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Led to numerous progress for amplitudes in last 30 years

The formula — new formulations for gauge-theory S-matrix!

Key observation: the denominator from a (holomorphic)
correlator on CP! with punctures \; ~ (z;, 1) [Nair ‘8]
fACB Jc 1

+..., > PT,:= _
z—7 " (a-n)(n—2z) - (20— 21)

ia(2)js(z') =



Witten’s twistor string theory witen 03]

RN Ge



Witten's twistor string theory (witen 03]

A worldsheet model for gluon (N = 4 SYM) tree amplitudes:
push forward of PT, under a map from CP* to CP3*, Z(z).



Witten’s twistor string theory witten 03]

A worldsheet model for gluon (N = 4 SYM) tree amplitudes:
push forward of PT, under a map from CP* to CP3*, Z(z).

N¥MHYV amps ~ degree-(k—1) curves — connected (RSV)
prescription: a closed formula with integrals localized!



Witten’s twistor string theory witten 03]

A worldsheet model for gluon (N = 4 SYM) tree amplitudes:
push forward of PT, under a map from CP* to CP3*, Z(z).

N¥MHYV amps ~ degree-(k—1) curves — connected (RSV)
prescription: a closed formula with integrals localized!

)

MY~ [ dunalz) SN EN Ko 2)) PT(L 2 ).



Witten’s twistor string theory witten 03]

A worldsheet model for gluon (N = 4 SYM) tree amplitudes:
push forward of PT, under a map from CP* to CP3*, Z(z).

N¥MHYV amps ~ degree-(k—1) curves — connected (RSV)
prescription: a closed formula with integrals localized!

)

MY~ [ dunalz) SN EN Ko 2)) PT(L 2 ).

1. sum over solutions of £ = 0: eulerian number ((n—3, k—2))



Witten’s twistor string theory witten 03]

A worldsheet model for gluon (N = 4 SYM) tree amplitudes:
push forward of PT, under a map from CP* to CP3*, Z(z).

N¥MHYV amps ~ degree-(k—1) curves — connected (RSV)
prescription: a closed formula with integrals localized!

)

MY~ [ dunalz) SN EN Ko 2)) PT(L 2 ).

1. sum over solutions of £ = 0: eulerian number ((n—3, k—2))

2. works for all helicity amplitudes (encoded in 7’s)!



Witten’s twistor string theory witten 03]

A worldsheet model for gluon (N = 4 SYM) tree amplitudes:
push forward of PT, under a map from CP* to CP3*, Z(z).

N¥MHYV amps ~ degree-(k—1) curves — connected (RSV)
prescription: a closed formula with integrals localized!

MY ~ / dpini(2) 68D (EHN X 2]) PT(L,2,...,n).
1. sum over solutions of £ = 0: eulerian number ((n—3, k—2))

2. works for all helicity amplitudes (encoded in 7’s)!

3. other twistor-string formulas e.g. for ' = 8 supergravity:
replace PT by determinants [Cachazo, Geyer; Cachazo, Skinner "12...]
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A formulation of S-matrix in massless QFT’s

These theories are still very special = natural questions:

» no supersymmetry? any spacetime dimension?
» general theories: gravity, YM (& standard model), EFT’s...?

» generalizations to loop level?

our answer: massless scattering in any dim [CHY "13-]

» compact formulas for gravitons, gluons, fermions, scalars,...
» gauge invariance, soft theorems, double-copy etc. manifest

» loops from higher-genus correlators [Adamo et al’ 13; Geyer et al 14]

String origin: ambi-twistor strings [Mason, Skinner '13], “chiral”
ﬁeld—theory limit [Berkovits "13; Siegel "15,...]... [c.f. talks last week]
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Independent of theory (“kinetic part”): scattering equations

n

ks - k
Ea::Z a’’h =0, fora=1,2,...,n.

