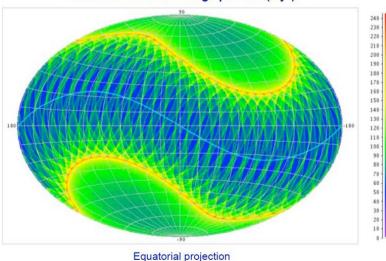
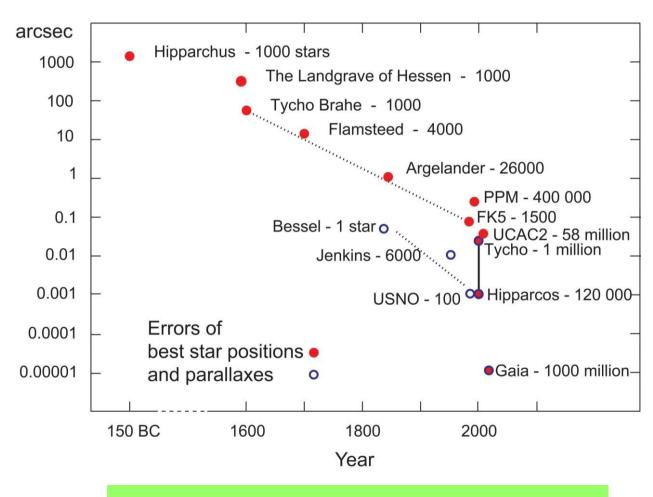

Gaia: Update + Exoplanet Science

Alessandro Sozzetti
INAF – Osservatorio Astrofisico di Torino



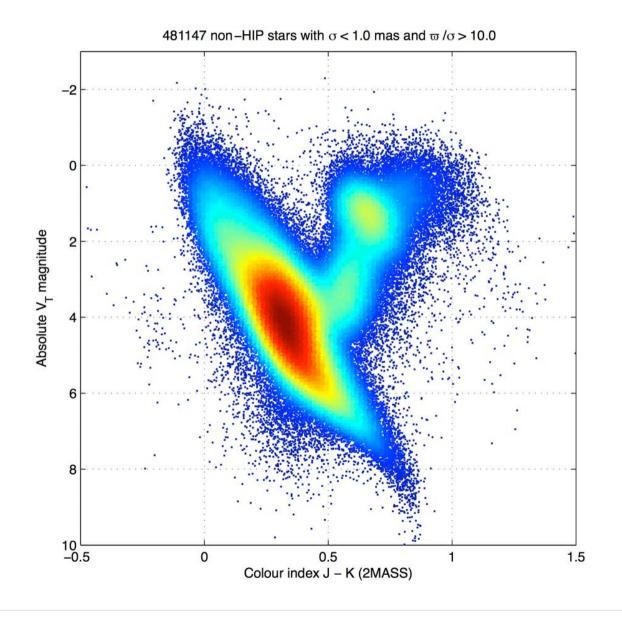
A Space Astrometry Revolution!



At Gaia's G=20.7 survey limit: 2x109 stars

μas astrometry comes of age...

Gaia: Routine Operations



- In 5-year routine phase since 18 July 2014
- Nominal scanning law optimised for Jupiter quadrupole moment general relativity experiment
- Data collection:
 - 225 billion astrometric measurements
 - 45 billion photometric measurements
 - 4.4 billion spectra
- Magnitude limits
 - Astrometry and photometry between 2 < G < 20.7 mag
 - Stars brighter than G = 3 mag captured with Sky Mapper imaging
 - Spectra till $G_{RVS} = 16.2 \text{ mag}$ (and G > 2 mag)

TGAS Validation Run

Unwanted Surprises

- Stray light both from astronomical sources and the Sun
 - Sun stray light due to scattering of fibres at the edge of the Sun shield
 - Impacts faint sources especially in spectroscopy
- Transmission loss due to continuing contamination of mirrors by water
 - Water source not yet exhausted although contamination rate much less than during commissioning
- Basic Angle variation larger than expected
 - Variation measured by on-board metrology device and verified at milliarsec level by astronomical sources
- Attitude disturbances
 - Micro-meteoroids taken into account in pre-launch work
 - At small impact levels many micro-clanks observed

