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chiral pentagon, and it is intimately connected with the fact that its integrand has “unit
leading singularities,” as emphasized in Ref. [13].

Evidently this is a happy example where there is a very clear separation between the
LLS, which tell us only about the overall algebraic singularities of the amplitude (and which
actually end up washed out by the fact that the leading singularities of the integrand are
normalized to 1), and the sub-(sub-)leading Landau singularities which probe past the pref-
actor and into the symbol. Let us recall that MHV amplitudes are expected to evaluate to
pure transcendental functions, with no algebraic prefactors (other than the tree-level MHV
amplitude indicated on the left-hand side of (3.1)) to all orders in perturbation theory [16].

IV. TWO-LOOP MHV AMPLITUDES

We now turn our attention to the chiral double pentagon integral, which is the basic
building block for two-loop MHV amplitudes.

A. The Chiral Double Pentagon

The two-loop MHV amplitude for n particles in SYM theory may be expressed as [13]
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in terms of the chiral double pentagon integrand
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(4.2)

The numerator factors in (4.2) serve the same purpose as in the one-loop pentagon dis-
cussed in the previous section. Each of the two nontrivial numerator factors vanishes on
half of the leading singularities of the scalar double pentagon integrand; their product is
non-zero on one quarter of them. The integrand is normalized to have residue 1 on these
leading singularities. The numerator factors also suppress the soft/collinear divergences,
rendering the integral finite for generic i, j, k, l.

Explicit analytic results for the chiral double pentagon integral have been obtained only
for the special case l = k + 2 = j + 3 = i + 5 at n = 6 [17]. However it is expected that
for generic i, j, k, l the integral is expressible as a generalized polylogarithm with a symbol
alphabet similar to that described in (3.5) and (3.6). Specifically, the letters appearing in
the first entry of the symbol are expected on general physical grounds [14] to be

ha a+1 b b+1i, a, b 2 {i�1, i, j�1, j, k�1, k, l�1, l} . (4.3)
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The two simplest examples relevant to SYM theory scattering amplitudes are

those for 6 or 7 points in CP3 (or, equivalently, in CP1 or CP2, respectively). For the

former it is evident from (6.6) that the principal part of the quiver is the same as the

A3 Dynkin diagram. For the latter the initial quiver is slightly more complicated:
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If we label the vertices occupied initially by h267i, h367i, h467i, h126i, h236i, h346i
by numbers 1 through 6, then after a sequence of mutations at vertices 4, 3, 2, 5, 1,

4, 3, 4, 6, the principal part of the quiver is brought into the form of the E6 Dynkin

diagram3

h124i h247i

h256i

h5⇥6,7⇥2,3⇥4i h3⇥4,5⇥6,7⇥1i h157i
✏✏

// oooo //

(6.12)

Therefore the Gr(3, 7) cluster algebra is also called the E6 algebra.

In [17] Fomin and Zelevinsky showed that a cluster algebra is of finite type (i.e., it

has a finite number of cluster variables) if there exists a sequence of mutations which

turns the principal part of its quiver into the Dynkin diagram of some classical Lie

algebra. However, if the principal part of the quiver contains a subgraph which is an

a�ne Dynkin diagram, then the cluster algebra is of infinite type.

In ref. [38], Scott has classified all the Grassmannian cluster algebras of finite

type. This result has striking implications for scattering amplitudes in N = 4 super-

Yang-Mills theory. There, the relevant Grassmannian is Gr(4, n), for n � 6. If

n = 6 we need Gr(4, 6) = Gr(2, 6) which is of finite type A3. If n = 7 we need

Gr(4, 7) = Gr(3, 7) which is again of finite type E6. However, starting at n = 8 the

relevant cluster algebras are not of finite type anymore. This indicates that there are

infinitely many di↵erent A-coordinates which could appear in the symbol of these

3If we order them in the same way as in the initial cluster, the A-coordinates after this sequence
of mutations are h3 ⇥ 4, 5 ⇥ 6, 7 ⇥ 1i, h256i, h124i, h247i, h5 ⇥ 6, 7 ⇥ 2, 3 ⇥ 4i, h157i.

– 20 –



Introduction
• A	general	goal	of	modern	S-matrix	program	is	to	compute	

amplitudes	with	minimal	effort.
• This	relies	on	understanding	both	the	physical principles	

they	satisfy	and	mathematical properties	they	have.
• In	best	case	scenarios,	we	would	like	these	conditions	to	

determine	amplitudes	uniquely.

• Our	previous	work	has	revealed	that	the	mathematical	
structure	of	N=4	Yang-Mills	amplitudes	is	at	least	partially	
dictated	by	cluster	algebra	structure.	

• The	goal	of	my	talk	is	to	explore	the	most	basic	physical
principle	--- locality,	expressed	through	the	Landau	
equations	--- from	which	we	will	see	cluster	coordinates	
emerge.
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MATHEMATICS PHYSICS

Cluster	Structure Landau	Singularities

SCATTERING	AMPLITUDES	IN	N=4	SYM

THE	GOAL	OF	OUR	WORK	IS	TO	EXPLORE	THE	CONNECTION	

BETWEEN	CLUSTER	COORDINATES	AND	LANDAU	SINGULARITIES	

(function	 of	kinematic	data)



Plan

• Landau	equations
• Solution:	one	and	two-loop	n-point	MHV	in	N=4	SYM
• Connection	with	symbol alphabet	of	an	amplitude
• Connection	with	cluster	structure	of	an	amplitude
• Conclusions	and	open	questions



Landau	Singularities
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and c a prefactor that will not enter into our discussion. Here, qµi is the momentum flowing
along propagator i, pµi are external momenta, and N is some numerator function of the
kinematic data. There are two distinct situations in which I can develop a singularity or
branch point:

1. The surface D = 0 pinches the integration contour in all (`r,↵i) simultaneously. The
kinematic locations at which this happens are called “Leading Landau Singularities”
(LLS).

2. The surface D = 0 hits the boundary of the integration contour, at ↵i = 0 for some
subset of the Feynman parameters, and pinches the contour in all other variables.
These are called “Non-leading Landau Singularities,” which we stratify into “Sublead-
ing” (SLLS), “Sub-sub-leading,” (S2LLS) and so forth, according to how many of the
↵i are vanishing.

Although we do not review the derivation here, these two situations are captured by the
following set of simultaneous equations:

X
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µ
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↵i(q
2
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i ) = 0 8i. (2.4)

On the principal sheet, the integration in `µr and ↵i in (2.1) is taken over the real axis,
with ↵i � 0. Branch points on the principal sheet require the solution to (2.3) and (2.4)
to pinch this contour. When discussing symbol entries, however, we are also interested in
branch points on higher sheets, which are exposed by analytically continuing (2.1) to generic
contours. Therefore, throughout this paper we will look more generally for solutions to (2.3)
and (2.4) with `µr ,↵i 2 C.

B. One-loop Bubbles, Triangles, and Boxes

The Landau equations (2.3) and (2.4) are easily solved for one-loop bubble, triangle, and
box integrals in four dimensions. Equation (2.4) puts all of the propagators on-shell, with
no constraints on external kinematics, while the solvability of the loop rule (2.3) gives a
determinantal constraint after contracting with each of the propagator momenta qµi .

For the bubble and triangle integrals shown in Figure 1, the locations of the LLS are
given by

Bubble: 0 = x2
ij , (2.5)

Triangle: 0 = x2
ij x

2
jk x

2
ik , (2.6)
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Landau	equations	for	a	given	Feynman	integral	are	a	set	of	kinematic	constraints	
that	are	necessary	for	the	appearance	of	a	pole	or	branch	point	in	the	integrated	
function

Landau	1959
Eden,	Landshoff,	 Olive,	Polkinghorne
“The	Analytic	S-Matrix”

Landau	Equations

Leading LS all ↵i 6= 0 LLS
Subleading LS some ↵i = 0 SLLS, S2LLS

1

etc

Landau	Singularities
locus	in	external	kinematic	data

where	Landau	equations	admit	solutions

In	this	talk:	
only	focus	on	singularities
describes	by	Landau	equation



One-Loop	Box
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FIG. 3. The four-mass box integral.

The external legs in Figure 3 are labeled 1, . . . , n where n is the total number of particles.
The kinematic data needed to specify the scattering configuration consists of either the
collection p1, . . . , pn of (incoming) momenta of these particles, or a collection Z1, . . . , Zn of
n momentum twistors in P3. The former are related to the dual momenta by pa = xa�xa�1.
It follows that the four external face variables labeled xi, xj, xk, xl in Figure 3 are related to
the external momenta by (xi � xj)2 = (pi+1 + pi+2 + · · · + pj)2, etc. Hodges’ construction
for n-point kinematics associates the point xa in Minkowski space to the line (a, a+1) in P3

containing the two points Za, Za+1. One final standard notation worth mentioning is that ā
denotes the plane (a�1, a, a+1).

If x, y are points in Minkowski space associated to two lines (A,B), (C,D) in P3, then
their dual spacetime separation may be computed from the formula

(x� y)2 =
hAB C Di

hI ABihI C Di , (2.16)

where I is the “infinity twistor”—the line in twistor space associated to the dual spacetime
point at spatial infinity. The denominator factors are necessary in order to obtain the flat
Minkowski metric in x space, but we will henceforth ignore them as they always drop out
of any dual conformal invariant result.

To carry out the integration for the Feynman diagram shown in Figure 3 we should
associate some dual momentum x to the interior face of the diagram, and then integrate the
product of the four propagators 1/(x � xi)2, etc., over d4x. In momentum twistor space,
the point x is represented by a line (A,B), and we must integrate the product of the four
propagators 1/hAB i i+1i, etc., over the space of lines in P3. Details about how to construct
the measure of integration may be found in Ref. [13]. Note that the singularity in the
propagator 1/(x� xi)2 which arises when x becomes null separated from xi is manifested in
momentum twistor space as the singularity in 1/hAB i i+1i when the line (A,B) intersects
the line (i, i+1).

III. ONE-LOOP MHV AMPLITUDES

We now turn our attention to the chiral pentagon integral, which is the basic building
block for one-loop MHV amplitudes. This analysis is extremely simple, but it is instructive
to go through it carefully as a warm-up for the following section.
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For	generic integrals	it	becomes	a	hard	problem,	 so	next	we	focus	on	specific	N=4	SYM	integrals.

Landau	1959
Eden,	Landshoff,	 Olive,	Polkinghorne
“The	Analytic	S-Matrix”
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The	Landau	equations	are	easily	solved	for	one-loop	box	integrals	in	four	dimensions.

The	second	Landau	equation	puts	the	propagators	on-shell	
(no	constraints	on	external	kinematics).	

The	solvability	of	the	first	equation	gives	a	determinant	 	constraint.

(and	bubbles	 and	triangles)
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Planar	N=4	SYM	and		Momentum	Twistors

posed by Schubert in the 1870’s, and we discuss the solution of these “Schubert

problems” in detail.

In section 3 we introduce chiral integrals with unit leading singularities which

play a central role in our story. We illustrate how they work starting with the

simplest case of 1-loop MHV amplitudes.

In section 4, we discuss another feature of chiral integrals with unit leading

singularities—generic integrals of this form are manifestly infrared finite, and can

be used to express finite objects related to scattering amplitudes, such as the ratio

function [14].

In section 5, we construct a basis for all 1-loop integrands, whose building blocks

are not the familiar boxes or even pentagons, but a natural set of chiral octagons

with unit leading singularities. We also compute the finite 1-loop integrals explicitly,

and use these results to give a simple formula for the NMHV ratio-function at 1-loop,

for any number of particles.

In section 6, we discuss multi-loop amplitudes. We describe our heuristic strategy

for using leading singularities to tailor momentum-twistor integrals to the amplitude,

and show how this works for the 1-loop MHV amplitude, reproducing one of the

local forms first derived using the polytope picture of [9]. We also discuss the 1-loop

NMHV amplitudes in the same way. We then extend these methods to two loops

and beyond, and show how to “glue” the 1-loop expressions together to produce

natural conjectures for all 2- and 3-loop MHV amplitudes, as well all 2-loop NMHV

amplitudes. These conjectures are verified by comparing with the integrand derived

from the all-loop recursion relation.

A number of appendices discuss various technical points needed in the body of

the paper, including a detailed discussion of the 2-loop NMHV and 3-loop MHV

integrands.

2. Foundations

In theories with massless particles, a well-known and convenient way of trivializing

the constraint p

2
a

= 0 for each particle is to introduce a pair of spinors �

(a) and e

�

(a),

replacing p

µ

a

7! (p
a

)
↵ ↵̇

⌘ p
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↵̇

. Of course, this map is not invertible, as

any rescaling {�,

e

�} ! {t�, t

�1
e

�} leaves p invariant. This reflects that these variables

come with a new source of redundancy; in the case of particles with spin, this re-

dundancy is quite welcomed as it allows the construction of functions that transform
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with fixed projective weights as S-matrix elements under Lorentz transformations.

This is all well-known under the name of the spinor-helicity formalism [15–19].

Amplitudes are supported on momenta that satisfy momentum conservation.

Clearly, it would be convenient to find variables where this constraint,
P

a

p

a

= 0, is

trivial. In planar theories, where color ordering is available, there is a natural way to

achieve this, by choosing instead to express the external momenta in terms of what

are known as dual-space coordinates, writing p

a

⌘ x

a

� x

a�1, [20].

To see the role played by planarity, consider the standard decomposition of scat-

tering amplitudes according to the overall color structure, keeping only the leading

color part:

A

n

= Tr(T a1
T

a2
. . . T

an)A
n

(1, 2, . . . , n) + permutations; (2.1)

here, each partial amplitude A
n

(1, 2, . . . , n) can be expanded in perturbation theory,

and we denote the L-loop contribution by AL�loop
n

. Partial amplitudes are computed

by summing over Feynman diagrams with a given color-ordering structure.

In this paper we only consider the planar sector of the theory, and therefore

AL�loop
n

will always refer to the leading-color, partial amplitude in the planar limit.

Restricted to a particular partial amplitude, say, A
n

(1, 2, . . . , n), each momenta

can be expressed as the di↵erence of two “spacetime” points. More precisely, we

make the identification p

a

⌘ x

a

� x

a�1, with p1 = x1 � x

n

. It is clear that mo-

menta obtained in this way automatically satisfy
P

a
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introduced in this case is a translation x
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! x

a

+ y by any fixed vector y.

Now, the only poles that can occur in A
n

(1, 2, . . . , n) are of the form
P

b

m=a

p

m

,

i.e., only the sum over consecutive momenta can appear. In the dual variables these

become
P

b

m=a+1 p

m

= x

a

� x

b

. The same kind of simplifications happen in planar

Feynman diagrams to all orders in perturbation theory as we will describe.