O35 — 0O
p—1 2 b
b#a

Derivation: map from CP* to null cone in any dim P(z)? = 0

n ku
Kk —f{ dzP'z) & @ PHz)=> —
|z—0oa|=¢

a=1

z—0,

PA(z)=0 <& Kk=0&FE,=0, Yal

in 4d equivalent to RSV equations without spinors [CHY "13]
also saddle points in high-energy limit [Gross, Mende '80]. 7?7
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Determine locations of n punctures in terms of n-pt kinematics

SL(2, C) redundancy: o, — 3;’:15 ,  Es— (yoa+6)%E,

tix 3 punctures o;, 0}, 0, remove 3 equations E,, Es, E;.

n — 3 eqs for n — 3 variables; non-trivially (n — 3)! solutions
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Scattering equations
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Determine locations of n punctures in terms of n-pt kinematics
Map singularities of kinematics space K,, to those of Mg ,

eg. n=401= —g—i — {02,03,04} = {0,1, 00} in the limits

well known in string theory: Riemann knows a lot of physics!
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CHY formulation

Tree amps = contour integral in M, o = sum over solutions

I({k,e, 0
3 ({ 1)

d"o !
M,= | —27 E) I({k,e,0)) = :
[ st LLoE) Tk et | 7E

dun

{o}€solns.

dpn has n—3 integrals, n—3 delta functions; “CHY integrand” Z

A new picture for massless scattering via Riemann sphere:
sum of (n — 3)! “virtual amps” ~ CHY integrand/correlator

virtual amplitudes enjoy symmetries as the full amplitude;
local interactions, unitarity and FD’s all become emergent!

Goal: find “dynamic part” (CHY integrand) for a given theory
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SL(2,C) : 0, — 7= IH703+5)

a=1
PT, — [1a_1(v0a + 6)?PT,: correct weight as half-integrand

1

PT|n] .=
7 (0x) = 0x(2)) (Or(2) = Tx3)) = (On(n) — Tr(1))

The simplest integrand: two copies of PT (SL(2, C) weight)

m[r|p] ::/wolSdIIjZ(CH(S ) PT[x] PT[p].

What does the formula compute?
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Trivalent diagrams from CHY

m([m|p] computes the sum of trivalent scalar diagrams (massless
propagators) that are consistent with both , p orderings

mlp]= ) I1
gET(MNT(p) ecE(g)  ©
Sum of trivalent scalar diagrams < certain m[r|p]. Examples:
1

1 1 1
m[1234(1243] = m[1234]1324] m[1234|1234] — =
S12 14

1

1
m[12345|12534] = 7,m[12345|12543]
512 534

+
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Simplest CHY formula: ¢* theory

Theorem: there exists Z for any local, unitary massless tree
However, generally very complicated, no closed formula

#3 theory with flavors, e.g. in bi-adjoint of U(N)x U(N'):
vertex fFUKFI'IK ¢ pdir = trivalent graphs with f’s

Similar to gluons, define color-dressed PT for each group,

C= Y Te(Thw ... Tho)PT[x],
wESh/Zn

CHY formula for bi-adjoint ¢ amplitudes: gives sum of all
m[r|p]’s with flavor factors (note permutation invariance)

Mg = / dpin CC' = Ta(TH0 .. Tho) Te(Thw ... Tho) mir|p]
P
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Yang-Mills: another building block

Need a building block to encode gluon polarizations:
» Carry half of SL(2, C) weight, mass dimension [M]"2
» permutation invariant, multi-linear in {¢,}

» most important: gauge invariance

Introduce 2n x 2n skew matrix V¥, with four n x n blocks

A —CT
o (275)

ka-kp €a€p
kaks 5 4 py b 5L p
Alp = { Oab ’ Ba,b — { Oab

’ 0 a=b 0 a=b’
cakp a#b
Ca,b =q 7 ?é
— > ctaCac a=b
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CHY formula for Yang-Mills

The building block should be pfaffian of W (multilinear in €’s)
Pf| W]}

Gi,j

a subtlety: V is degenerate = reduced pfaffian: Pf'V :=

The other copy is the Parke-Taylor factor, or C for colors:

MM[7] = / dp PT[x] P W = MYM = / dp, C P’V

Complete S-matrix for any number of gluons in any dimension

The origin of Pf'V: by scattering equations, it is exactly given
by open-string correlators in the field-theory limit

PV ~ (VO(ay)... VD (5)) ... VED(a)) ... vO(q,))
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Gauge invariance

Gauge invariance of gluons: €

0
ko-ky
02,1

kn-k1
02,1

_ Zn k1~kb
b=2 Ul,b
€2k
02,1

€n-k1
02,1

~ ey + akl

Zn ki-kp
b=2 oy,
ko-k1
02,1

kn'kl
02,1
€2k
02,1

€n-k1
02,1

Substituting €; — k1 Pf'W = 0 for each solution of scattering
equations = gauge invariance manifest from CHY formula
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CHY formula for gravity