Science Performance

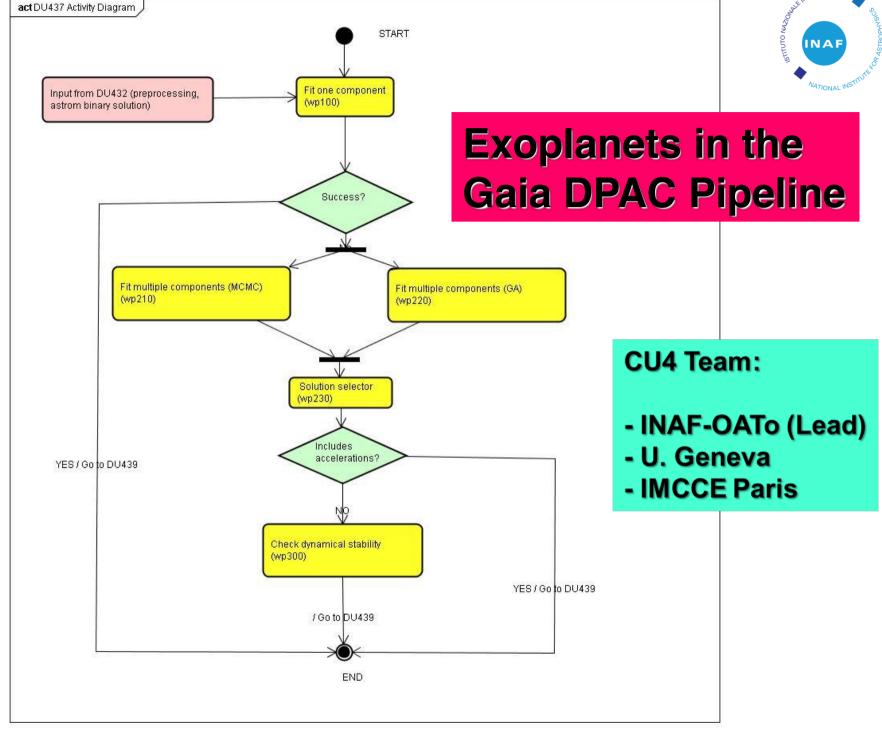
Pre-launch predictions (Unreddened G2V star)

V-magnitude	Astrometry (parallax)	Photometry (BP/RP integrated)	Spectroscopy (radial velocity)
3 to 12	5-14 µas	4 mmag	1 km/s
15	24 µas	4 mmag	3 km/s
16.5			13 km/s
20	290 μas	40 mmag	
	Post-con	nmissioning estimates	
3 to 12	5-14 μas	4 mmag	1 km/s
15	25 µas	5 mmag	13 km/s
16.5			
20	540 μas	60 (RP) – 80 (BP) mmag	
		Coloulations by: D. Katz, C. Jardi	I Lindagran I da Druiji

Calculations by: D. Katz, C. Jordi, L. Lindegren, J. de Bruijne

THEIA KICK-OFF MEETING - STOCKHOLM, 02/11/2015

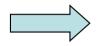
Nominal Release Scenario


- Based on assumption of smooth development and operations!
- Each release updates the previous and contains significant new additions
- Science alerts started already

Mid-2016 Positions + G magnitude (\sim all sky, single stars)

- Includes more often scanned Ecliptic pole regions
- Hundred Thousand Proper Motions (Hipparcos-Gaia, $\sim 50 \ \mu as/yr$)
- Early 2017 radial velocities for bright stars, two-band photometry, and full astrometry $(\alpha, \delta, \varpi, \mu_{\alpha*}, \mu_{\delta})$ where available.
- 2017/2018 (TBC) full astrometry, orbital solutions for short period binaries, $(G_{\rm BP}-G_{\rm RP})$, BP/RP Spectrophotometry and astrophysical parameters, radial velocities, RVS spectra
- 2018/2019 (TBC) Updates on previous release including more sources, source classifications, multiple astrophysical parameters, variable star solutions and epoch photometry for them, solar system results

2022 (TBC) Everything


THEIA KICK-OFF MEETING - STOCKHOLM, 02/11/2015

Gaia Astrometry Planet Yield

Starcounts (V<13), F_p(M_p,P) for F-G-K dwarfs, Gaia completeness limit 10⁴ giants

