Unlocking dark matter physics out of small-scale structures

THEIA Workshop, November 3 2015

Francis-Yan Cyr-Racine

Postdoctoral Fellow

Department of Physics, Harvard University

In collaboration with:

Leonidas Moustakas, Chuck Keeton Jesús Zavala, Mark Vogelsberger Tejawi Venumadhav, Kris Sigurdson

How to detect particle dark matter?

Key Question: Can we distinguish between these two dark matter (DM) scenarios?

On large scales, dark matter physics essentially plays no role.

145 Mpc

Clues about dark matter physics are locked deep inside the potential well of massive galaxies.

Why small scales?

• It's just causality, really.

Why small scales?

• It's just causality, really.

Vogelsberger, Zavala, Cyr-Racine+, in prep.

Modified Mass Function

Revealing the physics of dark matter through the study of small-scale structures

- Advantage:
 - Purely gravitational probe: no need to assume a coupling between dark matter and the Standard Model (in contrast to direct/indirect detection and collider production).
- Drawback:

Astrophysics! Galaxy formation is messy, baryons play a major role.

Which dark matter physics can we probe via its gravitational interactions?

Small-scale predictions for Warm Dark Matter

Cold DM

Warm DM, 3keV

Warm Dark Matter Candidate: Sterile Neutrino

• Controversial (!) x-ray signal can be used to pinpoint the relevant parameter space for sterile neutrinos:

Venumadhav, Cyr-Racine, Abazajian, Hirata. arXiv:1507.06655

Warm DM Candidate: Resonantly-Produced Sterile Neutrinos

• Asymmetry-based resonant production leads to a much colder spectrum of sterile neutrinos than standard FD.

Venumadhav, Cyr-Racine, Abazajian, Hirata. arXiv:1507.06655

Warm DM Candidate: Resonantly-Produced Sterile Neutrinos

• Interestingly, the models that can explain the x-ray excess have a free-streaming cutoff in the "right" range to address issues on small scales inside the local group.

Venumadhav, Cyr-Racine, Abazajian, Hirata. arXiv:1507.06655

Warm DM Candidate: Resonantly-Produced Sterile Neutrinos

• Upcoming x-ray observations with Astro-H (JAXA) and improved structure formation constraints can rule out (or in!) this model.

Venumadhav, Cyr-Racine, Abazajian, Hirata. arXiv:1507.06655

Small-scale predictions for latedecoupling dark matter Cold DM Late-decoupling DM

Dark Acoustic Oscillations (DAO)

Large-Scale Structure: DAO Scale + Damping

Cyr-Racine & Sigurdson (2013), Cyr-Racine + (2014), Buckley, Zavala, Cyr-Racine + (2014)

Non-linear Evolution of DAO: Halo Mass Function

- Different behavior than CDM and WDM.
- Bridges the gap between CDM and WDM.

Buckley, Zavala, Cyr-Racine et al. 2014

Natural Extension: dark matter self interaction

• DM Self-interaction modifies the inner structure of halos, usually making them less dense in the center.

Which dark matter physics can we probe via its gravitational interactions?

- Free-streaming/collisional damping
- Self-interaction

These can be used to rule out broad classes of dark matter models

Revealing the physics of dark matter through the study of small-scale structures

Self-Interacting DM

• Many possible approaches:

Disk Perturbations (Feldmann & Spolyar, 2015).

• Stellar Stream Gaps (Carlberg 2012).

Astrometric Microlensing (Erickcek & Law, 2011)

- Pulsar timing (Clark et al. 2015)
- Dwarf kinematics

Using gravitational lensing to study the substructure content of distant galaxies.

Revealing the physics of dark matter through the study of small-scale structures

- Unlike dark energy science, "astrophysical" dark matter science is lacking a clear roadmap aimed a systematically determining its properties.
- We need to assess advantages/drawbacks/complementarity of different proposed techniques.
- We have to assess where THEIA fits in this broad picture.
- Will it be useful to define a "figure-of-merit" for dark matter?

Galaxy-scale Gravitational Lenses

Credits: Leonidas Moustakas

Strong Gravitational Lensing

Credits: Leonidas Moustakas

Galaxy Lenses: Typical Scale

Galaxy-scale lenses probe the very inner part of their dark matter halo

Mass Substructures Cause Stochasticity in Lensing Observables

CDM Substructures: The Pioneers

 Using the flux from 7 radio-loud quasars, Dalal and Kochanek were able to put bounds on the typical mass scales and the abundance of substructures.

Dalal & Kochanek (2002)

Direct Substructure Detection

• "Gravitational Imaging" of Perturbed Einstein Rings

Vegetti et al. Nature, (2012)

Francis-Yan Cyr-Racine, Harvard

Measuring the Substructure Power Spectrum

• Use ALMA images of lensed sub-mm galaxies to directly measure the convergence power spectrum.