C x C' = bi-adjoint scalars, C x PtV = Yang-Mills

How about gravity? no color, polarization tensor h*" = e*€”

In general e*¢'” gives h*” + B + ¢; CHY formula for gravity

Mh+B+o — / dpin PEW(e) PEW(e) — MOR = / dpin det’ W(e)

Compete S-matrix of gravitons = hidden simplicity of GR

Unified formula for massless theories with spin s = 0,1, 2
TSP s — 275 ¢ (P/W)*

GR ~ YM® YM” or precisely “GR = YM?2/¢3” [KLT ‘86, BCJ' 08].
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Diffeomorphism invariance

Again manifest in CHY formulation: det'V = 0 as €, — k,

n ki-kp
0 | Db o1b
02,1 02,1
02,1 ok 02,1
_ n 1°Kp c..
Zb:2 Ul,b 0
02,1 02,1
€n-ki . €n-ki
02,1 02,1

Pf'W(e) x Pf'W(€') correspond to closed-string correlator by
using scattering equations: closed-string = open-string ?
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CHY formula with two vectors L, R and a diagonal matrix J
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Kawai-Lewellen-Tye relations in CHY

KLT relations: closed ~ 3~ open? — GR ~ Y~ YM? (¢ — 0)

CHY formula with two vectors L, R and a diagonal matrix J

(n—=3)!

Mp= [dp, LR = >
=1

Ly Ry

=L-J'R
Ji ! ’

PT’s provide a change of basis to o € S,_3, E[* = PT|[o], ,
which relates J=! to double-partial amps, m =E-J~! - E.

My=L-J75E-m™ 1 E-J7LR= Y Mia] m[al8] ME[A],
a,BESH—3

General double-copy relations from splitting CHY formula into two
— BCJ for partial amps: M,[r] = 3=, 5 m[r|a] m~![a|5] M,[3].
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More theories in CHY

New formulas from Pf’A — EFT’s with massless scalars
[ dun (Pf'A)? C ? U(N)-flavored scalars with two derivatives?
The chiral Lagrangian (NLSM), £ = Tr(8,U 9" U) !

[ dpn (Pf'A)2 PfW(€) ? photons with higher derivatives
Born-Infeld, £ = /— det(1,, + F.) ! compactify — DBL

The strangest is a special Galileon theory (a scalar theory with
many derivatives) [Cheung et al '14,..], M5G8 = [ dp,(Pf'A)*.

Why these EFT’s special? Goldstone bosons with enhanced
Adler’s zero! For NLSM, scalar DBI, sGal, M,, ~ 7%, 72,73 — 0
with soft emission p* ~ 7 — 0 [Cheung et al "14; CHY “14].



More theories in CHY

=] F = = E DA



More theories in CHY

Hidden simplicity of special EFT’s: soft limit plays the role
gauge inv. More theories from soft limit? [Cachazo et al '16]



More theories in CHY

Hidden simplicity of special EFT’s: soft limit plays the role
gauge inv. More theories from soft limit? [Cachazo et al '16]

“®”: EMs ~YMs?, DBI~ NLSM ® YMs, sGal ~ NLSM?2.



More theories in CHY

Hidden simplicity of special EFT’s: soft limit plays the role
gauge inv. More theories from soft limit? [Cachazo et al '16]

“®”: EMs ~YMs?, DBI~ NLSM ® YMs, sGal ~ NLSM?2.

A new operation to add non-abelian interactions, “®”:
YMs — YM @ ¢*, EM — GR @ YM e.g. single- & double-trace:



More theories in CHY

Hidden simplicity of special EFT’s: soft limit plays the role
gauge inv. More theories from soft limit? [Cachazo et al '16]

“®”: EMs ~YMs?, DBI~ NLSM ® YMs, sGal ~ NLSM?2.

A new operation to add non-abelian interactions, “®”:
YMs — YM @ ¢*, EM — GR @ YM e.g. single- & double-trace:

.....



More theories in CHY

Hidden simplicity of special EFT’s: soft limit plays the role
gauge inv. More theories from soft limit? [Cachazo et al '16]

“®”: EMs ~YMs?, DBI~ NLSM ® YMs, sGal ~ NLSM?2.

A new operation to add non-abelian interactions, “®”:
YMs — YM @ ¢*, EM — GR @ YM e.g. single- & double-trace:

.....

