

Microarcsecond Astrometric Observatory

From Dark Matter to Compact Objects and Nearby Earths

and the second second

Science objectives

- Particle physics
 - The existence of Quark Stars
 - The nature of Dark Matter: Self-interacting dark matter? Warm dark matter?
- Exoplanets
- Young Stellar Clusters
- Following up on Gaia's Results
- Open Time Observations

Nearby Habitable Exoplanets

Scientific Requirements

- Measurement Principle : Differential astrometry
- Calibration Strategy
- Top Level Requirements
- Derived Technical Specifications
- Derived accuracy

Measurement Principle : Differential astrometry

Derived Technical Specifications

- Telescope : $D \sim 0.8$ m with a 0.5 deg field of view diffraction-limited (scaled down version of Euclid optics and platform)

- commercially available 10µm pixels,

 reproducible centroid precision at better than 10⁻⁵ pix are under way at NEAT/ CNRS/CNES testbed (R1A and R2A).

CMOS detectors with windowed fast-readout modes yields data transfer rate <
 3Mbits/s and less than 5 hr/day of antenna time.

- Calibration every 60s using a laser fringe pattern coming from M3.
- The position of each pixel against the fringe pattern will be calibrated down to 10^{-5} pix/hr.

An orbit around L2, enhanced thermal shielding compared to Euclid, sun-avoidance angle of 45 deg, use of low-thermal expansion optics (Zerodur) and structural components (carbon-carbon fiber tubes) are proposed to achieve TLRs R4A and R4B (pointing, reproducibility) and TLR R5B (technology readiness), together with 150 mK thermal stability using Gaia-like thermal control technology (thermal shielding between solar panels and telescope/ platform not present in Euclid)

Expected accuracy

Summary of science cases with most stringent performance requirements set in each case. $\mu^{N \rightarrow \infty}$ is the 0 systematic noise floor in proper motions caused by systematics errors in the reference frame. It strongly depends on the FOV and characteristics of the target (eg. distance).

Program	Used	Mission	Nb of objects	Benchmark target	EoM precision	Ref. frame
	time (h)	fraction	per field	R mag (and range)	(at ref. mag.)	accuracy $\mu_0^{N ightarrow\infty}$
Dark matter	8 000	0.34	10 ³ –10 ⁶	20 (14–22)	10 μ as	$2-5\mu { m as/yr}$
Ultra-compact objects	2600	0.11	20	17 (13-20)	8 μ as	2μ as/yr
Nearby Earths	4 0 0 0	0.17	<20	5 (1–14)	0.15 μ as	(none)
Young stellar clusters	2600	0.11	10^{3} - 10^{5}	20 (15-25)	35 μ as	5 μ as/yr
Gaia follow-up	2600	0.11	10-10 ⁶	10 (5-21)	1.0 μ as	$2-5\mu { m as/yr}$
Open time	4 0 0 0	0.17	10-10 ⁶	6 (1-25)	1.0 μ as	$2-5\mu { m as/yr}$
Overall requirements	23800	1.00	10 ¹ -10 ⁶	6 (1-25)	0.15 μ as	$2-5\mu { m as/yr}$

Differential Measurement Astrometric uncertainty as a function the magnitude of target star for $\delta tvisit = 10$ hr and Nvisit = 10 compatible with specification in deep field mode. The value of σ_{π} is a proxy for the end-of-mission astrometric precision.

R (mag)	10	15	20	21	22	24	25
σ_{μ} (μ as)	0,15	1.0	10	18	27	75	135
σ_{π} (μ as/yr)	0,30	2.0	20	35	55	150	270

Instrumental concept

Confidential concept (© Goullioud)

3D optical concept

Korsch symmetrical on-axis configuration

Confidential concept (© Goullioud)

Korsch symmetrical on-axis configuration

An example of real telescope

- Assuming a 5-DoF mechanism on M2,
 - about +/- 1 µm error in position after calibration, few arcsec in tip/tilt (set 2 µm in X,Y and 2,5 arcsec in RX,RY)
 - Z(M1M2) = +/- 1 μm
- Assuming very good mastering of M1 machining/AIT/flight :
 - WFE aberration of M1 : Z4-Z15, ~equi-partition, so that :
 - WFE at image = 20 nm rms at center of FOV, 25 nm rms at edge (excluding high frequencies)
- M3 : no positioning error (not very influent)
- M2, M3 assumed negligible / M1 for the moment

- quite symmetric behavior, but some slight deviations,
- → importance of M2 lateral position combined with M1 coma.

Best results so far:

- IPAG/CNES: 2.8 10⁻⁴ pixels
- JPL/VESTA: 10⁻⁴ pixels

Proposed strategy to reach 10⁻⁵ pixel calibration:

100 independent positions, a space of \sim 40 \times 40 pixels for Nyquist-sampled centroids

Performance assessment and error budget

Focal Plane Array Dectectors

H4RG-10

-	310mm										
	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG				
	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG				
	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG				
340mm	H4RG	H4RG	H4RG	40 x 40 mm 4k x 4k pixels H4RG array	H4RG	H4RG	H4RG				
	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG				
	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG				
ţ	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG	H4RG				

ITEM	VALUE
Pixel Number	4096 x 4096
Optical format	44 x 50 mm
Pixel size	10 x 10 um
Full well charge	100 Ke
QE	>90%
Number of outputs	1, 4, 16, 32 or 64
Max Pixel rate readout rate	up to 5MHz
Full frame rate (fast mode)	19 fps w 64 outputs @ 5Mpix/s/output
Dark Current (room temperature)	5-10 nA/cm
Readout noise	< 10 e

Proposed mission profile

- Mission Orbit: large Lissajous or Halo orbit at L2.
- Launcher : Soyuz with the enhanced capacity version Fregat MT for the upper stage.
- Duration: 3.5 years with a possible extended science operation (1yr)

Launch dateNo constraints, allowing launch date in 2025OrbitLarge Lissajous in L2Lifetime•3 years of nominal science operations
• Technical operations: orbit transfer (3m), instrument
commissioning (1m overlap +1m), decommissioning (1m)ConceptSingle spacecraftCommunication
architecture5Mbits/s, twice a week during a total of 4h

Main mission characteristics

A scalable mission

Mission name	Mirror diameter	Focal length	Field of view diameter	Focal Plane size	Ref. star mean magnitude	DMA in 1h	# targets for a given mass limit		
	(m)	(m)	(deg)	(cm)	(R mag)	(µas)	0.5 <i>M</i> _●	1 M.	5 M _@
STEP	1.2	50	0.45	40	11.5	0.7	7	100	200
NEAT	1.0	40	0.56	40	11	0.8	5	70	200
Theia	0.8	30	0.71	35	10.5	1.0	4	50	200
EXAM	0.6	20	0.85	30	10.1	1.4	2	35	200
							$1M_{\oplus}$	10 M _@	50 M⊕
$\mu \text{NEAT}(*)$	0.3	12	0.6	15	11	10.2	2	25	200

DMA = Differential astrometric Measurement Accuracy (rms); (*) centroiding requirement relaxed to 4e-5

Small reduction of diameter would reduce cost and science but would NOT kill science, e.g. number of stars studied,...

What to improve ?

- Better define the requirements on the science objectives (e.g. the calibration precision)
- Optical design: investigate refractive optics or at least some glass plate (Ritchey-Chretien design)
- Publish calibration results