbroken. As a consequence the one-point functions of our QFT should be replica symmetric.

In the ⌧ coordinate this corresponds to functions being strictly periodic with a smaller period

of 2⇡i . As we will see later, this point of view provides a particularly straightforward route

to understanding the boundary conditions for the dual gravitational problem. At the end

of the day we will require all fields in the bulk to be invariant with respect to the replica

symmetry. Coupled with the fact that we disallow any curvature singularities, this serves

to pick out the acceptable geometries, which satisfy Einstein’s equation, and provide the

dominant contribution to the gravitational action.

3 Gravitational construction

We have thus far set up the problem of determining the matrix elements of the reduced den-

sity matrix and its powers by invoking an appropriate Lorentzian Schwinger-Keldysh contour

prescription in the field theory. Assuming that the field theory in question is holographic,
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is the fact that we have to work directly in Lorentzian signature, which means that the

regulated codimension-1 surface eq(✏) would be more complicated. We will additionally have

to deal with the presence of light-cone singularities in (3.11). For instance when q /2 Z+,

some curvature components behave as rq�2. The functional form is similar to the Euclidean

case, but now the origin of the normal plane to eq is blown up in Lorentzian signature to a

codimension-1 null surface, which is the lightcone emanating from the origin. Fortunately,

these turn out to be mild singularities which do not contribute to the evaluation of the action.

The non-trivial computation here is that of the Rényi entropies, which are technically

more challenging than in the Euclidean case. We have found it useful to compute the quantity

S̃
(q)
A introduced in (2.6) directly, but even this requires careful handling of an i" prescription.

We demonstrate in Appendix A that this can in principle be done and provide a few simple

examples there. Presently we will give a sketch of how such a computation proceeds.

Assuming that the extremal surface arises as a consequence of a well-defined variational

principle as in (3.7), all that remains is to compute the boundary term. As before the com-

putation requires us to evaluate the Gibbons-Hawking term for Einstein-Hilbert gravitational

dynamics, cf., (3.8)

@qI[M̂q] = � 1

8⇡GN
@q

Z

eq(✏)
K✏ . (3.14)

We can proceed thus far without worrying about the change in the signature of the metric.

Now we have however to face up to the fact that the codimension-1 regulator surface eq(✏)

defined as the hypersurface r = ✏ comprises four distinct segments (two spacelike and two

timelike). The computation has to be done from scratch, because even under analytic con-

tinuation this surface does not give us the r = ✏ locus for the Euclidean problem in [6]. Note

that the boundary terms at the Cauchy surface ⌃̃t cancel out due the boundary conditions

inherent in the prescription of [22].

Despite these subtleties the evaluation of the boundary term works out to give the ex-

pected result for the covariant modular entropy:

@qI[M̂q] = i
Area(eq)

4 q2GN
. (3.15)

Thus we indeed obtain the area of the extremal surface as in [3] when we take the q ! 1

limit. Alternatively, the same result can be obtained by regularizing the singularity.

4 Discussion

We have now a derivation of the extremal surface prescription of [3] for computing holographic

entanglement entropy in time-dependent states. We take the opportunity to comment on

several consequences of this construction.

The homology constraint: As explained elsewhere [13] the RT and HRT proposals for

holographic entanglement entropy should respect the homology constraint. This requires that
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✦While there are some slight subtleties, at the end of the day the result for 
the on-shell action computed directly in the Lorentzian replica geometry 
leads to the expected answer:

=) SA =
Area(EA)
4GN



Looking ahead…

✦An understanding of the microscopic symmetries in the SK construction, 
and the symmetry breaking pattern, results in an universal low energy 
dynamical theory of fluids. 

✦The macrophysics derived is consistent with phenomenological 
expectations (yet to make contact with the eightfold classification). 

✦  Perhaps the most important lesson here is that microscopic unitary which 
enforces fluctuation-dissipation etc., is upheld thanks to the ghost 
couplings. Lessons for gravity? 

✦General principles for gravitational implementation of Schwinger-
Keldysh? 



A roadmap for the framework

Microscopic Schwinger-Keldysh construction

Macrophysics: cf., hydrodynamics
Black hole dynamics

★ doubling of degrees of freedom 
★ entanglement structure  in initial state

★ no doubling! 
★ emergent IR collective fields 
★ entropy & second law of 

thermodynamics

★ emergence of  horizons? 
★ reality of the interior?

Wilso
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Fluid/Gravity



Holographic fluids

p in L
(1)

, the curvature WR and !2 terms in L
(2)

are the hydrostatic terms (Class HS) which

were first discussed in [8, 9]. The �2 term in L
(2)

is the Landau-Ginzburg Class HS term

described in [13]. These terms combine to form the Class L terms that are present in a neutral

conformal fluid. If we restrict to hydrostatic equilibrium only the Class HS terms are allowed;

everything else vanishes. The SK path integral constructed above localizes to the Euclidean

path integral. The remaining terms involve the intertwining tensor: the contributions from

⌘(ab)(cd)
(1)

and ⌘(ab)(cd)
(2,D)

, which involve tensors symmetric under (ab) $ (cd), are clearly the

dissipative Class D terms. They are purely real, and thus consistent with the requirements

of Onsager reciprocity as demanded by (4.2).

It is instructive to adapt these results for a holographic conformal fluid for which the

transport data is readily available from [54] and [27, 52]. For fluids dual to Einstein gravity,

we have the aforementioned Lagrangian density parameterized by

p(T) = c
e↵

✓

4⇡T

d

◆d

, ⌘ = c
e↵

✓

4⇡T

d

◆d�1

,

 = �
1

= 2 c
e↵

✓

4⇡T

d

◆d�2

, �
2

= 2(� ⌧) , �
3

= 0 ,

⌧ = 2 c
e↵

✓

4⇡T

d

◆d�2



1 +
1

d
Harmonic

✓

2

d
� 1

◆�

,

(4.17)

where c
e↵

is the e↵ective central charge of the QFT.13 This can be succinctly written as a

superspace integral

L
wv

= c
e↵

ˆ
d✓ d✓̄

p

�̊g

1 + �e Åe

⇢
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i d
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d
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✓
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d
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◆

�̊2 +
1

2
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��

.

(4.18)

This expression generalizes the bosonic Class L Lagrangian given in [12, 13] for the adiabatic

part of the constitutive relations, cf., equation (14.35) of the latter.

Holographic fluids described by Einstein-Hilbert gravity thus do not give the most general

conformal fluid; as noticed in [13] they miss out on the Class B term (owing to the �
2

relation

derived first in [55]) and pick out the value of �
1

that makes the second order dissipative

contribution vanish. We have conjectured hitherto that this has to do with holographic fluids

being optimal dissipators [12].

It is worth noting that the dissipative transport coe�cients scale with the central charge

c
e↵

. This means that the noise terms are suppressed by a factor of c�1

e↵

. In familiar holographic

systems the dissipative energy-momentum tensor has thus two contributions: a leading O(c
e↵

)

13 For holographic theories it is convenient to normalize ce↵ =
`d�1
AdS

16⇡GN
, so as to get a simple result for the

Bekenstein-Hawking entropy. For SU(N), N = 44d SYM we obtain ce↵ = N2

8⇡2 .

– 14 –

✦Known second order transport of holographic fluids follows from:

✦How does the bulk gravity theory realize this effective action? 

✦Recent attempts get the ideal fluid part correct, but no clear story 
beyond…

Crossley, Glorioso, Liu, Wang ’15;  deBoer, Heller, Pinzani-Fokeeva ‘15

Nickel, Son ‘10