Compact formula for all gluon-graviton amps in GR @ YM
(& YM @ ¢®). New ambitwistor-string models [Geyer et al’ 15].
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One-loop formula

Ambitwistor string @ g =1 — one-loop formula [Adamo et al “14]

g — 0: one-loop scattering eqs on a sphere [Geyer et al '15]

ks k ky- ¢
Eazzaa_:b+ , fora=1,...,n.

g
b+a @

Imposing §(€)’s gives formula for one-loop amplitudes

My = / d%% / dul)) To({o, k. e} 0),

seems to give “wrong” integrands: propagators of the form
1/((¢ + P)? — £?), but the difference integrates to zero.

New rep of loop integrands: a rational function with no
ambiguities (treat all propagators equally) [cf. Baadsgaard et al '15]
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Loops from trees

One-loop amp as forward limit of tree amp in higher dim:

_loo dD£ ree
M,% loop /£2 Z M;c,+2( {(ki;o)}7 j;(E, W))?

Le=I_,er=(e-)*

with divergences regulated by CHY formula of trees.

Color-sum gives one-loop color structures — one-loop PT’s

n
PT%I)[]-727-~-7,7] = ZPTH+2[17' : -7i7+7_7i+1"' "n] :
i=1

One-loop “Pfaffians” from forward-limit of tree ones, e.g.

pft) = 21 PIV,(0), PEY = ST Pru,a(0), PRV =

of

er=(e-)*
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Loops from trees

Formulas for ¢, Yang-Mills and gravity at one loop

72 = (T2, M =PTP P, TR — (Pr)2—cy (P2

Including fermions to give one-loop SYM and SUGRA:

M = pT) (PEY — egPeMY),  ZSVORA — (prl) — cuPEM)2.

Gauge invariance, soft theorems, unitarity cuts, SUSY ...
natural one-loop KLT and B(]J relations at integrand level: e.g.

(n—1)!'-2(n—-2)!
SUGRA = ) SYM[a] (¢3) " el B] SYM[e] .
a,B=1
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Back to four dimensions [chy, 13]

What is special in 4d? scattering eqs fall into n—3 sectors,
k=2,3,...,n—2; solutions (n—3)! = S7-3({n—3, k—2)).

P2(z2)=0 < 3 A2),\2), s.t. P*Yz2) = A\%(2)A%(z2).
k n

tA 5 £
ansatz :  A(z) : Zzl—;,’ (z) := Z P

1=1 i=k+1

= 4d scattering eqs \; = tj\(o}), \ = t/S\(O'/) [Geyer et al '14; 1:

AP .
— = = k+1,...
i 0,1/ +1, ,n

>
Q
’:>,
=
\/
1
O
HM»

(ab):= (U"" ab ; GL(2, C): 4 for momentum-conservation.
Equwalent to RSV-Witten equations (GL(k)-fixed) [He et al ‘16].
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Remarkable factorization identity: on any solution of sector k,

a{ } / 1L <IJ> L [’J]
det = Jordet'Hedet'H,_y; Hi»zy=-—, H;
gy | = Jnwdet hedet Focii Hies = 5 s = (55
and J, x = det’ \3{5’5}| is the Jacobian of 4d eqs of sector k.

o{o,t}

Proof: plug in eqs on LHS, same rational function as RHS!

The reduction to 4d is sector dependent with a sum over k:

n—2 N
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Back to four dimensions

Remarkable factorization identity: on any solution of sector k,

5(E) 3 gy - [i]]
det’| 5oy | = Jnwcdet Hhedet' Hii - iy = s Hi = 55

and J, x = det’ \%{{i? | is the Jacobian of 4d eqs of sector k.

Proof: plug in eqs on LHS, same rational function as RHS!

The reduction to 4d is sector dependent with a sum over k:

n—2 N n—2
Zo({\, N, 0}) / 4d 4d
Mﬂ = r = d n In )
2. 2 det’Hj det’Fo_y J kz:; Finde Znk

k=2 k—sec. soln.

4d measure dy, (2n—4 integrals & delta functions); 4d integrand
I,‘ff}( := T,/(det’ Hy det’ H,_), from a sector-dependent reduction.
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Pfaffian as a filter: solution-sector k and helicity-sector k’
PEW(L™, ... K (K+D)Y, . 0" somk = 0F det’Hj det’H,_ .
Proof: plug in 4d eqs, the two factors vanish for k > k" or k < k'’

simplified: only one soln. sec. for a helicity sec., nl — k! x (n—k)!
much more: one Pf'W got cancelled; PT, for YM and Pf'V, for GR!