Δd (pc)	N_{\star}	Δa (AU)	ΔM_p (M_J)	$N_{ m d}$	$N_{ m m}$
0-50	~10 000	1.0 - 4.0	1.0 - 13.0	~ 1400	~ 700
50-100	~51 000	1.0 - 4.0	1.5 - 13.0	~ 2500	~ 1750
100-150	$\sim \! 114000$	1.5 - 3.8	2.0 - 13.0	~ 2600	~ 1300
150-200	~295 000	1.4 - 3.4	3.0 - 13.0	~ 2150	~ 1050

Casertano, Lattanzi, Sozzetti et al. 2008

M dwarf starcounts (G<20)

2-3x10³ additional giants (Sozzetti et al. 2014)

All spectral types (G<17.5)

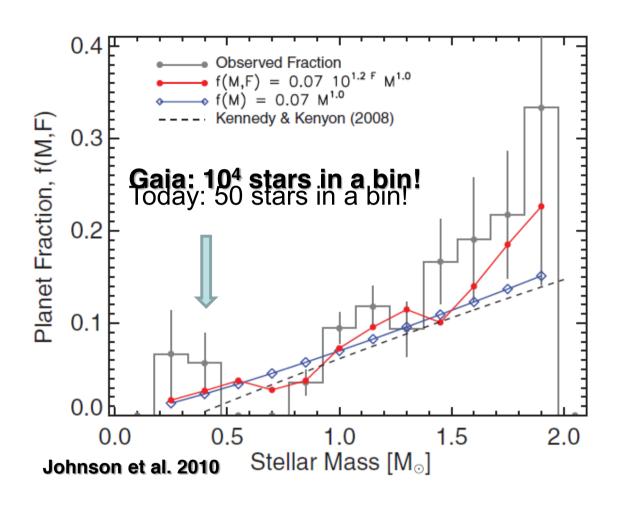
2x10⁴ new gas giants (Perryman et al. 2014)

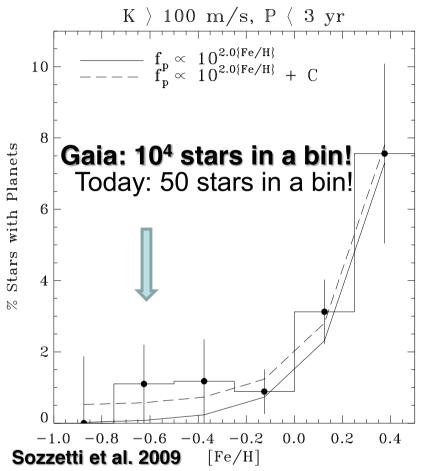
Close binaries within 200 pc

100s circumbinary giants (Sahlmann et al. 2014)

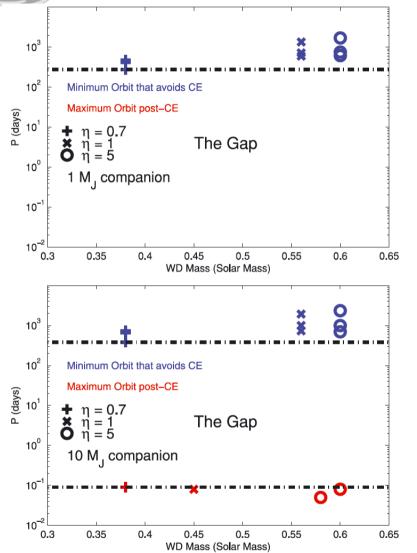
Unbiased, magnitude-limited planet census of possibly millions of stars

On the order of 10^4 NEW giant (< 15 M_{JUP}) planets


But, it must meet the noise floor requirements for bright stars!


THEIA KICK-OFF MEETING - STOCKHOLM, 02/11/2015

The Gaia Legacy



Gaia will test the fine structure of GP parameters distributions and frequencies (including the GP/BD transition), and investigate their changes as a function of stellar mass, metallicity, and age with unprecedented resolution