Hezaveh et al. 2014

All of these lenses contain some information about small-scale structures inside the lens galaxies

How do we extract it ??

We need a comprehensive framework that can handle any type of lens.

Back to basic: mathematical structure of gravitational lensing

• Lensing is a simple map from the source plane to the image plane:

PSF

Simple Example

• Here, we assume perfect PSF and no light from the lens galaxy.

Question: Which one of these images was created by a lens containing substructures?

• To extract substructure information, we need to be able to distinguish between these two.

Consider the residuals between the two images

• All the information about substructures is contained in the residuals between the actual image and an image created from a purely smooth lens.

Francis-Yan Cyr-Racine, Harvard

Understanding the structure of image residuals

• Divide the lens potential into a dominant smooth component and a small substructure correction:

$$\phi_{\text{lens}}(\mathbf{y}) = \phi_0(\mathbf{y}) + \phi_{\text{sub}}(\mathbf{y})$$

• Then the image residuals are simply given by:

PSF

Likelihood Analysis

• Since the residuals are linear in the substructure potential, the likelihood is Gaussian in the ϕ_k variables:

$$\mathcal{L}(t;\mathbf{q},\mathbf{q}_{sub}) \propto \int \left[\prod_{\mathbf{k}>0} d\tilde{\phi}_{\mathbf{k}} d\tilde{\phi}_{\mathbf{k}}^{*}\right] P_{sub}(\tilde{\phi}_{\mathbf{k}},\tilde{\phi}_{\mathbf{k}}^{*}|\mathbf{q}_{sub})$$
(25)

$$\times e^{-\frac{1}{2}\int d\mathbf{x} d\mathbf{x}' \left[\delta O_{\lambda}^{obs}(\mathbf{x},t) - \sum_{\mathbf{k}} (\mathcal{W}_{\mathbf{k}}(\mathbf{x},t) \, \tilde{\phi}_{\mathbf{k}} + \mathcal{W}_{\mathbf{k}}^{*}(\mathbf{x},t) \, \tilde{\phi}_{\mathbf{k}}^{*})\right] \mathbf{C}_{N_{\lambda}}^{-1}(\mathbf{x},\mathbf{x}') \left[\delta O_{\lambda}^{obs}(\mathbf{x}',t) - \sum_{\mathbf{k}'} (\mathcal{W}_{\mathbf{k}'}(\mathbf{x}',t) \, \tilde{\phi}_{\mathbf{k}'} + \mathcal{W}_{\mathbf{k}'}^{*}(\mathbf{x}',t) \, \tilde{\phi}_{\mathbf{k}'}^{*})\right]$$
$$P_{sub}(\tilde{\phi}_{\mathbf{k}}, \tilde{\phi}_{\mathbf{k}}^{*}|\mathbf{q}_{sub}) = \frac{1}{(2\pi)^{N_{\mathbf{k}}} |\mathcal{P}_{\mathbf{k}\mathbf{k}'}|} e^{-\frac{1}{2}\sum_{\mathbf{k},\mathbf{k}'>0} (\tilde{\phi}_{\mathbf{k}}^{*} \mathcal{P}_{\mathbf{k}\mathbf{k}'}^{-1} \tilde{\phi}_{\mathbf{k}'} + \tilde{\phi}_{\mathbf{k}} \mathcal{P}_{\mathbf{k}\mathbf{k}'}^{-1} \tilde{\phi}_{\mathbf{k}'}^{*})}$$
$$Dark matter parameters$$

 If we assume the φ_k to be a Gaussian random field, we can marginalize out the substructures to obtain a posterior distribution for dark matter parameters.

Francis-Yan Cyr-Racine, Harvard

Cyr-Racine et al. arXiv:1506.01724

11/9/2015

What are we trying to measure ?

• So far, there are few actual predictions for the substructure lensing potential power spectrum in the literature.

Hezaveh et al. 2014

Rethinking Galaxies

- Describing cosmologically distant lens galaxies in terms of their substructure power spectrum is largely unexplored.
- We must understand how the substructure population depends on the host galaxy's properties.
- The key assumption here is that the statistical properties of the substructures are similar across all lens galaxies.

Rethinking Galaxies

From Observations to Fundamental Physics

• It is timely to develop these techniques since upcoming surveys will discover thousands of new lenses.

Large Synoptic Survey Telescope

The OMEGA Explorer 2017

(PI: Moustakas)

Take-Home Message

- The interesting dark matter effects are on small subgalactic scales.
- Combining strong gravitational lensing probes offers a unique way to probe dark matter on the smallest scales.
- We have developed a comprehensive framework that allows us to extract substructure information from a variety of lensed images.
- We are currently implementing it.
- Stay tuned for sensitivity forecast in the near future!