

Boson Tagging in ATLAS

Shih-Chieh Hsu Oct 22 2015 HEP Seminar in Stockholm University

Introduction

- Boosted bosons (W/Z/H) identifications are techniques to discriminate highly boosted hadronically decaying bosons from QCD jets
- The focus of this talk is the development in Run1 and prospects for Run2
 - Reference
 - W-tagging <u>arXiv:1510.05821</u>
 - H-tagging <u>ATL-PHYS-PUB-20 News</u>

Motivation

Boosted boson techniques have been used in several LHC run1 analyses in ATLAS

VV Excess in Run

ATLAS A

 Many Beyond the Standard Model theories predicts existence of new particles decaying into vector-boson pairs

 $VV \rightarrow \rightarrow lnuqq: EJP C75 (2015) 209$ $VV \rightarrow \rightarrow llqq: EPJ C75 (2015) 69$ $VV \rightarrow \rightarrow JJ: arXiv: 1506.00962$

hh Resonance in Run

- An

- SM hh production
 - Direct test of Higgs potential
 - Small cross section: O(40 fb) at 14 TeV
- SBM Higgs could potentially enhance hh production
 - KK-Graviton, 2HDM, new scalar in Higgs portal...
- Boosted Higgs dominant the sensitivity of heavy resonance search

EPJ C75 (2015) 9, 412

mono-W/Z/H in Run I

- mono Boson = Bosons + Met signature is predicted in many BSM models.
 - dark matter pair + Boson, VZ(vv) resonance, Z'-2HDM, ...
- Unique and complementary to noncollider dark matter searches

W tagging

Basic Idea

8

• Reconstruction as one single large-radius jet

low-pT

- high-pT
- Grooming techniques

Clean the large-R jet from soft gluon radiation and pile-up effects that diminish jet mass resolution
Techniques: BDRS* (mass-drop/ filtering), trimming, pruning

• Substructure information (tagging) Use hard substructure of jet (not present in e.g. gluon jet) to improve signal efficiency and background rejection

W Jet Grooming optimization

Test three grooming techniques with >500 jet collections

Split-filtering	configurations
-----------------	----------------

R	Input jet algorithm	R	R _{sub}	$\mu_{ m frac}$	Ycut
¥	C/A	0.8, 1.0, 1.2	0.3, $min(0.3, \Delta R/2)$	67, 78, 89, 100	0.06, 0.07,, 0.20

 \rightarrow 1 x 3 x 2 x 4 x 11 = 264

Trimming configurations

Λ	K _{sub}	$f_{\rm cut}$ (%)
0.8, 1.0, 1.2	0.1, 0.2, 0.3	1, 2, 3, 4 , 5, 7, 9, 11, 13, 15
(0.8, 1.0, 1.2	0.8, 1.0, 1.2 0.1, 0.2, 0.3

 \rightarrow 2 x 4 x 3 x 10 = 240

Pruning configurations

Input jet algorithm	R	Reclust. alg.	Z _{cut} (%)	R _{cut}
C/A, anti- k_t	0.8, 1.0, 1.2	C/A	10, 15, 20, 25, 30	$\frac{1}{100}, \frac{1}{10}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1.0$

 \rightarrow 2 x 3 x 1 x 5 x 6 = 180

Mass optimization

Identify best groomer in each

Optimal groomer in each algorithm can achieve equivalent bkg rejection.

best grooming: low bkgd eff. + good P-U stability

→ anti-kt R=1.0 trimmed $f_{cut}=5\%$, $R_{sub}=0.2$

W Correlation Studies

26 subsutructure variables studied

Comparison among grommers + taggers

Reoptimize based on reconstructed jet PT

50% Working Point

Variable	Tag	Tagging criteria in $p_{\rm T}$ range			
Variable	200-350 GeV	350–500 GeV	500–1000 GeV		
$\epsilon_W^{\rm G} = 68\%$ mass rang	e 61–93 GeV	71–91 GeV	73–91 GeV		
$C_2^{(eta=1)}$	< 0.18	< 0.13	< 0.10		
$\epsilon_W^{\rm G\&T} = 50\% D_2^{(\beta=1)}$) < 1.14	< 1.23	< 1.35		
$ au_{21}^{ m wta}$	< 0.32	< 0.36	< 0.40		