Now we have the variables {�,

e

�} which make the null condition trivial while ig-

noring momentum conservation, while the dual-space variables do the opposite. It is

perfectly natural to wonder if there exists any way to combine these two constructions

which makes both the null-condition and momentum conservation trivial. It turns

out that such a set of variables does exist: they are known as momentum-twistors

and were introduced by Hodges in [13].

The standard twistor construction developed in the 1960’s [21] starts by making

a connection between points in an auxiliary space—twistor-space—and null rays

in spacetime. Likewise, a complex line in twistor space is related to a point in

spacetime. The key formula is called the incidence relation, according to which a
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Momentum	conservation

Null	momentum
Figure 1: Defining the connections between momentum-twistors, dual-coordinates, and

cyclically-ordered external four-momenta

point x in spacetime corresponds to set of twistors Z = (�, µ) which satisfy

µ
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. (2.2)

Twistors satisfying this relation form a projective line in CP3. Even though Z has

the components of a point in C4, the incidence relation cannot distinguish Z from

tZ, and therefore the space is projectivized.

In order to specify a line in twistor space—and therefore a point in spacetime—

all that is needed is a pair of twistors, say Z

A

and Z

B

, that belong to the line. Given

the twistors, the line or spacetime point is found by solving the four equations coming

from imposing the incidence relation for Z
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Hodges’ construction starts with any set of n twistors {Z1, . . . , Zn

}. Using the
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a+1), n spacetime points are defined. Quite nicely, it is trivial

that p
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= (x
a

�x

a�1)2 = 0 because the corresponding lines, or (CP1s), intersect. This

is illustrated in Figure 1.

Given the importance of this latter fact, it is worth giving it a slightly more

detailed discussion than we have so far. If two lines in twistor-space intersect, i.e.

share a twistor Zint, then the corresponding spacetime points, say x and y, associated

with the lines are null-separated. To see this, take the di↵erence of the incidence
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FIG. 3. The four-mass box integral.

The external legs in Figure 3 are labeled 1, . . . , n where n is the total number of particles.
The kinematic data needed to specify the scattering configuration consists of either the
collection p1, . . . , pn of (incoming) momenta of these particles, or a collection Z1, . . . , Zn of
n momentum twistors in P3. The former are related to the dual momenta by pa = xa�xa�1.
It follows that the four external face variables labeled xi, xj, xk, xl in Figure 3 are related to
the external momenta by (xi � xj)2 = (pi+1 + pi+2 + · · · + pj)2, etc. Hodges’ construction
for n-point kinematics associates the point xa in Minkowski space to the line (a, a+1) in P3

containing the two points Za, Za+1. One final standard notation worth mentioning is that ā
denotes the plane (a�1, a, a+1).

If x, y are points in Minkowski space associated to two lines (A,B), (C,D) in P3, then
their dual spacetime separation may be computed from the formula

(x� y)2 =
hAB C Di

hI ABihI C Di , (2.16)

where I is the “infinity twistor”—the line in twistor space associated to the dual spacetime
point at spatial infinity. The denominator factors are necessary in order to obtain the flat
Minkowski metric in x space, but we will henceforth ignore them as they always drop out
of any dual conformal invariant result.

To carry out the integration for the Feynman diagram shown in Figure 3 we should
associate some dual momentum x to the interior face of the diagram, and then integrate the
product of the four propagators 1/(x � xi)2, etc., over d4x. In momentum twistor space,
the point x is represented by a line (A,B), and we must integrate the product of the four
propagators 1/hAB i i+1i, etc., over the space of lines in P3. Details about how to construct
the measure of integration may be found in Ref. [13]. Note that the singularity in the
propagator 1/(x� xi)2 which arises when x becomes null separated from xi is manifested in
momentum twistor space as the singularity in 1/hAB i i+1i when the line (A,B) intersects
the line (i, i+1).

III. ONE-LOOP MHV AMPLITUDES

We now turn our attention to the chiral pentagon integral, which is the basic building
block for one-loop MHV amplitudes. This analysis is extremely simple, but it is instructive
to go through it carefully as a warm-up for the following section.
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A related construction is called dual momentum twistor space. Here ‘dual’ refers

to the usual geometric—‘Poincaré’—dual of a space. In other words, the dual space is

the space of planes in CP3. Points in the new space which is also a CP3 are denoted

by W

I

. The construction maps points to planes and lines to lines. In Hodges’

construction [13], there is a natural definition of dual points associated to the planes

defined by consecutive lines of the polygon in momentum twistor space of Figure 1.

The construction defines a dual polygon by introducing dual momentum twistors

W

a

defined by

(W
a

)
I

=
✏

IJKL

Z

J

a�1Z
K

a

Z

L

a+1

h�
a 1 �

a

ih�
a

�

a+1i
. (2.6)

This definition is made so that W

a

contains e

�

a

as two of its components.

2.1 Loop Integrals

The focus of this paper is loop integrands and integrals. Here too, it is well known

that in planar theories, loop integrals are very naturally expressed in terms of dual

spacetime coordinates. Consider a very simple 1-loop integral, known as a zero mass

integral,

1

23

4
L

=

Z

d

4
L

N

L

2(L � p1)2(L � p1 � p2)2(L � p1 � p2 � p3)2
(2.7)

where the external momentum at each of the four vertices is null (hence the name)

and N = (p1+p2)2(p2+p3)2 is a convenient normalization factor. Momentum conser-

vation gives p4 = �p1�p2�p3; and introducing the dual-coordinates p

a

= x

a

� x

a�1,

it is easy to see that the unique choice of L that makes translation invariance (in

x-space) manifest is L = x � x4. The integral becomes [20]

1

23

4

2

4

3

1 =

Z

d

4
x

N

(x � x1)2(x � x2)2(x � x3)2(x � x4)2
, (2.8)
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Going back to the loop integral in x-space (2.8), one can introduce the four mo-

mentum twistors in Hodges’ construction {Z1, Z2, Z3, Z4} to describe the external

particles. Using the relation between the Lorentz invariant separations and momen-

tum twistor invariants in (2.5), the integral (2.8) becomes

Z

AB

h1234i2

hAB 12ihAB 23ihAB 34ihAB 41i . (2.12)

where hijkli stands for the determinant of the 4 ⇥ 4 matrix with columns given by

four twistors Z

i

, Z

j

, Z

j

, Z

k

defined in (2.4).

One of the remarkable facts about (2.12) is that all factors involving the infinity

twistor have disappeared. This means that the integral is formally conformal invari-

ant under the conformal group that acts on the dual spacetime. This is why it is

said to be dual conformally invariant (DCI).

Clearly, if we had started with a triangle integral then the factor hZ1IZ2i =

h�1 �2i would not have canceled and would have remained with power one in the

denominator as if it were a propagator. Indeed, this viewpoint trivializes the sur-

prising connections made in the past between the explicit form of triangle and box

integrals. In other words, one can think of a triangle integral as a box where one of

the points is at infinity.

Once again, a careful definition of the contour which should correspond to only

points in a real slice of complexified spacetime is not needed in this paper. It su�ces

to say that on the physical contour, the integrals can have infrared divergences (IR).

This is the reason why we said that the integral was ‘formally’ DCI. We postpone a

more detailed discussion of IR divergences to section 4.

The purpose of this section is to show how momentum twistors are the most

natural set of variables to work with loop amplitudes in planar theories. In order to

do this we will first show how many familiar results can be translated into momentum

twistors. Not infrequently, momentum twistors will completely clarify physics points

which have been misunderstood in the literature.
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planar gauge theories, where (for each color-ordered partial amplitude) the particles are
endowed with a specific cyclic ordering. We will see that momentum twistors enormously
simplify the problem of analyzing the Landau equations in such theories, for the same
reason that they simplify the analysis of leading singularities of the integrand (see Ref. [13]
for several examples of such calculations).

Momentum twistors are based on the correspondence between null rays in (complexified)
Minkowski space and points in twistor space (P3); or equivalently, between (complex) lines
in P3 and points in Minkowski space. We use ZA, ZB, etc. to denote points in P3, which
may be represented using four-component homogeneous coordinates ZA = (Z1

A, Z
2
A, Z

3
A, Z

4
A)

subject to the identification ZA ⇠ tZA for any nonzero complex number t. We use (A,B)
to denote the line in P3 containing two given points ZA, ZB. Similarly, (A,B,C) denotes
the plane containing the three points ZA, ZB, ZC , and (A,B,C)\ (D,E, F ) denotes the line
where this plane intersects the plane (D,E, F ).

Treating the homogeneous coordinates of each momentum twistor as a vector in C4, there
is a natural SL(4,C) invariant denoted by

hAB C Di ⌘ ✏IJKLZ
I
AZ

J
BZ

K
C ZL

D . (2.12)

We will often be interested to have a geometric understanding of the locus where such four-
brackets might vanish, which can be pictured in several ways. For example, hAB C Di = 0
only if the two lines (A,B) and (C,D) intersect, or equivalently if the lines (A,C), (B,D)
intersect, or if the point A lies in the plane (B,C,D), or if the point C lies on the plane
(A,B,D), etc. Computations of four-brackets involving intersections may be carried out
explicitly with the rule

h(A,B,C) \ (D,E, F )GHi = hAB C GihDE F Hi � hAB C HihDE F Gi . (2.13)

This is manifestly antisymmetric under exchanging any two of the points specifying the
plane (A,B,C), or of any two in (D,E, F ), or under exchanging the two planes. In case
the two planes are specified with one common point, say F = C, it is convenient to use the
shorthand notation

hC(A,B)(D,E)(G,H)i ⌘ h(A,B,C) \ (D,E,C)GHi . (2.14)

This quantity is also manifestly antisymmetric under exchanging A $ B, D $ E, or
G $ H. Moreover, and less obviously, is also fully antisymmetric under exchange of any
of the three lines (A,B), (D,E), (G,H). This may be seen with the help of the Schouten
identity

hAB C DiZE + hB C DEiZA + hC DE AiZB + hDE ABiZC + hE AB CiZD = 0 . (2.15)

Now we turn to Hodges’ construction [12]. To gain a working understanding of this
correspondence it is instructive to take a look at an explicit example, such as the one-loop
four-mass box integral shown in Figure 3. In a Feynman diagram it is standard to label
each edge according to the momentum carried by the associated propagator: q1, q2, etc. In
a planar diagram it is equally appropriate to label the edges by dual momenta (or region
momenta): x1, x2, etc. If two faces labeled xa and xb share an edge qc, then the momentum
running along that edge is qc = xa � xb (an overall orientation must be specified so that the
sign of each q in the diagram is consistent with momentum conservation at each vertex).

6

Momentum	 twistors simplify	 the	problem	of	analyzing	solutions	 to	Landau	equations.
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One-loop	n-point	MHV	in	N=4	SYM

From this explicit result we can easily read o↵ the letters appearing in the symbol of the
chiral pentagon. It is already apparent from (3.3) that only the dual spacetime distances x2

ab

can appear in the first entry of the symbol, reflecting the physically allowed branch points
for a scattering amplitude on the physical sheet [14]. In terms of momentum twistors, the 8
letters that appear in the first entry are

hi�1 i j�1 ji , hi�1 i j j+1i , hi�1 i n 1i , hi i+1 j�1 ji ,
hi i+1 j j+1i , hi i+1 n 1i , hj�1 j n 1i , hj j+1 n 1i .

(3.5)

Six additional letters make an appearance only in the second entry of the symbol:

h̄iji , hi(i�1, i+1)(j, j+1)(n, 1)i , hi(i�1, i+1)(j�1, j)(n, 1)i ,
hj̄ii , hj(j�1, j+1)(i, i+1)(n, 1)i , hj(j�1, j+1)(i�1, i)(n, 1)i .

(3.6)

Four of the letters listed in (3.5) also can appear in the second entry of the symbol:
hi�1 i n 1i, hi i+1n 1i, hj�1 j n 1i and hj j+1n 1i.

B. Landau Singularities

To find the LLS of the pentagon, one must solve the Landau equations

↵1hAB i�1 ii = ↵2hAB i i+1i = ↵3hAB j�1 ji = ↵4hAB j j+1i = ↵5hAB n 1i = 0 ,

↵1(xAB � xi�1) + ↵2(xAB � xi) + ↵3(xAB � xj�1) + ↵4(xAB � xj) + ↵5(xAB � xn) = 0
(3.7)

for all five ↵i being nonzero. The equation on the second line of (3.7) is content-free in this
case—it tells us to find a vanishing linear combination of five four-component vectors, which
is always possible as long as none of the vectors are zero.

The first four equations tell us to find lines (A,B) which intersect the four given lines
(i�1, i), (i, i+1), (j�1, j) and (j, j+1). For generic i, j (as we have assumed) there are
precisely two solutions to this Schubert problem [13]:

(A,B) = (i, j) or (A,B) = ī \ j̄ . (3.8)

Geometrically this is clear: we can either take (A,B) to be the line (i, j) which contains the
two points Zi, Zj, or we can take (A,B) to be the intersection of the planes (i�1, i, i+1) and
(j�1, j, j+1).

It only remains to solve the equation hAB n 1i = 0, but upon plugging in the solution (3.8)
this becomes a constraint on the external kinematics:

(LLS) hi j n 1ihn 1 ī \ j̄i = 0 . (3.9)

To conclude: solutions of the Landau equations (3.7) with all ↵i 6= 0 exist only on the locus
in kinematic space where (3.9) is satisfied.

The SLLS of the pentagon are found by solving the Landau equations (3.7) with four of
the five ↵’s being nonzero. Each case amounts to a degeneration of the pentagon to a box,
so we can simply transcribe the results of the previous solution. For vanishing ↵1, ↵2, ↵3,

9

↵4 or ↵5 we find respectively that the SLLS lie on the loci:

(SLLS)

hj(j�1, j+1)(i, i+1)(n, 1)i = 0 ,
hj(j�1, j+1)(i�1, i)(n, 1)i = 0 ,
hi(i�1, i+1)(j, j+1)(n, 1)i = 0 ,
hi(i�1, i+1)(j�1, j)(n, 1)i = 0 ,
h̄ijihij̄i = 0 .

(3.10)

The S2LLS are given by solutions of (3.7) with only three nonzero ↵’s, which correspond
to degenerations of the pentagon to various triangles. The four non-trivial cases, arising
from three-mass triangles, are

(S2LLS)

hi�1 i j�1 jihj�1 j n 1ihn 1 i�1 ii = 0 ,
hi i+1 j�1 jihj�1 j n 1ihn 1 i i+1i = 0 ,
hi�1 i j j+1ihj j+1 n 1ihn 1 i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 n 1ihn 1 i i+1i = 0 .