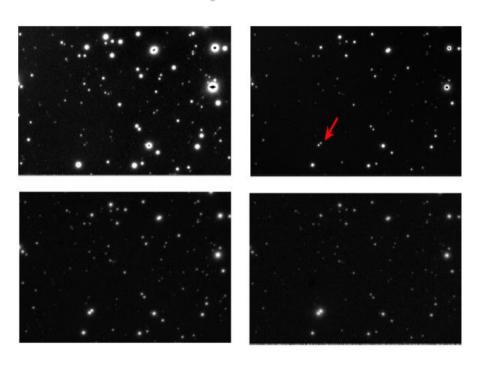
Gaia & Post-MS Stars

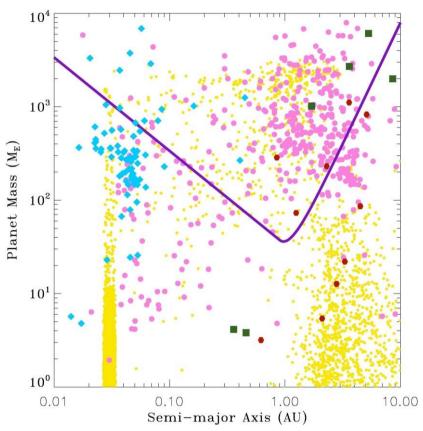
White dwarfs in the solar neighborhood

Good to within a factor 2...

	D<100 pc	D<200 pc
R<13	50	400
R<14	200	1600
R<15	800	6400

Silvotti, Sozzetti, & Lattanzi, AIP


Gaia will perform THE observational test of theoretical predictions related to: A) <u>post-MS planet evolution</u> & B) 2^{nd} generation planet formation



Planets Around BDs

Gaia detection limits for Luhman 16 AB (Boffin et al. 2014)

- Found so far only in microlensing events
- Gaia will see ~1000 BDs of all ages, with sufficient astrometric sensitivity to giant planets within 2-3 AU
- A fundamental test of planet formation!

Sozzetti (arXiv:1406.1388)

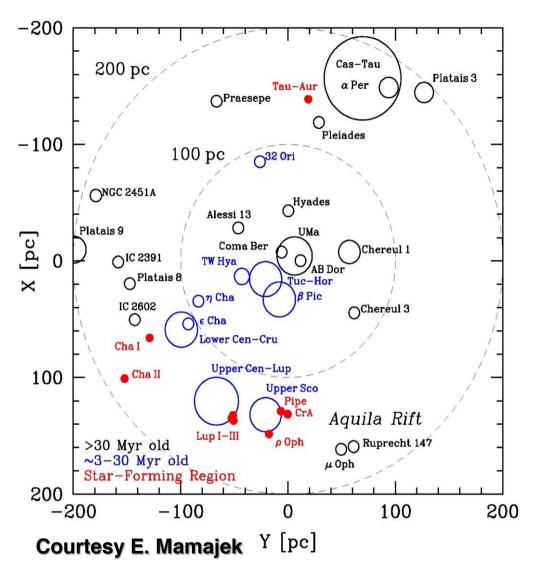
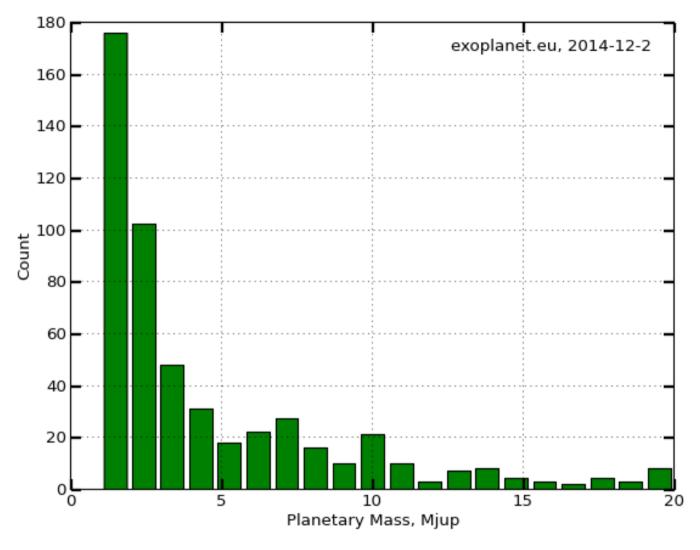

gaia Young Stars Near the Sun

Table 5. The closest (≤200 pc) star forming regions and young stellar kinematic groups.