Systematic Uncertainties

Dominant uncertainty from jet substructure variables

Source	<i>p</i> _T range [GeV]			
	200–250	250-350	350–500	
JMS	+1.1	+1.1	+9.6	
JES	-3.5 / +3.6	-1.7 / +2.5	+1.6 / -2.3	
JER	-0.1	+1.0	+1.0	
JMR	+2.7	+3.7	+4.3	
JSS $(D_2^{(\beta=1)})$	+4.3 / -2.9	+4.2 / -4.5	+5.1 / -4.8	
MC generator	-0.9	+1.9	-3.2	
ISR/FSR	+1.6 / -2.2	+2.7 / -4.0	+4.4 / -5.6	
Multijet normalisation	-0.4 / +0.4	-0.3 / +0.3	+0.1 / -0.1	
Single-top normalisation	-0.1 / +0.1	-0.1 / +0.1	-0.1 / +0.1	
<i>tī</i> normalisation	0.6 / -0.5	+0.6 / -0.6	+0.5 / -0.5	
W+jets normalisation	-0.3 / +0.3	-0.4 / +0.4	-0.5 / +0.4	
MC statistics	-1.0	-1.5	-3.5	
Total	+6.6 / -5.4	+7.3 / -6.6	+13.1 / -13.2	

Efficiency Measurement

- Overall good agreement between simulation and data.
- Herwig has relative larger deviation but still within one sigma uncertainty

Money Plots

Possibility to derive in-situ W-gagging efficiency measurements and $_{0.2}$ derive scale factor as correction to simulation $\in \mathbb{O}$ pen questions:

• Can it be applied to different physics analysis? What is the topological dependence of tagger performance?

Hbb tagging

Higgs tagging

- R=1.0 calorimeter jets trimmed with kT R=0.3 subjects and fcut=0.05 to measure kinematics and substructure
- b-tagging with small R=0.3 track jets to resolve close-by b-hadrons and allow calibration of each track jet individually

W

Track Jet b-tagging

- Use charged particles to build track jets
- B-tagging using track jets
 - insensitive to pileup
 - small radius to identify close-by objects
 - Independent of calorimeter
 - good angular resolution w.r.t. b-hdaron
- Ghost association
 - associate track jets by setting pT of each track jet to a number close to 0 (ghost particles)
 - cluster ghost particle together with calorimeter jets

Higgs tagging

- Ghost association of track jets to large-R to provide b-tagging (matching to ungroomed parent jet)
- Large improvements in efficiency to find Higgs jets!

Run2 Prospects

W/Z-tagging

- Similar approach as Run1 except smaller subject radius, i.e. Rsub=0.2
- Continuous pT parametrization of D2 cut
- Performance still to be checked with Run2 data?

Hbb-tagging ATL-PHYS-PUB-2015-035 Fruth Higgs Acceptance Similar approach as Run I except ATLAS Simulation Preliminary 1.8 anti-k, R=1.0 jets rimmed (f __=0.05, R __=0.2) $p_{-}^{jet} > 250 \text{ GeV}, \ |\eta_{-}^{jet}| < 2.0$ smaller gs > 250 GeV, $\eta_{true}^{Higgs} | < 2.0$ > 5 GeV, http://dev. subject radius, i.e. Rsub=0.2 0.4 Combination with D2 cut 600 800 1000 1200 1400 400 Truth Higgs p₊ [GeV] 10⁷ **[[]**[[],...,1,0¹²,[[]]</sup>,[[],...,1,1,1]</sup> 10' Multi-jet rejection Multi-jet rejection ATLAS Simulation Preliminary ATLAS Simulation Preliminary 10⁶ 10⁶ anti-k, R=1.0 jets anti-k, R=1.0 jets Trimmed (f_{cut}=0.05, R_{sub}=0.2) let Single b-tagging Trimmed (f_{cut}=0.05, R_{sub}=0.2) 10⁵ $350 < p_{_{T}} < 500 \text{ GeV}, |\eta_{_{det}}| < 2.0$ 10⁵ $p_{T} > 250 \text{ GeV}, \ \eta_{det} l < 2.0$ Double b-tagging Double b-tagging 68% mass window $D_2^{\beta=1}$ + (2 b-tags at 70%) 10⁴ 10⁴ Asymm. b-tagging $C_2^{\beta=1}$ + (2 b-tags at 70%) τ_{21}^{-} + (2 b-tags at 70%) 10³ 10³ τ_{21}^{wta} + (2 b-tags at 70%) 10² 10² 10 Units Arbitrary Units ATLAS Simulation Preliminary **ATLAS** Simulation Preliminar 0.9 Higgs-je anti-k, R=1.0 jets anti-k, R=1.0 jets =500 GeV 1₀ 0.8⊧ Trimmed (f_==0.05, R_==0.2)

Higgs-jet efficiency

0.8

0.6

0.2

0.4

M_{RSG}=1000 GeV

Higgs-jet M_{BSG}=1500 GeV

Multi-ie

Hadronic tor

h l < 2.0

0.3

New ideas

MVA Tagger combination

Starting from all two-tagger combinations to determine ordering of combing various taggers

A typical jet clustering is to inverse the parton shower

Q-Jet: A new approach to parton shower arXiv:1201 1914

arXiv:1201.1914 ATLAS-CONF-2013-087

A typical jet clustering is to inverse the parton shower

But the parton shower is not really invertible Many parton shower can produce the same jet Q-jet asks: study all possible inverse parton shower path.