(3.11)

Degenerations which lead to two-mass triangles give solutions of the Landau equations for
all kinematics, as reviewed in the previous section. These singularities, in the case of the
scalar pentagon, are indicative of the soft and collinear IR singularities of the integral. We
know however that (for generic i, j, as always) the numerator factor in (3.2) eliminates these
singularities.

We could go one step further, down to bubbles, but this provides no new information:
all bubbles are either fully singular or have Landau singularities on the vanishing loci of
brackets which already appear in (3.11).

C. Summary

We have tabulated all Landau singularities of the pentagon integral. Some su�ciently
degenerate singularities exist for all kinematics. Often such singularities are indicative of
IR divergences, but we know that for this particular integral (and for generic i, j) these are
canceled by the numerator factor in (3.2). Let us emphasize that except for appealing to
this fact, the analysis of the previous section applies to the scalar pentagon integral just as
well as the chiral integral, since the Landau equations by definition only know about the
propagator structure of a diagram.

The singularities that exist only on various nontrivial submanifolds of kinematic space
are indicated in equations (3.9), (3.10) and (3.11). Upon comparison with equations (3.5)
and (3.6) we notice a striking pattern: sub-sub-leading Landau singularities (3.11) exist
only on the loci where the leftmost symbol entries (3.5) vanish, while sub-leading singu-
larities (3.10) appear on a di↵erent set of loci corresponding to the locations where the
second-entry symbol entries (3.6) vanish. (However let us not forget that (3.6) only lists the
new letters which start to appear in the second entry.)

What about the LLS, which lives on the locus hi j n 1ihn 1 ī \ j̄i = 0? This quantity
indeed makes an appearance in the overall prefactor in the scalar pentagon integral, which
evaluates (see for example Ref. [15]) schematically to 1/� times a transcendental function
of uniform weight 2, where � / hi j̄ih̄i jihi j n 1ihn 1 ī\ j̄i. The chiral pentagon, however, is
a pure integral: as is evident from (3.3), it evaluates to a transcendental function with no
algebraic prefactor. This cancellation is achieved by the carefully chosen numerator of the
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A. The Chiral Pentagon

The one-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A1�loop
MHV

Atree
MHV

=

Z

AB

X

1<i<j<n

j

n1

i
(3.1)

in terms of the chiral pentagon integrand

j

n1

i
=

hAB ī \ j̄ihi j n 1i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1ihAB n 1i . (3.2)

It is useful to recall several comments from Ref. [13]. First of all, the full integrand in (3.1) is
cyclic invariant despite the appearance of the apparently preferred line (n, 1) on the bottom
edge of the pentagon; the formula would be equally valid if (n, 1) were replaced by (k, k+1)
for any k (and the summation taken over k + 1 < i < j < k).

Second, the numerator factors in (3.2) are specially chosen so that all of its leading
singularities are normalized to 1. In fact it would not be inappropriate to say that half of
them are 1 and half of them are 0: the scalar pentagon integral has twice as many non-zero
leading singularities as the chiral pentagon, but the numerator factors in (3.2) vanish on
half of them.

Third, for generic i and j the chiral pentagon integral (3.2) is infrared finite; the numerator
factor hAB ī \ j̄i softens the behavior of the integral precisely in the regions of integration
where soft or collinear divergences might appear. This cancellation fails only for certain
boundary terms in the sum (specifically, when i = 2 or j � i = 1 or j = n � 1) in which
case the pentagon degenerates to an IR divergent box integral. Henceforth we ignore these
degenerate cases since the box integrals were already reviewed in the previous section.

An explicit formula for the chiral integral was obtained in Ref. [13]:

Z

AB

j

n1

i
=

Li2 (1� un,i�1,i,j)� Li2 (1� uj,n,i,j�1) + Li2 (1� uj,n,i�1,j�1)
�Li2 (1� ui,j�1,n,i�1) + Li2 (1� ui,j�1,j,i�1)
+ log (uj,n,i�1,j�1) log (un,i�1,i,j)

(3.3)
in terms of the dual spacetime cross-ratio

ui,j,k,l =
hi i+1 j j+1ihk k+1 l l+1i
hl l+1 j j+1ihk k+1i i+1i =

x2
ijx

2
kl

x2
ljx

2
ki

. (3.4)
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chiral	pentagon

From this explicit result we can easily read o↵ the letters appearing in the symbol of the
chiral pentagon. It is already apparent from (3.3) that only the dual spacetime distances x2

ab

can appear in the first entry of the symbol, reflecting the physically allowed branch points
for a scattering amplitude on the physical sheet [14]. In terms of momentum twistors, the 8
letters that appear in the first entry are

hi�1 i j�1 ji , hi�1 i j j+1i , hi�1 i n 1i , hi i+1 j�1 ji ,
hi i+1 j j+1i , hi i+1 n 1i , hj�1 j n 1i , hj j+1 n 1i .

(3.5)

Six additional letters make an appearance only in the second entry of the symbol:

h̄iji , hi(i�1, i+1)(j, j+1)(n, 1)i , hi(i�1, i+1)(j�1, j)(n, 1)i ,
hj̄ii , hj(j�1, j+1)(i, i+1)(n, 1)i , hj(j�1, j+1)(i�1, i)(n, 1)i .

(3.6)

Four of the letters listed in (3.5) also can appear in the second entry of the symbol:
hi�1 i n 1i, hi i+1n 1i, hj�1 j n 1i and hj j+1n 1i.

B. Landau Singularities

To find the LLS of the pentagon, one must solve the Landau equations

↵1hAB i�1 ii = ↵2hAB i i+1i = ↵3hAB j�1 ji = ↵4hAB j j+1i = ↵5hAB n 1i = 0 ,

↵1(xAB � xi�1) + ↵2(xAB � xi) + ↵3(xAB � xj�1) + ↵4(xAB � xj) + ↵5(xAB � xn) = 0
(3.7)

for all five ↵i being nonzero. The equation on the second line of (3.7) is content-free in this
case—it tells us to find a vanishing linear combination of five four-component vectors, which
is always possible as long as none of the vectors are zero.

The first four equations tell us to find lines (A,B) which intersect the four given lines
(i�1, i), (i, i+1), (j�1, j) and (j, j+1). For generic i, j (as we have assumed) there are
precisely two solutions to this Schubert problem [13]:

(A,B) = (i, j) or (A,B) = ī \ j̄ . (3.8)

Geometrically this is clear: we can either take (A,B) to be the line (i, j) which contains the
two points Zi, Zj, or we can take (A,B) to be the intersection of the planes (i�1, i, i+1) and
(j�1, j, j+1).

It only remains to solve the equation hAB n 1i = 0, but upon plugging in the solution (3.8)
this becomes a constraint on the external kinematics:

(LLS) hi j n 1ihn 1 ī \ j̄i = 0 . (3.9)

To conclude: solutions of the Landau equations (3.7) with all ↵i 6= 0 exist only on the locus
in kinematic space where (3.9) is satisfied.

The SLLS of the pentagon are found by solving the Landau equations (3.7) with four of
the five ↵’s being nonzero. Each case amounts to a degeneration of the pentagon to a box,
so we can simply transcribe the results of the previous solution. For vanishing ↵1, ↵2, ↵3,
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In the second entry we expect to start seeing additional letters of the type

hab̄i , ha(a�1, a+1)(c, c+1)(d, d+1)(e, e+1)i (4.4)

for a, b 2 {i, j, k, l} and c, d, e 2 {i�1, i, j�1, j, k�1, k, l�1, l}.
We are less certain about the symbol alphabet for the third and fourth entries of the

chiral double pentagon integral. For guidance we rely on the symbol of the full two-loop
n-point MHV amplitude (4.1), which was determined in Ref. [18] and which contains, in its
third and fourth entries, letters of the form

ha a+1 b ci and ha a+1 b̄ \ c̄i . (4.5)

We cannot rule out the possibility that individual chiral double pentagon integrals might
have an even larger symbol alphabet, with nontrivial cancellation in the sum (4.1). Indeed
some cancellation is known to occur: the final entry of the symbol of an MHV amplitude is
always of the form ha b̄i [18], but we do not expect this to be true for each individual chiral
double pentagon integral.

B. Landau Singularities

To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case
for the same reason discussed under (3.7). The eight propagators

hAB i�1 ii = hAB i i+1i = hAB j�1 ji = hAB j j+1i = 0

hCD k�1 ki = hCD k k+1i = hCD l�1 li = hCD l l+1i = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī \ j̄ and (C,D) = (k, l) or k̄ \ l̄ . (4.7)

It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
becomes a constraint on the external kinematics:

(LLS) hi j k lihi j k̄ \ l̄ih̄i \ j̄ k lih̄i \ j̄ k̄ \ l̄i = 0 . (4.8)

The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)

12

according to (2.8). Meanwhile CD is determined by the same four equations on the second
line of (4.6) to be (C,D) = (k, l) or (C,D) = k̄ \ l̄. This particular sub-leading Landau
singularity therefore lives on the locus

hj(j�1, j+1)(i, i�1)(k, l)ihj(j�1, j+1)(i, i�1) k̄ \ l̄i = 0 . (4.11)

Altogether there are a total of eight such sub-leading singularities:

(SLLS)

hj(j�1, j+1)(i�1, i)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hj(j�1, j+1)(i, i+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j�1, j)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j, j+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 .

(4.12)

and four more of the same type but with ij and kl exchanged.
At sub-sub-leading order we can have a triangle-pentagon or a double-box. The former

can be obtained by further collapsing the AB integral from a box, as we have just dis-
cussed, down to a triangle. Using (2.6) we find a total of eight non-trivial triangle-pentagon
singularities:

(S2LLS)

hi i+1 j�1 jihj�1 j k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i i+1i = 0 ,
hi�1 i j�1 jihj�1 j k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi�1 i j j+1ihj j+1 k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,

(4.13)

and again four more of the same type but with ij and kl exchanged. We have included on
this list only those degenerations which lead to a three-mass triangle diagram. As discussed
earlier, two-mass triangles admit solutions to the Landau equations for generic kinematics.

Next we consider the sub-sub-leading singularities of double box type. Suppose we col-
lapse the edges (i, i+1) and (l, l+1). The three-mass box on the right has a leading Landau
singularity on the locus hk(k�1, k+1)(l, l+1)ABi = 0. Taking this condition together with
the three remaining propagators

hAB i�1 ii = hAB j�1 ji = hAB j j+1i = hk(k�1, k+1)(l, l+1)ABi = 0 , (4.14)

we see that the left box is also of three-mass type, specified by the four lines (i�1, i), (j�1, j),
(j, j+1) and, with the help of (2.14), k(k�1, k+1)(l, l+1) = k̄ \ (k, l, l+1). This three-mass
box has its leading Landau singularity on the locus

hj(j�1, j+1)(i�i, i) k̄ \ (k, l, l+1)i = hj̄ \ (i�1, i, j) k̄ \ (k, l, l+1)i = 0 . (4.15)

The double pentagon has a total of 16 sub-subleading singularities of this type, given by:

(S2LLS)

h̄i \ (i, j�1, j) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j�1, j) l̄ \ (k�1, k, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k�1, k, l)i = 0 ,

(4.16)

and the same with i $ j or k $ l.
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line of (4.6) to be (C,D) = (k, l) or (C,D) = k̄ \ l̄. This particular sub-leading Landau
singularity therefore lives on the locus

hj(j�1, j+1)(i, i�1)(k, l)ihj(j�1, j+1)(i, i�1) k̄ \ l̄i = 0 . (4.11)

Altogether there are a total of eight such sub-leading singularities:

(SLLS)

hj(j�1, j+1)(i�1, i)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hj(j�1, j+1)(i, i+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j�1, j)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j, j+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 .

(4.12)

and four more of the same type but with ij and kl exchanged.
At sub-sub-leading order we can have a triangle-pentagon or a double-box. The former

can be obtained by further collapsing the AB integral from a box, as we have just dis-
cussed, down to a triangle. Using (2.6) we find a total of eight non-trivial triangle-pentagon
singularities:

(S2LLS)

hi i+1 j�1 jihj�1 j k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i i+1i = 0 ,
hi�1 i j�1 jihj�1 j k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi�1 i j j+1ihj j+1 k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,

(4.13)

and again four more of the same type but with ij and kl exchanged. We have included on
this list only those degenerations which lead to a three-mass triangle diagram. As discussed
earlier, two-mass triangles admit solutions to the Landau equations for generic kinematics.

Next we consider the sub-sub-leading singularities of double box type. Suppose we col-
lapse the edges (i, i+1) and (l, l+1). The three-mass box on the right has a leading Landau
singularity on the locus hk(k�1, k+1)(l, l+1)ABi = 0. Taking this condition together with
the three remaining propagators

hAB i�1 ii = hAB j�1 ji = hAB j j+1i = hk(k�1, k+1)(l, l+1)ABi = 0 , (4.14)

we see that the left box is also of three-mass type, specified by the four lines (i�1, i), (j�1, j),
(j, j+1) and, with the help of (2.14), k(k�1, k+1)(l, l+1) = k̄ \ (k, l, l+1). This three-mass
box has its leading Landau singularity on the locus

hj(j�1, j+1)(i�i, i) k̄ \ (k, l, l+1)i = hj̄ \ (i�1, i, j) k̄ \ (k, l, l+1)i = 0 . (4.15)

The double pentagon has a total of 16 sub-subleading singularities of this type, given by:

(S2LLS)

h̄i \ (i, j�1, j) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j�1, j) l̄ \ (k�1, k, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k�1, k, l)i = 0 ,

(4.16)

and the same with i $ j or k $ l.
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It	would	have	been	very	difficult	 to	solve	Landau	equations	 without	momentum	twistors.		

Two-loop	n-point	MHV	in	N=4	SYM
Arkani-Hamed,	Bourjaily,	
Cachazo,	Trnka

chiral pentagon, and it is intimately connected with the fact that its integrand has “unit
leading singularities,” as emphasized in Ref. [13].

Evidently this is a happy example where there is a very clear separation between the
LLS, which tell us only about the overall algebraic singularities of the amplitude (and which
actually end up washed out by the fact that the leading singularities of the integrand are
normalized to 1), and the sub-(sub-)leading Landau singularities which probe past the pref-
actor and into the symbol. Let us recall that MHV amplitudes are expected to evaluate to
pure transcendental functions, with no algebraic prefactors (other than the tree-level MHV
amplitude indicated on the left-hand side of (3.1)) to all orders in perturbation theory [16].

IV. TWO-LOOP MHV AMPLITUDES

We now turn our attention to the chiral double pentagon integral, which is the basic
building block for two-loop MHV amplitudes.