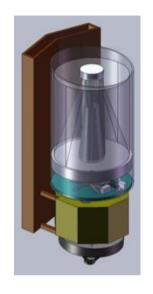
Casertano, Lattanzi, Sozzetti et al. 2008

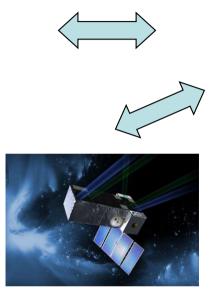
Name	Distance (pc)	Age (Myr)
Hercules-Lyra	15-40	100
AB Doradus	20-50	30-50
Subgroup B4	20-50	80-100
β Pictoris	30-50	8-15
Tucana-Horologium	50-60	8-50
TW Hya	50	3-50
MBM 12	60-110	3-10
η Chamaeleontis	90-150	8-10
η Carinae	100	8
MBM 20	110-160	3-10
Pleaides	125	75–100
Ophiuchi	125-150	1–2
Taurus-Auriga	135	1–2
Corona Austrina	140	1–2
Lupus	140	1–2
o Velorum	160	30
ϑ Carinae	160	30
Scorpio-Centaurus	160-180	2-20
α Persei	175	85
Serpens	200	5–10

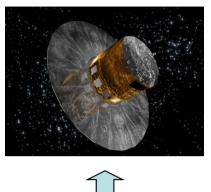

Maybe 1000s of bright (V < 14 mag) ACTUAL F-G-K members

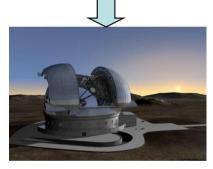
THEIA KICK-OFF MEETING - STOCKHOLM, 02/11/2015

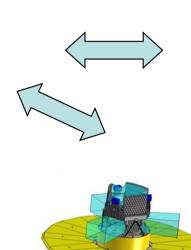
Gaia and Young Stars



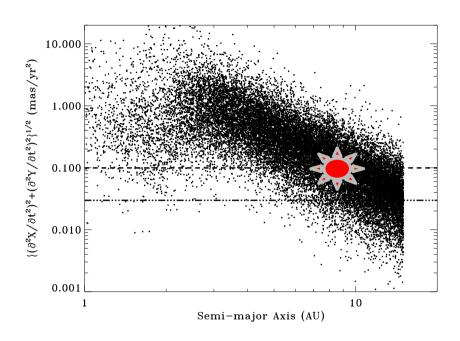

Unique exploration of the GP/BD transition region of companions to 1000s young stars in a regime of separations mostly inaccesible to DI



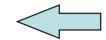

Gaia - Synergies



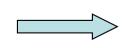


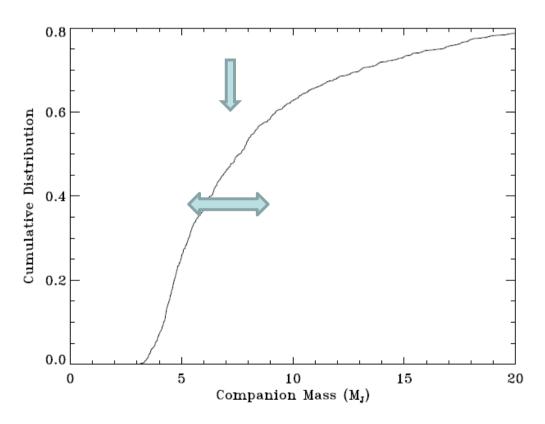


- Gaia & spectroscopic characterization observatories (e.g., JWST, E-ELT)
- Gaia & transit surveys from the ground (e.g., WASP, HAT, APACHE, NGTS) and in space (CoRoT, Kepler, K2, TESS, PLATO)
- Gaia & direct imaging observatories (e.g., SPHERE/VLT, PCS/E-ELT)
- Gaia & RV programs (e.g., HARPS(-N), ESPRESSO, CARMENES, and the likes)
- Gaia & ground-based and space-borne astrometry



Gaia + Dl/HCI: Example


Accelerations in Gaia astrometry from companions orbiting the SPHERE GTO target sample with V < 12, d < 50 pc

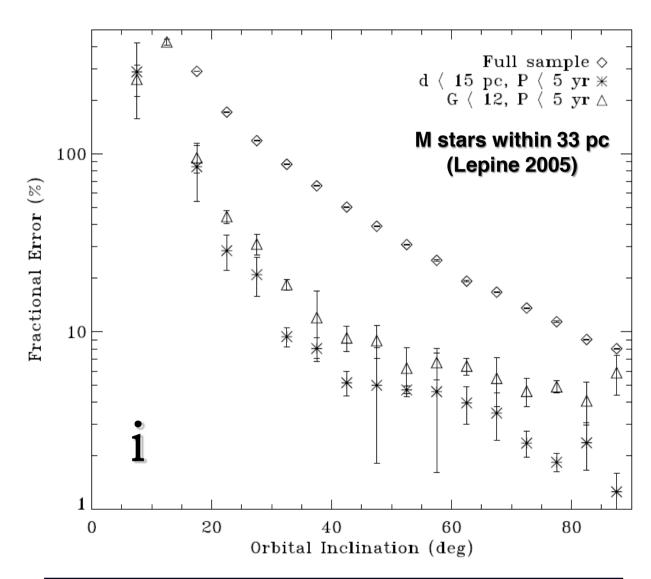


Bonavita, Sozzetti et al. in prep.