Shower Deconstruction

- Calculate, for each subjet of the input, the probability that the subjet is associated with a certain source of radiation (ISR, light quark, etc.).
- Discriminant χ is ratio of sum of signal probabilities to sum of background probabilities.

Multi-Secondary Vertex

Using inclusive multi-secondary vertex for double-b tagging

Summary

- Boson tagging as a new tool have been successfully used in Run1.
- Many innovative ideas under developments for Run2
 - How to use all the information using Machine Learning tool?
 - How to extract information from QCD splitting processes?
 - How to improve input object reconstructions by improving reconstruction algorithm?
- Gor for unltra-boost challenges on the ultimate detector resolution!

Backup

3-083)

It only applies corrections to jet pT and jet mass.

$$p_{\mathrm{T}}^{\mathrm{jet,corr}} = p_{\mathrm{T}}^{\mathrm{jet}} - \rho \cdot A \qquad \rho = \mathrm{median} \left\{ \frac{p_{T,i}^{\mathrm{jet}}}{A_i^{\mathrm{jet}}} \right\} \qquad A_j = \frac{1}{\nu_g \langle g_t \rangle} \sum_{g_i \in j} g_i$$

where the index *i* enumerates the jets found when clustering the event with the k_t algorithm where $v_g \langle g_t \rangle$ is the transverse momentum density of the ghosts.

Pile-up correction

 $\langle \mu \rangle$

Do we study all jet shape variables with pile-up correction (ATLAS-CONF-2013-085)? How to add systematic uncertainty?

Motivation2

- TUPS
- mono Boson = Bosons + Met signature is predicted in many BSM models.
 - Warped Extra Dim.
 G→ZZ(v v)
 - heavy $H \rightarrow ZZ(v v)$
 - SSM W' \rightarrow WZ($\nu \nu$)
 - VH(→ invisible)
 - DM Vχχ
 ATLAS, PRL 112, 041802 (2014)

W

monoV in Run

- Reconstruct W/Z with central large-R jet, pT > 250GeV, mJet[50,120 GeV], ETmiss > 350, 500 GeV
- Sensitive to the sign of DM couplings to up/down quarks Unique for mono-W
- WIMP-Nucleon reinterpretation complements (in)direct search

monoH EFT

W

N-tagging in V

• Jet reconstruction:

All diboson searches presented here use C/A R = 1.2 jets groomed with the BDRS (split-filtering) algorithm

- Splitting:
 - Require symmetric splitting $sqrt(yf) = min(pT1,pT2)/m12 \times \Delta R12$ with sqrt(ymin) = 0.2
 - No mass drop-criterion is used in ATLAS ($\mu = 100\%$)
 - Slightly modified version of BDRS using a fixed reclustering distance parameter
- Filtering: remove soft radiation

hh overview

Resolved analysis:

- . 1. Four b-tagged anti-kT R=0.4 jets
- 2. Arrange into close-by pairs, $\Delta R < 1.5$
- . 3. Mass dependent p_T and $|\Delta\eta|$ cuts
- . 4. ttbar veto, using 5^{th} jet to test consistency with m_W / m_{top}

Boosted analysis:

- . 1. Two anti-kT R=1.0 jets, trimmed with $R_{sub}=0.3$ and $f_{cut}=0.05$
- . 2. Each with 2 b-tagged R=0.3 track jets
- . 3. p_T and $|\Delta\eta|$ cuts

W/Z Sepration

f: {bb,cc,cs,cd,light}

V: {W,Z}

$$\begin{split} \Pr(M,Q,B|V) &= \sum_{f} \Pr(f|V) \Pr(M|f,V) \Pr(Q|f,V) \Pr(B|f,V) \\ \text{with } p(B|f,V) &= p(B_{\text{lead}}|f,V) p(B_{\text{sub-lead}}|f,V) \end{split}$$

Higgs-jet efficiency

Higgs-jet efficiency

W

Largest uncertainty from flavor tagging

muon-in-jet correction

0.4