A. The Chiral Double Pentagon

The two-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A2�loop
MHV

Atree
MHV

=

Z

AB

Z

CD

1

2

X

i<j<k<l<i

k

li

j

(4.1)

in terms of the chiral double pentagon integrand

k

li

j

=

hi j k li
hABCDi
⇥ hAB ī \ j̄i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1i

⇥ hCD k̄ \ l̄i
hCD k�1 kihCD k k+1ihCD l�1 lihCD l l+1i .

(4.2)

The numerator factors in (4.2) serve the same purpose as in the one-loop pentagon dis-
cussed in the previous section. Each of the two nontrivial numerator factors vanishes on
half of the leading singularities of the scalar double pentagon integrand; their product is
non-zero on one quarter of them. The integrand is normalized to have residue 1 on these
leading singularities. The numerator factors also suppress the soft/collinear divergences,
rendering the integral finite for generic i, j, k, l.

Explicit analytic results for the chiral double pentagon integral have been obtained only
for the special case l = k + 2 = j + 3 = i + 5 at n = 6 [17]. However it is expected that
for generic i, j, k, l the integral is expressible as a generalized polylogarithm with a symbol
alphabet similar to that described in (3.5) and (3.6). Specifically, the letters appearing in
the first entry of the symbol are expected on general physical grounds [14] to be

ha a+1 b b+1i, a, b 2 {i�1, i, j�1, j, k�1, k, l�1, l} . (4.3)
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chiral	double	pentagon

In the second entry we expect to start seeing additional letters of the type

hab̄i , ha(a�1, a+1)(c, c+1)(d, d+1)i (4.4)

for a, b 2 {i, j, k, l} and c, d 2 {i�1, i, j�1, j, k�1, k, l�1, l}.
We are less certain about the symbol alphabet for the third and fourth entries of the

chiral double pentagon integral. For guidance we rely on the symbol of the full two-loop
n-point MHV amplitude (4.1), which was determined in Ref. [18] and which contains, in its
third and fourth entries, letters of the form

ha a+1 b ci and ha a+1 b̄ \ c̄i . (4.5)

We cannot rule out the possibility that individual chiral double pentagon integrals might
have an even larger symbol alphabet, with nontrivial cancellation in the sum (4.1). Indeed
some cancellation is known to occur: the final entry of the symbol of an MHV amplitude is
always of the form ha b̄i [18], but we do not expect this to be true for each individual chiral
double pentagon integral.

B. Landau Singularities

To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case
for the same reason discussed under (3.7). The eight propagators

hAB i�1 ii = hAB i i+1i = hAB j�1 ji = hAB j j+1i = 0

hCD k�1 ki = hCD k k+1i = hCD l�1 li = hCD l l+1i = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī \ j̄ and (C,D) = (k, l) or k̄ \ l̄ . (4.7)

It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
becomes a constraint on the external kinematics:

(LLS) hi j k lihi j k̄ \ l̄ih̄i \ j̄ k lih̄i \ j̄ k̄ \ l̄i = 0 . (4.8)

The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)
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At sub3-leading order we can have singularities coming from triangle-box topologies.
There are a total of 32 degenerations of this type involving a three-mass triangle and a
three-mass box, with Landau singularities at the following loci in kinematic space:

(S3LLS)

hi i+1 j�1 jihk(k�1, k+1)(l, l+1)(j�1, j)ihk(k�1, k+1)(l, l+1)(i, i+1)i = 0 ,
hi i+1 j j+1ihk(k�1, k+1)(l, l+1)(j, j+1)ihk(k�1, k+1)(l, l+1)(i, i+1)i = 0 ,
hi�1 i j�1 jihk(k�1, k+1)(l, l+1)(j�1, j)ihk(k�1, k+1)(l, l+1)(i�1, i)i = 0 ,
hi�1 i j j+1ihk(k�1, k+1)(l, l+1)(j, j+1)ihk(k�1, k+1)(l, l+1)(i�1, i)i = 0 ,

(4.17)

then four more like these but with (l�1, l) instead of (l, l+1), and then another eight given
by taking k $ l, and finally another sixteen given by those described so far but with ij and
kl exchanged.

We could go further down to degenerations involving bubbles, or the triangle-triangle
graph, but we will stop here as we have already encountered in the Landau singularities
seen so far all of the four-brackets which are known to appear in the symbol of the two-loop
MHV amplitudes. In fact we expect that all triangle-triangle and bubble-⇤ diagrams to be
either fully singular or to have Landau singularities on the vanishing loci of four-brackets
which already appear.

C. Summary and Discussion

The chiral double pentagon integral has quite a long laundry list of Landau singularities.
Actually, as we confess in the following section, there are additional classes of singularities
that we have not even looked at. It is however clear that all of the symbol entries of the
two-loop MHV amplitudes, shown in (4.3), (4.4) and (4.5), do vanish on loci where the
Landau equations admit solutions. It is an important question for future work to discover
whether it is possible to make a stronger statement explaining why the various other Landau
singularities do not seem to manifest themselves as symbol entries.

In particular the S2LLS of double box type, shown in (4.16), involve more complicated
four-brackets than those which appear in actual two-loop MHV amplitudes. These brackets
bear a resemblance to some of the more complicated cluster A-coordinates which appear in
the Gr(4, n) Grassmannian cluster algebra that is apparently relevant for scattering ampli-
tudes in planar SYM theory [19] (see in particular eq. (6.18)). We comment on the intriguing
possibility of a deeper connection between Landau singularities and cluster algebras at the
end of the next section.

V. CONCLUSION AND CAVEATS

Motivated by the observation of Ref. [7] that there should be a close connection between
symbol entries and solutions of the Landau equations, in this paper we initiated a study of the
Landau singularities of Feynman integrals relevant to one- and two-loop MHV amplitudes in
planar SYM theory. On general physical grounds it is expected that a quantity may appear
in the symbol of some Feynman integral only if the locus where it vanishes corresponds to
some Landau singularity; i.e. only if the Landau equations admit a solution on that locus.

At one loop we found a surprising crisp statement: the sub-sub-leading Landau singu-
larities of the pentagon live on the loci where the first entries of the symbols of the MHV

14



• We	have	produced	a	long	list	of	Landau	
singularities	for	one	and	two-loop	N=4	SYM	
integrals.

• For	amplitudes	of	generalized	polylogarithm
form	there	should	be	a	close	connection	
between	Landau	singularities	and	symbol	
alphabet.

Maldacena,	Simons-Duffin,	 Zhiboedov

Abreu,	Britto,	Duhr,	Gardi,	Gronqvist



Symbol	and	Singularities
Many	of	the	simplest	(and	hence	best	

understood)	amplitudes	can	be	expressed	in	
terms	of	a	class	of	generalized	polylogs defined	

by	iterated	integrals

Lik(z) =

Z z

0
Lik�1(t)d log t Li1(z) = � log(1� z)

G(ak, ak�1, . . . ; z) =

Z z

0
G(ak�1, . . . ; t)

dt

t� ak
, G(z) ⌘ 1



Example:	2-loop	6-point	MHV	
Experimental Data #1 — R (2)

6

Now let’s review some “experimental data”.

First, the two-loop six-particle MHV amplitude

R
(2)

6

=
X

cyclic

Li
4

✓

�h1234ih2356i
h1236ih2345i

◆

� 1

4
Li

4

✓

�h1246ih1345i
h1234ih1456i

◆

+ products of Lik(�x) functions of lower weight

with the same set of arguments.

It is a lucky accident that this amplitude can be expressed entirely
in terms of the classical Lik functions, which allows it to be written
in an essentially canonical form.

Marcus Spradlin, Brown University Cluster Polylogarithms for Scattering Amplitudes

va =
1

ua
� 1

x

±
a =

ua

2u1u2u3
(u1 + u2 + u3 � 1±

p
(u1 + u2 + u3 � 1)2 � 4u1u2u3)

obviously inherits this property. However the A2 function has a non-local ⇤2 B2 component,

so it is rather amazing that the particular linear combination of A2’s appearing inside A3

give rise to the completely local eq. (4.5). Moreover, the two coproduct components see

distinct aspects of the geometry of the Stashe↵ polytope—the ⇤2 B2 component involves the

three quadrilateral faces (i.e., the A1⇥A1 subalgebras) while the B3⌦C⇤ component involves

the six pentagonal faces (the A2 subalgebras). It is tempting to anticipate the possibility

that this notion of locality within the Stashe↵ polytope might underlie the structure of SYM

theory scattering amplitudes in a very deep way. If this proves to be so, we cannot help

but wonder (following somewhat the motivation espoused by [3]) whether there exists an

alternative formulation of SYM theory scattering amplitudes which makes this “locality in

the Stashe↵ polytope” manifest.

A conjecture central to our approach is that the set of fA3 for all possible A3 subalgebras

of Gr(4, n) spans the space of all weight-four cluster polylogarithm functions whose coproduct

components are completely “local” (involving only quadrilaterals in ⇤2 B2 and only pentagons

in B3⌦C⇤).

We now display a simple realization of the A3 function in a familiar setting: the Gr(4, 6)

algebra, relevant to 6-particle scattering, which is in fact isomorphic to A3. In order to align

with the notation in [2], we consider (x1, x2, x3) = (x�1 , e6, 1/x
+
1 ) and relate xi,1 = x

�
i and

xi,2 = x

+
i . The 15 X -coordinates can then be written as

v1 =
h1246ih1345i
h1234ih1456i , v2 =

h1235ih2456i
h1256ih2345i , v3 =

h1356ih2346i
h1236ih3456i ,

x

+
1 =

h1456ih2356i
h1256ih3456i , x

+
2 =

h1346ih2345i
h1234ih3456i , x

+
3 =

h1236ih1245i
h1234ih1256i ,

x

�
1 =

h1234ih2356i
h1236ih2345i , x

�
2 =

h1256ih1346i
h1236ih1456i , x

�
3 =

h1245ih3456i
h1456ih2345i , (4.6)

e1 =
h1246ih3456i
h1456ih2346i , e2 =

h1235ih1456i
h1256ih1345i , e3 =

h1256ih2346i
h1236ih2456i ,

e4 =
h1236ih1345i
h1234ih1356i , e5 =

h1234ih2456i
h1246ih2345i , e6 =

h1356ih2345i
h1235ih3456i .

Notably absent from this list are the three cross-ratios u1, u2, u3 often used in the physics

literature; these are related to the vi’s by ui = 1/(1+vi). Evaluating eq. (4.4) on the variables

in (4.6) generates what we will call “the Gr(4, 6) function”.

It is interesting to note that the transformation of the Gr(4, 6) function with respect

to the dihedral group acting on the 6 particles is opposite to that of the 5-particle dihedral

group acting on the A2 function. Specifically, the Gr(4, 6) function is invariant under flipping

particle i to particle 7 � i, but it is antisymmetric under a cyclic rotation i ! i + 1. This

antisymmetry is manifest for example in eq. (4.5) upon noting that the x

±
i transform under

a cyclic rotation according to

x

±
i ! x

⌥
i+1. (4.7)
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GSVV

ua =
(pa + pa+1)2(pa+3 + pa+4)2

(pa + pa+1 + pa+2)2(pa+2 + pa+3 + pa+4)2



Example:	2-loop	6-point	MHV	
• Function

• Symbol	:	much	of	the	information	about	the	
analytic	structure	of	such	function	is	captured	in	an	
object	called	symbol
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h1256i ⌦ h1346i ⌦ h1246i ⌦ h1456i+ · · ·

GSVV

7272	terms



Symbol	of	Transcendental	Function	

Symbol	is	an	element	of	the	k-fold	tensor	product	
of	the	multiplicative	group	of	rational	functions.	

Symbol	converts	polylog functional	equation	
into	rational	function	identities.	
Very	useful	for	practical	computations.

Goncharov,	Spradlin,	Vergu,	AV

Tk ⇥ S(Tk) = R1 � · · ·�Rk

dTk =

X

i

T i
k�1d logRi ! S(Tk) =

X

i

S(T i
k�1)⌦Ri

log(R) ! R

Li2(R) ! �(1�R)⌦R



Symbol	and	Singularities

• Much	of	the	information	about	the	analytic	
structure	of	such	function	is	captured	in	an	
object	called	symbol.

• We	expect	that	the	symbol	entries	appearing	
in	any	amplitude	should	be	such	that	 their	
zeros specify	values	of	the	external	momenta	
where	solutions	of	the	Landau	equations	exist.

Maldacena,	Simons-Duffin,	 Zhiboedov

Abreu,	Britto,	Duhr,	Gardi,	Gronqvist



A. The Chiral Pentagon

The one-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A1�loop
MHV

Atree
MHV

=

Z

AB

X

1<i<j<n

j

n1

i
(3.1)

in terms of the chiral pentagon integrand

j

n1

i
=

hAB ī \ j̄ihi j n 1i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1ihAB n 1i . (3.2)

It is useful to recall several comments from Ref. [13]. First of all, the full integrand in (3.1) is
cyclic invariant despite the appearance of the apparently preferred line (n, 1) on the bottom
edge of the pentagon; the formula would be equally valid if (n, 1) were replaced by (k, k+1)
for any k (and the summation taken over k + 1 < i < j < k).

Second, the numerator factors in (3.2) are specially chosen so that all of its leading
singularities are normalized to 1. In fact it would not be inappropriate to say that half of
them are 1 and half of them are 0: the scalar pentagon integral has twice as many non-zero
leading singularities as the chiral pentagon, but the numerator factors in (3.2) vanish on
half of them.

Third, for generic i and j the chiral pentagon integral (3.2) is infrared finite; the numerator
factor hAB ī \ j̄i softens the behavior of the integral precisely in the regions of integration
where soft or collinear divergences might appear. This cancellation fails only for certain
boundary terms in the sum (specifically, when i = 2 or j � i = 1 or j = n � 1) in which
case the pentagon degenerates to an IR divergent box integral. Henceforth we ignore these
degenerate cases since the box integrals were already reviewed in the previous section.

An explicit formula for the chiral integral was obtained in Ref. [13]:
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+ log (uj,n,i�1,j�1) log (un,i�1,i,j)

(3.3)
in terms of the dual spacetime cross-ratio

ui,j,k,l =
hi i+1 j j+1ihk k+1 l l+1i
hl l+1 j j+1ihk k+1i i+1i =

x2
ijx

2
kl
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2
ki

. (3.4)
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From this explicit result we can easily read o↵ the letters appearing in the symbol of the

chiral pentagon. It is already apparent from (3.3) that only the dual spacetime distances x2
ab

can appear in the first entry of the symbol, reflecting the physically allowed branch points
for a scattering amplitude on the physical sheet [14]. In terms of momentum twistors, the 8
letters that appear in the first entry are

hi�1 i j�1 ji , hi�1 i j j+1i , hi�1 i n 1i , hi i+1 j�1 ji ,
hi i+1 j j+1i , hi i+1 n 1i , hj�1 j n 1i , hj j+1 n 1i .