M:M(1*7.'.7k77(k+1)+,.”’n+) = /dru’ﬁfik PT,,,

MSR(1—,... k—,(k+1)*,...,nT) = /duﬁﬁk det’H, det’H,_j.

Natural for SUSY (fermionic delta functions in dy, «); equivalent to
RSV-Witten & Cachazo-Skinner forms [Geyer et al 14; He et al '16]
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More theories in four dimensions

Similarly for Pf’ A: only non-vanishing for middle sector k = g:

~ ITNTT_.(ij
Pf/A|Soln.g = det/Hg det/Hg HI<J( ) H’<J( J) ]
Hl,i(/ i)

Scalars in NLSM, DBI, sGal etc. know about sectors in 4d!
Exception: bi-adjoint scalars — need sum over k, no simplifications.

Natural to supersymmetrize DBI — DBI-VA ~ NLSM ® N = 4 SYM

Soft-scalar/fermion probing (super)symmetry breaking [Huang et al’
14; He et al’ 16]; similar formulas for 4d EYM etc. [Adamo et al’ 15]

Summary: CHY in 4d naturally splits into sectors, much simpler
with (conformal) YM the simplest, and trivial to incorporate SUSY!

More realistic theories, e.g. incorporating quarks, Higgs boson etc.?
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Massless QCD

Including gluinos with a Jacobian from integrating out 7’s:

6A[ A,
Mn = | ditns PTo detJyixtur s Jiey-jedr = 77y

Amplitudes with massless quarks obtained from them [Dixon et
al 10], e.g. one pair of quarks= gluinos, Jacobian [J1q 5a = (1—12)

2 pairs (flavor a & b): alternating;: ja b b = (311,32) (b11b2), Vs.

1 1
splitting j b bt = (a22)  (ab2)
(bra2)  (bib2)
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Massless QCD

3 pairs (a,b & c): alternating and splitting cases as before, also

1 1
— | (ab2) (ara2) | __1 _ i
T st atm et = | O : ) (factorized) and
(b1b2)  (b1a2)
1 1 0
(a1a2)  (a1h1)
7 | 1 1
ar by e ed T | () (B2b)  (B2)
(aa) (ab) (ac)

General rules — a closed-formula for massless QCD:

Mn,k(g; qt_?) = /d,un,k PT, Jterm

Equivalent reps: vanishing identities (crossed fermion lines).

Remarkable simplicities in 4d; CHY vs. interaction vertices???
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Higgs plus multi-parton

CHY formula give massive amps via dim reduction [Naculich
'14,..]. What about Higgs amp = form factors with trF 2?

In 4d, Higgs effective coupling H trF? decomposed to (anti-)
self-dual parts with H = ¢ + ¢! . Trees computed [Dixon et al ‘04]:

oy (i) A N mi,
S PEER ARG S ) E R T A

k=2,...,n — introduce two positive legs p, = M+ pfi
which do NOT appear in the PT — a closed-formula for ¢ + n,:

Moi1.k(¢; ng) = mi, /dp;”,k PT,, ox,0,fixed; A, 1 eqs removed.




Higgs plus multi-parton

o F = = E DA
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Higgs plus multi-parton

k = 2, n reproduced with MHV /anti-MHYV solution; generally,
solns. for (n+2)-pt, sec. k, checked up to n = 6 [Lance et al’ 04]

Proof using factorization, almost identical to pure gluon cases.

Amps with W, Z bosons? Higgs mechanism in CHY?

Evaluating 4d formulas (much easier than general dim!):
connected — disconnected (sum) by residue theorem:

Mp i = /du,,’k 74 = Z residues .

Canonical rep [Arkani-Hamed et al 08, 10]: connected formula for
N = 4/gluons — BCFW/CSW form; now we expect a whole
zoo of new reps, also for QCD, Higgs, form factors etc.



Outlook

New picture: massless particles scattering via punctures on a sphere.
Suggest a weak-weak duality of QFT & strings for S-matrix?

Web of theories connected by e.g. @ (interaction) & ® (double-copy)
Huge simplifications in 4d — old and new connected formulas
QCD, Higgs, form factor? Scope of QFTs natural in CHY?

Loops: integrands — CHY for integrated amplitudes?

Stringy origin: twistor vs. “chiral” strings, Gross-Mende limit, ...?



Thank you!

taken from C.5. Lam’s talk