For
$$\beta$$
 Pictoris:
 $a_x = 110 \mu as/yr^2 - a_y = 30 \mu as/yr^2$

Mass CDF from Gaia measurements of the companion to β Pictoris

Finding Nearby Transiting Intermediate-Separation GPs



Sozzetti et al. 2014

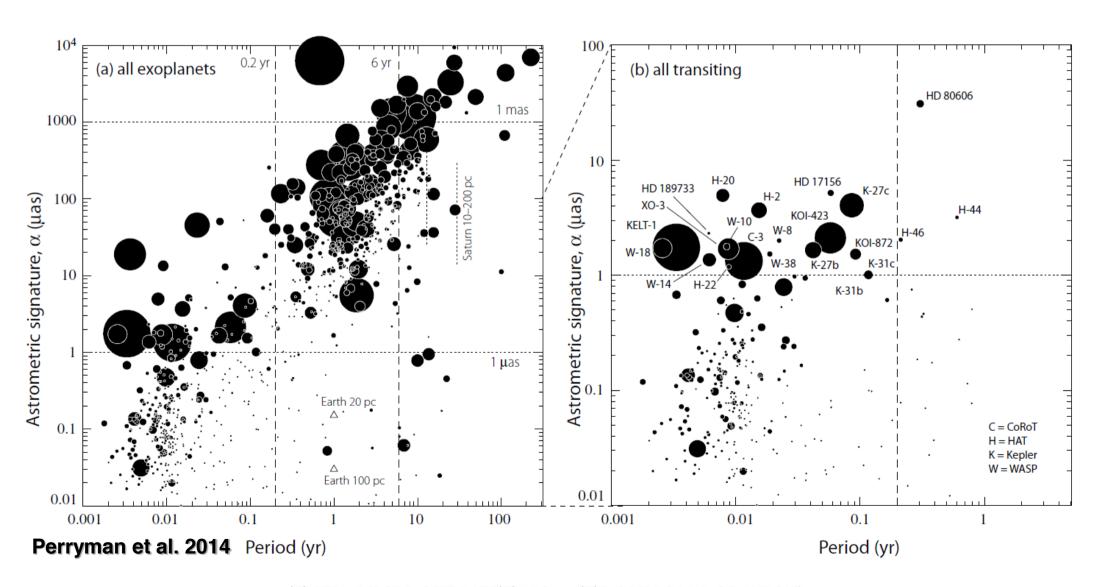
For well-measured, quasi-edge-on orbits, i is measured to 2-3%

Gaia may find hundreds of candidate transiting giant planets around F-G-K-M dwarfs of all ages and [Fe/H].

Some may be really transiting!

Follow-up efforts, possible targets for JWST

Synergy with RVs



- Complete characterization of systems architectures across orders of magnitude in mass and orbital separation
- Refinement of known orbits (both ways)
- Complete dynamical stability studies in multiple systems (coplanarity!)
- Very important synergy with historical (e.g., HARPS), newish (e.g., HARPS-N), and upcoming (ESPRESS, IR instruments) RV surveys

Gaia & Known Planets

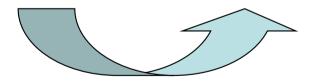
Target Selection

In early 2017, >90% of parallaxes for (well behaved?)
 stars observed by Gaia are delivered...

 Elected primary source of the TESS/PLATO input catalogs of >2x10⁶ bright dwarf stars (with negligible giant star contaminants)

 Significant reduction in astrophysical false positives (know what's in the pixel!)

Gaia & Ground-Space Astrometry


Proper motions/parallaxes for comparison

Gaia

FORS2/VLT,STEP(?), Theia(?),WFIRST

Parallaxes of target and references

Candidates for follow-up

Combined analyses can profit from large time baseline, particularly when Gaia intermediate astrometry data will become available