(3.5)

Six additional letters make an appearance only in the second entry of the symbol:

h̄iji , hi(i�1, i+1)(j, j+1)(n, 1)i , hi(i�1, i+1)(j�1, j)(n, 1)i ,
hj̄ii , hj(j�1, j+1)(i, i+1)(n, 1)i , hj(j�1, j+1)(i�1, i)(n, 1)i .

(3.6)

Four of the letters listed in (3.5) also can appear in the second entry of the symbol:
hi�1 i n 1i, hi i+1n 1i, hj�1 j n 1i and hj j+1n 1i.

B. Landau Singularities

To find the LLS of the pentagon, one must solve the Landau equations

↵1hAB i�1 ii = ↵2hAB i i+1i = ↵3hAB j�1 ji = ↵4hAB j j+1i = ↵5hAB n 1i = 0 ,

↵1(xAB � xi�1) + ↵2(xAB � xi) + ↵3(xAB � xj�1) + ↵4(xAB � xj) + ↵5(xAB � xn) = 0
(3.7)

for all five ↵i being nonzero. The equation on the second line of (3.7) is content-free in this
case—it tells us to find a vanishing linear combination of five four-component vectors, which
is always possible as long as none of the vectors are zero.

The first four equations tell us to find lines (A,B) which intersect the four given lines
(i�1, i), (i, i+1), (j�1, j) and (j, j+1). For generic i, j (as we have assumed) there are
precisely two solutions to this Schubert problem [13]:

(A,B) = (i, j) or (A,B) = ī \ j̄ . (3.8)

Geometrically this is clear: we can either take (A,B) to be the line (i, j) which contains the
two points Zi, Zj, or we can take (A,B) to be the intersection of the planes (i�1, i, i+1) and
(j�1, j, j+1).

It only remains to solve the equation hAB n 1i = 0, but upon plugging in the solution (3.8)
this becomes a constraint on the external kinematics:

(LLS) hi j n 1ihn 1 ī \ j̄i = 0 . (3.9)

To conclude: solutions of the Landau equations (3.7) with all ↵i 6= 0 exist only on the locus
in kinematic space where (3.9) is satisfied.

The SLLS of the pentagon are found by solving the Landau equations (3.7) with four of
the five ↵’s being nonzero. Each case amounts to a degeneration of the pentagon to a box,
so we can simply transcribe the results of the previous solution. For vanishing ↵1, ↵2, ↵3,
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for all five ↵i being nonzero. The equation on the second line of (3.7) is content-free in this
case—it tells us to find a vanishing linear combination of five four-component vectors, which
is always possible as long as none of the vectors are zero.

The first four equations tell us to find lines (A,B) which intersect the four given lines
(i�1, i), (i, i+1), (j�1, j) and (j, j+1). For generic i, j (as we have assumed) there are
precisely two solutions to this Schubert problem [13]:

(A,B) = (i, j) or (A,B) = ī \ j̄ . (3.8)

Geometrically this is clear: we can either take (A,B) to be the line (i, j) which contains the
two points Zi, Zj, or we can take (A,B) to be the intersection of the planes (i�1, i, i+1) and
(j�1, j, j+1).

It only remains to solve the equation hAB n 1i = 0, but upon plugging in the solution (3.8)
this becomes a constraint on the external kinematics:

(LLS) hi j n 1ihn 1 ī \ j̄i = 0 . (3.9)

To conclude: solutions of the Landau equations (3.7) with all ↵i 6= 0 exist only on the locus
in kinematic space where (3.9) is satisfied.

The SLLS of the pentagon are found by solving the Landau equations (3.7) with four of
the five ↵’s being nonzero. Each case amounts to a degeneration of the pentagon to a box,
so we can simply transcribe the results of the previous solution. For vanishing ↵1, ↵2, ↵3,
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Second	Entry

Symbol:

Bern,	Dixon,	Dunbar,	 Kosower
One-loop	n-point	MHV	in	N=4	SYM

Arkani-Hamed,	Bourjaily,	Cachazo,	Trnka



A. The Chiral Pentagon

The one-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A1�loop
MHV

Atree
MHV

=

Z

AB

X

1<i<j<n

j

n1

i
(3.1)

in terms of the chiral pentagon integrand

j

n1

i
=

hAB ī \ j̄ihi j n 1i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1ihAB n 1i . (3.2)

It is useful to recall several comments from Ref. [13]. First of all, the full integrand in (3.1) is
cyclic invariant despite the appearance of the apparently preferred line (n, 1) on the bottom
edge of the pentagon; the formula would be equally valid if (n, 1) were replaced by (k, k+1)
for any k (and the summation taken over k + 1 < i < j < k).

Second, the numerator factors in (3.2) are specially chosen so that all of its leading
singularities are normalized to 1. In fact it would not be inappropriate to say that half of
them are 1 and half of them are 0: the scalar pentagon integral has twice as many non-zero
leading singularities as the chiral pentagon, but the numerator factors in (3.2) vanish on
half of them.

Third, for generic i and j the chiral pentagon integral (3.2) is infrared finite; the numerator
factor hAB ī \ j̄i softens the behavior of the integral precisely in the regions of integration
where soft or collinear divergences might appear. This cancellation fails only for certain
boundary terms in the sum (specifically, when i = 2 or j � i = 1 or j = n � 1) in which
case the pentagon degenerates to an IR divergent box integral. Henceforth we ignore these
degenerate cases since the box integrals were already reviewed in the previous section.

An explicit formula for the chiral integral was obtained in Ref. [13]:
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Li2 (1� un,i�1,i,j)� Li2 (1� uj,n,i,j�1)� Li2 (1� ui,j�1,n,i�1)
�Li2 (1� ui,j�1,n,i�1) + Li2 (1� ui,j�1,j,i�1)
+ log (uj,n,i�1,j�1) log (un,i�1,i,j)

(3.3)
in terms of the dual spacetime cross-ratio

ui,j,k,l =
hi i+1 j j+1ihk k+1 l l+1i
hl l+1 j j+1ihk k+1i i+1i =

x2
ijx
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x2
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From this explicit result we can easily read o↵ the letters appearing in the symbol of the
chiral pentagon. It is already apparent from (3.3) that only the dual spacetime distances x2

ab

can appear in the first entry of the symbol, reflecting the physically allowed branch points
for a scattering amplitude on the physical sheet [14]. In terms of momentum twistors, the 8
letters that appear in the first entry are

hi�1 i j�1 ji , hi�1 i j j+1i , hi�1 i n 1i , hi i+1 j�1 ji ,
hi i+1 j j+1i , hi i+1 n 1i , hj�1 j n 1i , hj j+1 n 1i .

(3.5)

Six additional letters make an appearance only in the second entry of the symbol:

h̄iji , hi(i�1, i+1)(j, j+1)(n, 1)i , hi(i�1, i+1)(j�1, j)(n, 1)i ,
hj̄ii , hj(j�1, j+1)(i, i+1)(n, 1)i , hj(j�1, j+1)(i�1, i)(n, 1)i .

(3.6)

Four of the letters listed in (3.5) also can appear in the second entry of the symbol:
hi�1 i n 1i, hi i+1n 1i, hj�1 j n 1i and hj j+1n 1i.

B. Landau Singularities

To find the LLS of the pentagon, one must solve the Landau equations

↵1hAB i�1 ii = ↵2hAB i i+1i = ↵3hAB j�1 ji = ↵4hAB j j+1i = ↵5hAB n 1i = 0 ,

↵1(xAB � xi�1) + ↵2(xAB � xi) + ↵3(xAB � xj�1) + ↵4(xAB � xj) + ↵5(xAB � xn) = 0
(3.7)

for all five ↵i being nonzero. The equation on the second line of (3.7) is content-free in this
case—it tells us to find a vanishing linear combination of five four-component vectors, which
is always possible as long as none of the vectors are zero.

The first four equations tell us to find lines (A,B) which intersect the four given lines
(i�1, i), (i, i+1), (j�1, j) and (j, j+1). For generic i, j (as we have assumed) there are
precisely two solutions to this Schubert problem [13]:

(A,B) = (i, j) or (A,B) = ī \ j̄ . (3.8)

Geometrically this is clear: we can either take (A,B) to be the line (i, j) which contains the
two points Zi, Zj, or we can take (A,B) to be the intersection of the planes (i�1, i, i+1) and
(j�1, j, j+1).

It only remains to solve the equation hAB n 1i = 0, but upon plugging in the solution (3.8)
this becomes a constraint on the external kinematics:

(LLS) hi j n 1ihn 1 ī \ j̄i = 0 . (3.9)

To conclude: solutions of the Landau equations (3.7) with all ↵i 6= 0 exist only on the locus
in kinematic space where (3.9) is satisfied.

The SLLS of the pentagon are found by solving the Landau equations (3.7) with four of
the five ↵’s being nonzero. Each case amounts to a degeneration of the pentagon to a box,
so we can simply transcribe the results of the previous solution. For vanishing ↵1, ↵2, ↵3,
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↵4 or ↵5 we find respectively that the SLLS lie on the loci:

(SLLS)

hj(j�1, j+1)(i, i+1)(n, 1)i = 0 ,
hj(j�1, j+1)(i�1, i)(n, 1)i = 0 ,
hi(i�1, i+1)(j, j+1)(n, 1)i = 0 ,
hi(i�1, i+1)(j�1, j)(n, 1)i = 0 ,
h̄ijihij̄i = 0 .

(3.10)

The S2LLS are given by solutions of (3.7) with only three nonzero ↵’s, which correspond
to degenerations of the pentagon to various triangles. The four non-trivial cases, arising
from three-mass triangles, are

(S2LLS)

hi�1 i j�1 jihj�1 j n 1ihn 1 i�1 ii = 0 ,
hi i+1 j�1 jihj�1 j n 1ihn 1 i i+1i = 0 ,
hi�1 i j j+1ihj j+1 n 1ihn 1 i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 n 1ihn 1 i i+1i = 0 .

(3.11)

Degenerations which lead to two-mass triangles give solutions of the Landau equations for
all kinematics, as reviewed in the previous section. These singularities, in the case of the
scalar pentagon, are indicative of the soft and collinear IR singularities of the integral. We
know however that (for generic i, j, as always) the numerator factor in (3.2) eliminates these
singularities.

We could go one step further, down to bubbles, but this provides no new information:
all bubbles are either fully singular or have Landau singularities on the vanishing loci of
brackets which already appear in (3.11).

C. Summary

We have tabulated all Landau singularities of the pentagon integral. Some su�ciently
degenerate singularities exist for all kinematics. Often such singularities are indicative of
IR divergences, but we know that for this particular integral (and for generic i, j) these are
canceled by the numerator factor in (3.2). Let us emphasize that except for appealing to
this fact, the analysis of the previous section applies to the scalar pentagon integral just as
well as the chiral integral, since the Landau equations by definition only know about the
propagator structure of a diagram.

The singularities that exist only on various nontrivial submanifolds of kinematic space
are indicated in equations (3.9), (3.10) and (3.11). Upon comparison with equations (3.5)
and (3.6) we notice a striking pattern: sub-sub-leading Landau singularities (3.11) exist
only on the loci where the leftmost symbol entries (3.5) vanish, while sub-leading singu-
larities (3.10) appear on a di↵erent set of loci corresponding to the locations where the
second-entry symbol entries (3.6) vanish. (However let us not forget that (3.6) only lists the
new letters which start to appear in the second entry.)

What about the LLS, which lives on the locus hi j n 1ihn 1 ī \ j̄i = 0? This quantity
indeed makes an appearance in the overall prefactor in the scalar pentagon integral, which
evaluates (see for example Ref. [15]) schematically to 1/� times a transcendental function
of uniform weight 2, where � / hi j̄ih̄i jihi j n 1ihn 1 ī\ j̄i. The chiral pentagon, however, is
a pure integral: as is evident from (3.3), it evaluates to a transcendental function with no
algebraic prefactor. This cancellation is achieved by the carefully chosen numerator of the
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second-entry symbol entries (3.6) vanish. (However let us not forget that (3.6) only lists the
new letters which start to appear in the second entry.)

What about the LLS, which lives on the locus hi j n 1ihn 1 ī \ j̄i = 0? This quantity
indeed makes an appearance in the overall prefactor in the scalar pentagon integral, which
evaluates (see for example Ref. [15]) schematically to 1/� times a transcendental function
of uniform weight 2, where � / hi j̄ih̄i jihi j n 1ihn 1 ī\ j̄i. The chiral pentagon, however, is
a pure integral: as is evident from (3.3), it evaluates to a transcendental function with no
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• Explicit	analytic	results	for	the	chiral	double	
pentagon	have	only	been	obtained	in	n=6.

• Symbol	of	two-loop	n-point	MHV	amplitude

• It	can	be	that	individual	chiral	double	pentagon	integrals	have	an	even	
larger	symbol	alphabet,	with	nontrivial	cancelation	in	the	sum	which	gives	
the	amplitude.	

• All	of	symbol	entries	are	on	the	list	of	Landau	
singularities.

Two-loop	n-point	MHV	in	N=4	SYM

chiral pentagon, and it is intimately connected with the fact that its integrand has “unit
leading singularities,” as emphasized in Ref. [13].

Evidently this is a happy example where there is a very clear separation between the
LLS, which tell us only about the overall algebraic singularities of the amplitude (and which
actually end up washed out by the fact that the leading singularities of the integrand are
normalized to 1), and the sub-(sub-)leading Landau singularities which probe past the pref-
actor and into the symbol. Let us recall that MHV amplitudes are expected to evaluate to
pure transcendental functions, with no algebraic prefactors (other than the tree-level MHV
amplitude indicated on the left-hand side of (3.1)) to all orders in perturbation theory [16].

IV. TWO-LOOP MHV AMPLITUDES

We now turn our attention to the chiral double pentagon integral, which is the basic
building block for two-loop MHV amplitudes.

A. The Chiral Double Pentagon

The two-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A2�loop
MHV

Atree
MHV

=

Z

AB

Z

CD

1

2

X

i<j<k<l<i

k

li

j

(4.1)

in terms of the chiral double pentagon integrand

k

li

j

=

hi j k li
hABCDi
⇥ hAB ī \ j̄i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1i

⇥ hCD k̄ \ l̄i
hCD k�1 kihCD k k+1ihCD l�1 lihCD l l+1i .

(4.2)

The numerator factors in (4.2) serve the same purpose as in the one-loop pentagon dis-
cussed in the previous section. Each of the two nontrivial numerator factors vanishes on
half of the leading singularities of the scalar double pentagon integrand; their product is
non-zero on one quarter of them. The integrand is normalized to have residue 1 on these
leading singularities. The numerator factors also suppress the soft/collinear divergences,
rendering the integral finite for generic i, j, k, l.

Explicit analytic results for the chiral double pentagon integral have been obtained only
for the special case l = k + 2 = j + 3 = i + 5 at n = 6 [17]. However it is expected that
for generic i, j, k, l the integral is expressible as a generalized polylogarithm with a symbol
alphabet similar to that described in (3.5) and (3.6). Specifically, the letters appearing in
the first entry of the symbol are expected on general physical grounds [14] to be

ha a+1 b b+1i, a, b 2 {i�1, i, j�1, j, k�1, k, l�1, l} . (4.3)
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In the second entry we expect to start seeing additional letters of the type

hab̄i , ha(a�1, a+1)(c, c+1)(d, d+1)i (4.4)

for a, b 2 {i, j, k, l} and c, d 2 {i�1, i, j�1, j, k�1, k, l�1, l}.
We are less certain about the symbol alphabet for the third and fourth entries of the

chiral double pentagon integral. For guidance we rely on the symbol of the full two-loop
n-point MHV amplitude (4.1), which was determined in Ref. [18] and which contains, in its
third and fourth entries, letters of the form

ha a+1 b ci and ha a+1 b̄ \ c̄i . (4.5)

We cannot rule out the possibility that individual chiral double pentagon integrals might
have an even larger symbol alphabet, with nontrivial cancellation in the sum (4.1). Indeed
some cancellation is known to occur: the final entry of the symbol of an MHV amplitude is
always of the form ha b̄i [18], but we do not expect this to be true for each individual chiral
double pentagon integral.

B. Landau Singularities

To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case
for the same reason discussed under (3.7). The eight propagators

hAB i�1 ii = hAB i i+1i = hAB j�1 ji = hAB j j+1i = 0

hCD k�1 ki = hCD k k+1i = hCD l�1 li = hCD l l+1i = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī \ j̄ and (C,D) = (k, l) or k̄ \ l̄ . (4.7)

It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
becomes a constraint on the external kinematics:

(LLS) hi j k lihi j k̄ \ l̄ih̄i \ j̄ k lih̄i \ j̄ k̄ \ l̄i = 0 . (4.8)

The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)
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chiral pentagon, and it is intimately connected with the fact that its integrand has “unit
leading singularities,” as emphasized in Ref. [13].

Evidently this is a happy example where there is a very clear separation between the
LLS, which tell us only about the overall algebraic singularities of the amplitude (and which
actually end up washed out by the fact that the leading singularities of the integrand are
normalized to 1), and the sub-(sub-)leading Landau singularities which probe past the pref-
actor and into the symbol. Let us recall that MHV amplitudes are expected to evaluate to
pure transcendental functions, with no algebraic prefactors (other than the tree-level MHV
amplitude indicated on the left-hand side of (3.1)) to all orders in perturbation theory [16].

IV. TWO-LOOP MHV AMPLITUDES

We now turn our attention to the chiral double pentagon integral, which is the basic
building block for two-loop MHV amplitudes.

A. The Chiral Double Pentagon

The two-loop MHV amplitude for n particles in SYM theory may be expressed as [13]
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=
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X
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k

li

j

(4.1)

in terms of the chiral double pentagon integrand

k

li

j

=

hi j k li
hABCDi
⇥ hAB ī \ j̄i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1i

⇥ hCD k̄ \ l̄i
hCD k�1 kihCD k k+1ihCD l�1 lihCD l l+1i .

(4.2)

The numerator factors in (4.2) serve the same purpose as in the one-loop pentagon dis-
cussed in the previous section. Each of the two nontrivial numerator factors vanishes on
half of the leading singularities of the scalar double pentagon integrand; their product is
non-zero on one quarter of them. The integrand is normalized to have residue 1 on these
leading singularities. The numerator factors also suppress the soft/collinear divergences,
rendering the integral finite for generic i, j, k, l.

Explicit analytic results for the chiral double pentagon integral have been obtained only
for the special case l = k + 2 = j + 3 = i + 5 at n = 6 [17]. However it is expected that
for generic i, j, k, l the integral is expressible as a generalized polylogarithm with a symbol
alphabet similar to that described in (3.5) and (3.6). Specifically, the letters appearing in
the first entry of the symbol are expected on general physical grounds [14] to be

ha a+1 b b+1i, a, b 2 {i�1, i, j�1, j, k�1, k, l�1, l} . (4.3)
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We cannot rule out the possibility that individual chiral double pentagon integrals might
have an even larger symbol alphabet, with nontrivial cancellation in the sum (4.1). Indeed
some cancellation is known to occur: the final entry of the symbol of an MHV amplitude is
always of the form ha b̄i [18], but we do not expect this to be true for each individual chiral
double pentagon integral.

B. Landau Singularities

To find the leading Landau singularities of the double pentagon we must solve for AB,
CD which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case
for the same reason discussed under (3.7). The eight propagators

hAB i�1 ii = hAB i i+1i = hAB j�1 ji = hAB j j+1i = 0

hCD k�1 ki = hCD k k+1i = hCD l�1 li = hCD l l+1i = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī \ j̄ and (C,D) = (k, l) or k̄ \ l̄ . (4.7)

It remains only to set the ninth propagator hABCDi to zero, but in light of (4.7) this
becomes a constraint on the external kinematics:

(LLS) hi j k lihi j k̄ \ l̄ih̄i \ j̄ k lih̄i \ j̄ k̄ \ l̄i = 0 . (4.8)

The Landau equations for the double pentagon admit a leading solution only on the locus
in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the ↵ associated to the internal
propagator hABCDi is set to zero then we simply get two kissing boxes of type (d) in
Figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) hij̄ih̄iji = 0 and hkl̄ihk̄li = 0 . (4.9)

On the other hand if the ↵ associated to one of the eight propagators displayed in (4.6) is
set to zero then the diagram degenerates to a pentagon-box. Suppose for example that we
collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading Landau
singularity is at

hj(j�1, j+1)(i, i�1)CDi = 0 (4.10)
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Landau	Singularities,		Symbology and	
Cluster	Structure

• All	symbol	entries	are	Landau	singularities.
• Can	we	make	a	stronger	statement?	Why	
various	other	Landau	singlularities don’t	
appear	in	the	symbol?

• SSLLS	involve	more	complicated	four-brackets	
than	those	which	appear	in	amplitudes,	but	
they	are	similar	to	cluster	A-coordinates	for	
the	Grassmannian cluster	algebra	that	it	
relevant	to	planar	SYM.

according to (2.8). Meanwhile CD is determined by the same four equations on the second
line of (4.6) to be (C,D) = (k, l) or (C,D) = k̄ \ l̄. This particular sub-leading Landau
singularity therefore lives on the locus

hj(j�1, j+1)(i, i�1)(k, l)ihj(j�1, j+1)(i, i�1) k̄ \ l̄i = 0 . (4.11)

Altogether there are a total of eight such sub-leading singularities:

(SLLS)

hj(j�1, j+1)(i�1, i)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hj(j�1, j+1)(i, i+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j�1, j)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 ,
hi(i�1, i+1)(j, j+1)(k, l)ihj(j�1, j+1)(i�1, i) k̄ \ l̄i = 0 .

(4.12)

and four more of the same type but with ij and kl exchanged.
At sub-sub-leading order we can have a triangle-pentagon or a double-box. The former

can be obtained by further collapsing the AB integral from a box, as we have just dis-
cussed, down to a triangle. Using (2.6) we find a total of eight non-trivial triangle-pentagon
singularities:

(S2LLS)

hi i+1 j�1 jihj�1 j k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i i+1i = 0 ,
hi�1 i j�1 jihj�1 j k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi i+1 j j+1ihj j+1 k lihk l i i+1ihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,
hi�1 i j j+1ihj j+1 k lihk l i�1 iihj�1 j k̄ \ l̄ihk̄ \ l̄ i�1 ii = 0 ,

(4.13)

and again four more of the same type but with ij and kl exchanged. We have included on
this list only those degenerations which lead to a three-mass triangle diagram. As discussed
earlier, two-mass triangles admit solutions to the Landau equations for generic kinematics.

Next we consider the sub-sub-leading singularities of double box type. Suppose we col-
lapse the edges (i, i+1) and (l�, l). The three-mass box on the right has a leading Landau
singularity on the locus hk(k�1, k+1)(l, l+1)ABi = 0. Taking this condition together with
the three remaining propagators

hAB i�1 ii = hAB j�1 ji = hAB j j+1i = hk(k�1, k+1)(l, l+1)ABi = 0 , (4.14)

we see that the left box is also of three-mass type, specified by the four lines (i�1, i), (j�1, j),
(j, j+1) and, with the help of (2.14), k(k�1, k+1)(l, l+1) = k̄ \ (k, l, l+1). This three-mass
box has its leading Landau singularity on the locus

hj(j�1, j+1)(i�i, i) k̄ \ (k, l, l+1)i = hj̄ \ (i�1, i, j) k̄ \ (k, l, l+1)i = 0 . (4.15)

The double pentagon has a total of 16 sub-subleading singularities of this type, given by:

(S2LLS)

h̄i \ (i, j�1, j) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k, k+1, l)i = 0 ,
h̄i \ (i, j�1, j) l̄ \ (k�1, k, l)i = 0 ,
h̄i \ (i, j, j+1) l̄ \ (k�1, k, l)i = 0 ,

(4.16)

and the same with i $ j or k $ l.
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Quivers	and	Cluster	Algebra
Encode	a	quiver	by	a	skew-symmetric	matrix

Cluster	algebra	is	defined	by	
“a	set	of	all	cluster	coordinates	produced	via	mutations”
- Associate	variable							(cluster	coordinate)	to	each	vertex	i
- Define	mutation	relation at	vertex	k

Given a quiver and a choice of some vertex k on that quiver we can define a new

quiver obtained by mutating at vertex k. The new quiver is obtained by applying

the following operations on the initial quiver:

• for each path i ! k ! j, add an arrow i ! j,

• reverse all arrows on the edges incident with k,

• and remove any two-cycles that may have formed.

The mutation at k is an involution; when applied twice in succession at the same

vertex we come back to the original quiver.

Quivers of the special type we restricted to are in one-to-one correspondence

with skew-symmetric matrices defined as

bij = (#arrows i ! j)� (#arrows j ! i). (6.2)

Since at most one of the terms above is nonvanishing, bij = �bji. Under a mutation

at vertex k the matrix b transforms to b0 given by

b0ij =

8

>

>

>

>

<

>

>

>

>

:

�bij, if k 2 {i, j},
bij, if bikbkj  0,

bij + bikbkj, if bik, bkj > 0,

bij � bikbkj, if bik, bkj < 0.

(6.3)

If we start with a quiver with n vertices and associate to each vertex i a variable

ai, we can use the skew-symmetric matrix b to define a mutation relation at the

vertex k by

aka
0
k =

Y

i|bik>0

abiki +
Y

i|bik<0

a�bik
i , (6.4)

with the understanding that an empty product is set to one. The mutation at k

changes ak to a0k defined by eq. (6.4) and leaves the other cluster variables unchanged.

To illustrate these ideas we note that the initial cluster of the A2 cluster algebra

can be expressed by the quiver a1 ! a2. Then, a mutation at a1 replaces it by

a01 =
1+a2
a1

⌘ a3 and reverses the arrow. A mutation at a2 replaces it by a02 =
1+a1
a2

⌘ a5
and preserves the direction of the arrow.

6.2 Grassmannian cluster algebras

In our application we are interested in a special class of cluster algebras called clus-

ter algebras of geometric type. They are also described by quivers, but some of the

vertices are special and called frozen vertices. Edges connecting two frozen vertices

are not allowed, and we also do not allow mutations on the frozen vertices. The

variables associated to the frozen vertices are called coe�cients instead of cluster
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Definition 1. A quiver Q is a directed graph, possible with multiple arrow between vertices
and/or loops. A quiver is represented by a square, skew-symmetric, integer-valued matrix
Qij of size n⇥ n. The entry Qij is the number of arrows from vertex i to vertex j.

As an example, the graph [26]

1 2 3

4 5

6

(5.1)

has data

Q =

0BBBBBB@
0 1 0 �1 0 0
�1 0 1 �1 0 0
0 �1 0 �2 1 0
1 1 2 0 1 �1
0 0 �1 �1 0 1
0 0 0 1 �1 0

1CCCCCCA . (5.2)

Definition 2. If Q is a quiver, then mutation on vertex k is a map defined by µk(Q) = Q0

made by applying the following rules:

1. reverse all arrows going into or out of vertex k;

2. for each path i ! k ! j, add in a new “shortcut” arrow i ! j (“complete the
triangle”);

3. remove any two-cycles that have formed.

Equivalently, one replaces Qij with a new matrix Q0
ij = µkQij with entries given by

Q0
ij =

8><>:
�Qij if k 2 {i, j}

Qij +
|Qik|Qkj +Qij |Qkj|

2
otherwise

=

8><>:
�Qij if k 2 {i, j}
Qij +Bik |Qkj| if sgnQik = sgnQkj

Qik otherwise.

(5.3)

As an example, mutating on vertex 2 of the above graph (5.1) gives
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1 20 3

4 5

6

where the di↵erences are highlighted in red. Or, expressed as matrix,

Q0 =

0BBBBBB@
0 �1 1 �1 0 0
1 0 �1 1 0 0
�1 1 0 �3 1 0
1 �1 3 0 1 �1
0 0 �1 �1 0 1
0 0 0 1 �1 0

1CCCCCCA . (5.4)

Now for the second ingredient. Instead of using the vertices of the quiver as mere labels,
we promote them to variables.

Definition 3. Let {a1, . . . , an} be transcendental over Q (independent variables with no
relations). The tuple

a = (a1, . . . , an) (5.5)

is called a cluster and the ai’s are called cluster variables.
A seed is a pair S = (a, Q) of a cluster and a quiver where the elements of the cluster

label the vertices of the quiver. Two seeds are considered equal if their labelled quivers are
the same up to graph isomorphism.

Going back to the same example, if the cluster variables are a = {a1, x2, . . . , a6}, then
the seed S = (a, Q) is represented as follows.

a1 a2 a3

a4 a5

a6

The operation of mutation changes the variables as well as the quiver.

21

Definition 4. Let S = (a, Q) be a seed. Then the operation of seed mutation in the

direction k is a map from seeds to seeds by µk(a, Q) = (a0, Q0) where

µk(a`) =

8>><>>:
a` if k 6= `

1

ak

" Y
i!k

ai +
Y
k!j

aj

#
if ` = k.

(5.6)

The notation i ! k or k ! j means the product should be taken over all the arrows that
are incoming to k or outgoing from k respectively. Multiple arrows should, of course, be
counted multiple times. It follows from the definition that mutation on a particular vertex is
an involution: µ2

k = Id.

Taking the example of our favorite quiver, mutating on a2 gives

a1 a02 a3

a4 a5

a6

where a02 =
1
a2
(a1a4 + a3).

Now that all the ingredients have been assembled, cluster algebras can be defined. A
sequence of mutations is simply the composition of multiple mutations, such as µ1�µ3�µ2.

Definition 5. Suppose S = (x, Q) is a seed with n. Define A, the set cluster A-coordinates

to be the union of all cluster variables appear under arbitrary sequences of mutations starting
from S. More formally,

A := {x 2 µi1µi2 · · ·µir(x, Q) : 1  i1, . . . , ir  n, r 2 N} . (5.7)

The cluster algebra generated by S, C(S) is defined as algebraic extension of Z generated
by A, i.e. Z[A]. The size of each quiver, n, is called the rank of the cluster algebra, and the
number of seeds is the order of the algebra.

It is important to note that the defnition of a cluster algebra varies somewhat, depending
on the source. This follows [24]. However, [23] defines them as a subring of Q(x1, . . . , xn).

Since the definition is not yet solid, it is better to think of the cluster algebra as the collec-
tion of seeds obtained from mutating the initial seed. Di↵erent applications will erect various
algebraic structures on top of the seeds. But the essential features — seeds, mutations, and
cluster variables — are the same in any case.
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There are also various generalizations of cluster algebras built out of more general ma-
trices Q that need not be skew-symmetric, but perhaps only skew-symmetrizable, or totally
sign-skew-symmetric [25]. So far, these generalizations play no part in the physics of scat-
tering amplitudes, and will not be discussed here. In this larger context, the cluster algebras
defined here are skew-symmetric cluster algebras of geometric type.

One generalization that will be used, however, is the idea of frozen variables. Concep-
tually, one chooses certain vertices that may not be mutated. These are carried along,
unchanged, in every quiver. See [27] for more details.

5.2 The A2 Cluster Algebra

The definition of cluster algebras is best understood through examples. The simplest non-
trivial cluster algebra is called A2 and starts from the seed

S1 = (a1, Q1) =

✓
(a1, a2),

✓
0 1
�1 0

◆◆
(5.8)

or, as a quiver,

S1 : a1 a2

There are two mutable variables, a1 and a2, and no frozen variables. Applying µ1, mutation
on the first vertex, gives a new seed

S2 : a3 a2

or

S2 := µ1(S1) = (a2, Q2) =

✓
(a3, a2),

✓
0 �1
1 0

◆◆
(5.9)

where a3 is given by Equation (5.6):

a3 := a01 =
1

a1

"Y
i!1

ai +
Y
1!j

aj

#
=

1

a1

⇥
a01a

0
2 + a01a

1
2

⇤
=

1 + a2
a1

. (5.10)

Applying µ1 to S2 just generates S1 again, which gives nothing new. Applying µ2 to S2

gives the seed

S3 : a3 a4

or

S3 := µ2µ1(S1) = (a3, Q3) =

✓
(a3, a4) ,

✓
0 1
�1 0

◆◆
(5.11)

where

a4 := a02 =
1

a2

"Y
i!2

ai +
Y
2!j

a2

#
=

1

a2
(1 + a3) =

1 + a1 + a2
a1a2

. (5.12)

After this, the cluster variables start getting simpler again. Applying µ1 to S3 gives
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5.2 The A2 Cluster Algebra

The definition of cluster algebras is best understood through examples. The simplest non-
trivial cluster algebra is called A2 and starts from the seed

S1 = (a1, Q1) =

✓
(a1, a2),

✓
0 1
�1 0

◆◆
(5.8)

or, as a quiver,

S1 : a1 a2

There are two mutable variables, a1 and a2, and no frozen variables. Applying µ1, mutation
on the first vertex, gives a new seed

S2 : a3 a2

or

S2 := µ1(S1) = (a2, Q2) =

✓
(a3, a2),

✓
0 �1
1 0

◆◆
(5.9)

where a3 is given by Equation (5.6):

a3 := a01 =
1

a1

"Y
i!1

ai +
Y
1!j

aj

#
=

1

a1

⇥
a01a

0
2 + a01a

1
2

⇤
=

1 + a2
a1

. (5.10)

Applying µ1 to S2 just generates S1 again, which gives nothing new. Applying µ2 to S2

gives the seed

S3 : a3 a4

or

S3 := µ2µ1(S1) = (a3, Q3) =

✓
(a3, a4) ,

✓
0 1
�1 0

◆◆
(5.11)

where

a4 := a02 =
1

a2

"Y
i!2

ai +
Y
2!j

a2

#
=

1

a2
(1 + a3) =

1 + a1 + a2
a1a2

. (5.12)

After this, the cluster variables start getting simpler again. Applying µ1 to S3 gives
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S4 : a5 a4

or

S4 := µ1(S3) = (a4, Q4) =

✓
(a5, a4),

✓
0 �1
1 0

◆◆
(5.13)

where

a5 := a03 =
1

a1

"Y
i!3

xi +
Y
3!j

xj

#
=

1

a3
(1 + a4) =

a1a2 + 1 + a1 + a2
a1a2

a1
1 + a2

=
1 + a1
a2

. (5.14)

Applying µ2 gives

S5 : a5 a6

or

S5 := µ2(S4) = (a5, Q5) =

✓
(a5, a6) ,

✓
0 1
�1 0

◆◆
(5.15)

where

a6 := a04 =
1

a2

"Y
i!4

ai +
Y
4!j

a2

#
=

1

a4
(a5 + 1) =

1 + a1 + a2
a2

a1a2
1 + a1 + a2

= a1. (5.16)

Something very strange has happened here! The sixth cluster variable is the first one again!
So really S5 has the quiver

S5 : a5 a1

Applying µ1 one more time gives

S6 : a7 a1

or

S6 := µ1(S5) = (a6, Q6) =

✓
(a7, a1),

✓
0 �1
1 0

◆◆
(5.17)

where

a7 := a05 =
1

a5

"Y
i!5

ai +
Y
5!j

aj

#
=

1 + a1
a5

=
1 + a1

1

a2
1 + a1

= a2. (5.18)

So this seed is really

S1 : a2 a1

which is just S1 again!
The best way to visualize this is with an exchange graph.
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There are also various generalizations of cluster algebras built out of more general ma-
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tering amplitudes, and will not be discussed here. In this larger context, the cluster algebras
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Definition 6. If {Si} is the set of seeds of a cluster algebra, then the exchange graph is
the graph whose vertices are the seeds and where undirected edges are drawn between pairs
of seeds linked by a single mutation. The edges are undirected because they can always be
traversed back by applying the same mutation again.

The exchange graph of A2 is a pentagon.

S1

S2

S3

S4

S5

There are several properties of A2 that are worth pointing out.

• The cluster variables that appear are all rational functions in {a1, a2} with positive
integer coe�cients.

• The denominators of all the cluster variables are monomials in {a1, a2}.

• The complete set of cluster variables of A2 is

A(A2) =

⇢
a1, a2,

1 + a1
a2

,
1 + a1 + a2

a1a2
,
1 + a2
a1

�
. (5.19)

No matter what sequence of mutations is performed on the initial seed, the variables
that appear will be in this set.

• Labelling the variables as above, they satisfy a recurrence relation

ak =
1 + ak�1

ak�2

(5.20)

and ak+5 = ak for all k 2 [0, . . . 5].

All the properties except the last one are actually true in more general contexts.

5.3 General Properties of Cluster Algebras

This section will discuss some general properties of the cluster algebras. The following section
will return to concrete examples to elucidate them.

One of the most remarkable properties of clusters is the Laurant Phenomenon.
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ā is the plane (a� 1, a, a+ 1)

1

{a1, a2}

a1, a2, a3 =
1 + a2

a1
, a4 =

1 + a1 + a2

a1a2
, a5 =

1 + a1

a2

xn+1 =
1 + xn

xn�1

(x� xi)
2
= 0

(x� xj)
2
= 0

(x� xk)
2
= 0

(x� xl)
2
= 0

↵i(x� xi) + ↵j(x� xj) + ↵k(x� xk) + ↵l(x� xl) = 0

Leading LS all ↵i 6= 0 LLS

Subleading LS some ↵i = 0 SLLS, S

2
LLS
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What	does	this	have	to	do	with	
amplitudes?

Amplitudes	are	functions	on	

Let	us	look	at	Grassmannian cluster	algebras.

The Kinematic Domain for N = 4 SYM

A collection of n ordered null vectors in Minkowski space R1,3,
subject to overall momentum conservation, may be represented in
terms of n momentum twistors
0

@
| | · · · |
Z1 Z2 · · · Zn

| | · · · |

1

A , Zi 2 P3 [0905.1473: Hodges]

A very special property of SYM theory is dual conformal symmetry
[Drummond, Henn, Korchemsky, Sokatchev, 2007], which
corresponds to the left-action of SL(4).

Amplitudes in SYM theory are functions on the quotient space,

Gr(4, n)/(C⇤)n�1 ' Confn(P3)

which is a cluster Poisson variety!Drummond,	 Henn,	 	Korchemsky,	Sokatchev

Hodges



Grassmannian cluster	algebras

3	x	(n-5)	initial	quiver	with	initial	cluster	
variables	which	we	then	mutate	to	obtain	all	
cluster	coordinates

Gr(4, n) Fomin,	Zelevinsky,	Scott

Gekhtman,	Shapiro,	Vainshtein

h1234i

h1235i h1236i h123n� 1i h123ni

h1245i h1256i h12n� 2n� 1i h12n� 1ni

h1345i h1456i h1n� 3n� 2n� 1i

hn� 4n� 3n� 2n� 1i

h1n� 2n� 1ni

hn� 3n� 2n� 1nih2345i h3456i

Grassmannian G(4,n)
Can associate a cluster algebra to the Grassmannian   

Initial cluster given by specified set of 4-brackets 

[Scott]



The two simplest examples relevant to SYM theory scattering amplitudes are

those for 6 or 7 points in CP3 (or, equivalently, in CP1 or CP2, respectively). For the

former it is evident from (6.6) that the principal part of the quiver is the same as the

A3 Dynkin diagram. For the latter the initial quiver is slightly more complicated:

h267i h367i h467i h567i

h456i

h345ih234i

h346ih236i

h123i

h126i

h127i

h167i

//

__

✏✏

��

//

__

✏✏

//

__

✏✏

//

__

✏✏

__

//

✏✏

//

__

✏✏

. (6.11)

If we label the vertices occupied initially by h267i, h367i, h467i, h126i, h236i, h346i
by numbers 1 through 6, then after a sequence of mutations at vertices 4, 3, 2, 5, 1,

4, 3, 4, 6, the principal part of the quiver is brought into the form of the E6 Dynkin

diagram3

h124i h247i

h256i

h5⇥6,7⇥2,3⇥4i h3⇥4,5⇥6,7⇥1i h157i
✏✏

// oooo //

(6.12)

Therefore the Gr(3, 7) cluster algebra is also called the E6 algebra.

In [17] Fomin and Zelevinsky showed that a cluster algebra is of finite type (i.e., it

has a finite number of cluster variables) if there exists a sequence of mutations which

turns the principal part of its quiver into the Dynkin diagram of some classical Lie

algebra. However, if the principal part of the quiver contains a subgraph which is an

a�ne Dynkin diagram, then the cluster algebra is of infinite type.

In ref. [38], Scott has classified all the Grassmannian cluster algebras of finite

type. This result has striking implications for scattering amplitudes in N = 4 super-

Yang-Mills theory. There, the relevant Grassmannian is Gr(4, n), for n � 6. If

n = 6 we need Gr(4, 6) = Gr(2, 6) which is of finite type A3. If n = 7 we need

Gr(4, 7) = Gr(3, 7) which is again of finite type E6. However, starting at n = 8 the

relevant cluster algebras are not of finite type anymore. This indicates that there are

infinitely many di↵erent A-coordinates which could appear in the symbol of these

3If we order them in the same way as in the initial cluster, the A-coordinates after this sequence
of mutations are h3 ⇥ 4, 5 ⇥ 6, 7 ⇥ 1i, h256i, h124i, h247i, h5 ⇥ 6, 7 ⇥ 2, 3 ⇥ 4i, h157i.
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Examples:	n=6	&	n=7

h13i h14i h15i h61i

h56ih45ih34ih23i

h12i

//
__

✏✏

��
//

__

✏✏

//
__

✏✏
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A3

E6

appear in the two-loop answer. For completeness let us list here all 15 X -coordinates

v1 = r(3, 5, 6, 2), v2 = r(1, 3, 4, 6), v3 = r(5, 1, 2, 4),

x+
1 = r(2, 3, 4, 1), x+

2 = r(6, 1, 2, 5), x+
3 = r(4, 5, 6, 3),

x�
1 = r(1, 4, 5, 6), x�

2 = r(5, 2, 3, 4), x�
3 = r(3, 6, 1, 2), (7.1)

e1 = r(1, 2, 3, 5), e2 = r(2, 3, 4, 6), e3 = r(3, 4, 5, 1),

e4 = r(4, 5, 6, 2), e5 = r(5, 6, 1, 3), e6 = r(6, 1, 2, 4),

in terms of the CP1 cross-ratio defined in eq. (3.4).

We note that r(a, b, c, d) satisfies the identities

r(b, c, d, a) =
1

r(a, b, c, d)
, r(d, c, b, a) = r(a, b, c, d) (7.2)

as well as

� r(a, c, b, d) = 1 + r(a, b, c, d), �r(b, a, c, d) =
1

1 + 1/r(a, b, c, d)
. (7.3)

Out of the 45 possible cross-ratios of the form r(a, b, c, d), the 15 X -coordinates are

special in that they are precisely those in which the points a, b, c, d come in cyclic

order. The three most well-known cross-ratios which are not cluster X -coordinates

are the ones known in the literature as

u1 = �r(3, 6, 5, 2), u2 = �r(1, 4, 3, 6), u3 = �r(5, 2, 1, 4), (7.4)

which are related to cluster X -coordinates by ui = 1/(1 + vi).

7.2 The Stashe↵ polytope for Gr(2, 6)

Let us now discuss the geometry of the Stashe↵ polytope for the A3 cluster algebra

detailed in the previous section. In this case each cluster is in correspondence with

a 2-simplex, or a triangle. There are 14 clusters, to each of which corresponds a

triangle. We can label each triangle by the three A-coordinates which appear on its

vertices:

h13i, h14i, h15i, h14i, h15i, h24i, h13i, h15i, h35i, h13i, h14i, h46i,
h15i, h24i, h25i, h14i, h24i, h46i, h15i, h25i, h35i, h13i, h35i, h36i,
h13i, h36i, h46i, h24i, h25i, h26i, h24i, h26i, h46i, h25i, h26i, h35i,
h26i, h35i, h36i, h26i, h36i, h46i.

(7.5)

These triangles fit together in a polytope with 14 triangular faces, shown in fig. 3.

The polytope has 9 vertices given by the non-frozen A-coordinates h13i, h14i, h15i,
h24i, h25i, h26i, h35i, h36i and h46i, and 21 edges.
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!13"

!14"

!15"

!24"

!35"

!46"

!25"

!36"

!26"

Figure 3: The polytope obtained by gluing together the triangles associated to

clusters of the Gr(2, 6) (i.e., A3) cluster algebra.

⟨46⟩⟨24⟩

⟨15⟩ ⟨13⟩

⟨12⟩⟨34⟩
⟨14⟩⟨23⟩

⟨16⟩⟨45⟩
⟨14⟩⟨56⟩

⟨14⟩⟨23⟩
⟨12⟩⟨34⟩

⟨14⟩⟨56⟩
⟨16⟩⟨45⟩

⟨14⟩

(a) ⟨46⟩

⟨36⟩

⟨35⟩⟨15⟩

⟨14⟩

⟨13⟩

⟨16⟩⟨34⟩
⟨13⟩⟨46⟩

⟨34⟩⟨56⟩
⟨36⟩⟨45⟩

⟨13⟩⟨56⟩
⟨16⟩⟨35⟩

⟨13⟩⟨45⟩
⟨15⟩⟨34⟩

⟨16⟩⟨45⟩
⟨14⟩⟨56⟩

(b)

Figure 4: The cross-ratios (X -coordinates) around a valence 4 vertex (a) and a

valence 5 vertex (b) of the polytope (fig. 3) associated to the Gr(2, 6) cluster al-

gebra. For clarity we have omitted the crucial overall minus sign in front of each

X -coordinate.
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Figure 5: The exchange graph for E6.

14	quivers
15	coordinates	

833	quivers
49	coordinates	

All faces are triangles, but there are two di↵erent types of vertices: h14i, h25i and
h36i have valence four (they are incident with four edges) while the other six vertices

have valence five. The polytope has the topology of a sphere as can be confirmed by

computing the Euler characteristic � = V � E + F = 9� 21 + 14 = 2.

Now recall that to each edge of the polytope we can associate a pair consisting

of an X -coordinate and its inverse. Let us take a closer look at the X -coordinates

corresponding to the edges incident on the two kinds of vertices. In order for the

association between X -coordinates and edges to be one-to-one, we need to pick an

orientation. Consider for example the valence 4 vertex shown in fig. (4a). As we go

around it we encounter the cross-ratios

� h14ih23i
h12ih34i , �h14ih56i

h16ih45i , �h12ih34i
h14ih23i , �h16ih45i

h14ih56i . (7.6)

The third cross-ratio is an inverse of the first while the fourth is an inverse of the

second. Therefore, the cluster coordinates are the same as for the A1 ⇥ A1 cluster

algebra. This is the dual of the statement shown in eq. (6.19).

On the other hand, if we consider for example the valence 5 vertex shown in

fig. 4b, the corresponding list of cross-ratios is

� h13ih45i
h15ih34i , �h13ih56i

h16ih35i , �h34ih56i
h36ih45i , �h16ih34i

h13ih46i , �h16ih45i
h14ih56i . (7.7)

These are the X -coordinates of an A2 cluster algebra. It can be checked that these

are precisely (minus) the arguments of dilogarithms in the five-term dilogarithm

identity (4.12). This is the dual of the statement shown in eq. (6.20).

The dual polytope, shown in fig. 5, has 14 vertices and 9 faces, three of which are

quadrilaterals and six of which are pentagons. This is the Stashe↵ polytope or the

K5 associahedron. The name associahedron comes from the following construction:

consider n (in the case of K5 we take n = 5) non-commutative variables and all the

ways of inserting parentheses. For example, we have ((ab)(cd))e, (((ab)c)d)e, etc. In

total there are Cn�1 ways of parenthesizing n variables, where Cn is the nth Catalan

number. Then, join together two such expressions if one can be obtained from the

other by applying the associativity rule once. By joining all these expressions, we

build up the Stashe↵ polytope.

7.3 Cluster coordinates for Gr(3, 7)

Beginning with the initial quiver for Gr(3, 7), we can similarly generate all of the

clusters and their A- and X -coordinates by successive mutations until all possibilities

are exhausted. The E6 algebra generated in this manner has a total of 49 well-known

A-coordinates, composed of the 35 Plücker coordinates hijki on Gr(3, 7) together

with 14 composite brackets of the form

h1⇥ 2, 3⇥ 4, 5⇥ 6i, h1⇥ 2, 3⇥ 4, 5⇥ 7i (7.8)
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h1⇥ 2, 3⇥ 4, 5⇥ 6i = h512ih634i � h534ih612i
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ways of inserting parentheses. For example, we have ((ab)(cd))e, (((ab)c)d)e, etc. In

total there are Cn�1 ways of parenthesizing n variables, where Cn is the nth Catalan

number. Then, join together two such expressions if one can be obtained from the

other by applying the associativity rule once. By joining all these expressions, we

build up the Stashe↵ polytope.

7.3 Cluster coordinates for Gr(3, 7)

Beginning with the initial quiver for Gr(3, 7), we can similarly generate all of the

clusters and their A- and X -coordinates by successive mutations until all possibilities

are exhausted. The E6 algebra generated in this manner has a total of 49 well-known

A-coordinates, composed of the 35 Plücker coordinates hijki on Gr(3, 7) together

with 14 composite brackets of the form

h1⇥ 2, 3⇥ 4, 5⇥ 6i, h1⇥ 2, 3⇥ 4, 5⇥ 7i (7.8)

– 30 –

hii+ 1i hiji

{a1, a2}

a1, a2, a3 =
1 + a2

a1
, a4 =

1 + a1 + a2

a1a2
, a5 =

1 + a1

a2

an+1 =
1 + an

an�1

(x� xi)
2
= 0

(x� xj)
2
= 0

(x� xk)
2
= 0

(x� xl)
2
= 0

↵i(x� xi) + ↵j(x� xj) + ↵k(x� xk) + ↵l(x� xl) = 0

Leading LS all ↵i 6= 0 LLS

Subleading LS some ↵i = 0 SLLS, S

2
LLS

ā is the plane (a� 1, a, a+ 1)

1
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What	do	cluster	algebras	have	
to	do	with	amplitudes?

• Symbols: all	n-point	amplitudes	in	SYM	theory	
have	symbol	alphabet	with	subset	of	cluster	
A-coordinates	on		Gr(4,n)
• Coproduct: for	two-loop	MHV	amplitudes, only	
cluster	X-coordinates	appear	(with	particular	
Poisson	brackets)
• Functions: there	is	a	particular	class	of	natural	
functions	which	exhibit	these	properties	
(cluster	functions,						-functions)An

Goncharov,	Spradlin,	Vergu;	Golden,	 Paulos,	Parker,	Scherlis,	AV

2.3 Cluster A- and X -coordinates

Next we provide a lightning review (see [2] for details) of the types of variables which make

an appearance in the study of scattering amplitudes in SYM theory: cluster A- and cluster

X -coordinates. Much of what we have to say about cluster polylogarithm functions may be

interesting to investigate in the context of general algebras, but we restrict our attention here

largely to Grassmannian cluster algebras, and in particular to the Gr(4, n) algebra relevant

to the kinematic configuration space Confn(P3) of n-particle scattering in SYM theory.

Examples of A-coordinates on Gr(4, n) include the ordinary Plücker coordinates hijkli
as well as certain particular homogeneous polynomials in them such as

ha(bc)(de)(fg)i ⌘ habdeihacfgi � habfgihacdei,
hab(cde) \ (fgh)i ⌘ hacdeihbfghi � hbcdeihafghi,

(2.12)

while the X -coordinates are certain cross-ratios which can be built from A-coordinates.

For n > 7 there exist arbitrarily more complicated A-coordinates on Gr(4, n). These

appear to play no role at two loops (they likely do appear at higher loop order) since the

symbol of the n-point two-loop MHV amplitude was computed in [5] and nothing more exotic

than the examples shown in eq. (2.12) occurs.

We emphasize that not every homogeneous polynomial of Plücker coordinates is an A-

coordinate, nor is every cross-ratio one can write down an X -coordinate. The only surefire

algorithm for determining such coordinates is via the mutation algorithm (see [2]), but we

note here an empirical rule for selecting X -coordinates for which we know no counterexample:

a conformally invariant ratio x of A-coordinates is an X -coordinate if 1 + x also factors into

a ratio of products of A-coordinates and if x is positive-valued everywhere inside the positive

domain (this is the subset of Confn(P3) for which habcdi > 0 whenever a < b < c < d)7. This

algorithm reveals for example that between

h1235ih1278ih2456ih5678i
h1256ih2578ih78(123) \ (456)i and � h2(13)(56)(78)ih5(12)(46)(78)i

h1256ih2578ih78(123) \ (456)i (2.13)

(whose di↵erence is 1) only the first is an X -coordinate.

2.4 Cluster polylogarithm functions

Now we turn to the heart of the paper: providing a definition of cluster polylogarithm func-

tions. Good definitions in mathematics must lie in a Goldilocks zone: they must be su�ciently

constraining so as to select out only certain objects with interesting behavior, yet they must

not be so constraining as to preclude the existence of any examples. In defining cluster

polylogarithm functions we are guided by the physics of two-loop MHV amplitudes in SYM

theory: these functions certainly exist, yet have properties which render them very special

amongst the class of all weight-four polylogarithm functions on Confn(P3).

7It is a logical possibility that there could exist some x which satisfies this criterion yet which is not an

X -coordinate, though we have never encountered such an object in various explorations through n = 9.
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Why	is	cluster	structure	useful?

• We	can	use	cluster	structure	for	advancing	
computations	of	multi-loop	N=4	Yang-Mills	
amplitudes.

• Examples:	3-loop	7-point	symbol,	
2-loop	n-point	function.

Goncharov,	Spradlin,	Vergu;	Golden,	 Paulos,	Parker,	Scherlis,	AV

Caron-Huot,	He;	Dixon,	Drummond,	 Duhr,	Henn,	Pennington,	 Von	Hippel

much	more	in	Spradlin’s talk



Landau	Singularities	and	Cluster	Structure

• SSLLS	involve	more	complicated	four-brackets	
then	those	which	appear	in	MHV	amplitudes.

• These	brackets	resemble	cluster	A-coordinates	in	
Gr(4,n)	cluster	algebra.

• It	will	be	very	interesting	to	understand	the	
connection	in	detail.

the denominator has been canceled by applying a Plücker relation to the numerator

in order to pull out all overall factor of h1267i.
Both of these types of non-Plücker A-coordinates, eqs. (6.16) and (6.15), appear

in the symbol of the two-loop n = 8 MHV amplitude [54], and the simpler ones of the

type in eq. (6.16) appear already for n = 7—indeed the long formulas in section 5 are

littered with these composite brackets (though expressed there in the P2 language).

However, since the number of A-coordinates is infinite for Gr(4, 8), mutations

must eventually generate even more exotic A-coordinates. A still relatively simple

example is

� h(123) \ (345), (567) \ (781)i. (6.17)

This quantity vanishes when the lines (123)\(345) and (567)\(781) intersect, which

is equivalent to saying that the lines (345) \ (567) and (781) \ (123) intersect. But

there are even more complicated A-coordinates such as

h1246ih1256ih1378ih3457i � h1246ih1257ih1378ih3456i�
h1246ih1278ih1356ih3457i+ h1278ih1257ih1346ih3456i+

h1236ih1278ih1457ih3456i. (6.18)

Neither of these complicated quantities appears as an entry in the symbol of the

n = 8 MHV amplitude at two loops, but we know of no reason why they cannot

appear at higher loops. It would be extremely interesting to understand more about

these algebras and their relation to amplitudes.

One final, important comment has to do with cyclic symmetry, which is an

exact symmetry of MHV amplitudes (and of all super-amplitudes). Notice that the

initial quivers we have been using break the cyclic symmetry of the configuration

of points. In order to see that the cyclic symmetry is preserved we need to show

that by mutations one can reach another quiver whose labels are permuted by one

unit. For the case of Gr(3, 7) described above, this cannot be done in fewer than six

mutations, since all the unfrozenA-coordinates need to change. Indeed one can easily

show that after mutating in the nodes which are initially labeled by h126i, h267i,
h236i, h367i, h346i and h467i, we obtain the cluster with the node labels shifted by

one h123i ! h234i, etc. This proves the cyclic symmetry for Gr(3, 7). It is not hard

to imagine that a similar procedure can be applied in the general Gr(k, n) case, but

we do not provide a complete proof of cyclic symmetry here.

6.4 Generalized Stashe↵ polytopes

In this section we review the connection [33] between cluster algebras and certain

polytopes, including the generalized Stashe↵ polytope or associahedron [34]. Many

additional details and examples may also be found in [59].

The unfrozen nodes of a cluster algebra of rank r can be taken to be the vertices

of an r�1-simplex. A k-simplex is a generalization of the notion of a triangle and can

– 29 –

in	progress



Conclusion
• We	initiated	a	study	of	Landau	singularities	of	
Feynman	integrals	relevant	to	one- and	two-loop	
MHV	amplitudes	in	N=4	SYM.	

• A	quantity	appears	in	symbol	of	some	Feynman	
integral/amplitude	only	it	is	Landau	singularity.

• At	one	loop:	SSLS/SLS	correspond	to	first/second	
entries	of	the	symbol.

• At	two	loops:	all	symbol	entries	are	Landau	
singularities.	We	also	found	additional		solutions	
which	don’t	seem	to	have	direct	connection	with	
symbol	alphabet.



Open	questions
• We	have	only	taken	first	steps	in	exploring	
connection	between	symbology,	cluster	algebras	
and	Landau	singularities.	

• Many	questions	remain:
- Role	of	numerator	factors	in	SYM	vs	Landau	singularity	analysis
- Generalization	to	other	cases/non-DCI	theories,	etc
- Symbol	of	integral	vs	symbol	of	amplitude
- Connection	between	cluster	structure	and	Landau	singularities
- Landau	singularities	from	Amplituhedron

Dennen


