Landau Singularities

 and Symbology

Anastasia Volovich
Brown University

Nordita, June 2016
1512.07909
with Tristan Dennen and Marcus Spradlin

Introduction

- A general goal of modern S-matrix program is to compute amplitudes with minimal effort.
- This relies on understanding both the physical principles they satisfy and mathematical properties they have.
- In best case scenarios, we would like these conditions to determine amplitudes uniquely.
- Our previous work has revealed that the mathematical structure of $\mathrm{N}=4$ Yang-Mills amplitudes is at least partially dictated by cluster algebra structure.

Goncharov, Spradlin, Vergu; Golden, Paulos; Parker, Scherlis, AV

- The goal of my talk is to explore the most basic physical principle --- locality, expressed through the Landau equations --- from which we will see cluster coordinates emerge.

SCATTERING AMPLITUDES IN N=4 SYM

 (function of kinematic data)

Cluster Structure
Landau Singularities

THE GOAL OF OUR WORK IS TO EXPLORE THE CONNECTION

Plan

- Landau equations
- Solution: one and two-loop n-point MHV in N=4 SYM
- Connection with symbol alphabet of an amplitude
- Connection with cluster structure of an amplitude
- Conclusions and open questions

Landaus Singularities

Landau equations for a given Feynman integral are a set of kinematic constraints that are necessary for the appearance of a pole or branch point in the integrated function

$$
\mathcal{D}=\sum_{i=1}^{\nu} \alpha_{i}\left(q_{i}^{2}-m_{i}^{2}\right),
$$

In this talk: only focus on singularities
describes by Landau equation
Landau Equations

$$
I=c \int \prod_{r=1}^{L} d^{D} \ell_{r} \int_{\alpha_{i} \geq 0} d^{\nu} \alpha \delta\left(1-\sum_{i=1}^{\nu} \alpha_{i}\right) \frac{\mathcal{N}\left(\ell_{r}^{\mu}, p_{i}^{\mu}, \ldots\right)}{\mathcal{D}^{\nu}}
$$

$$
\sum_{i \in \text { loop }} \alpha_{i} q_{i}^{\mu}=0 \quad \forall \text { loops }
$$

Landau 1959

$$
\alpha_{i}\left(q_{i}^{2}-m_{i}^{2}\right)=0 \quad \forall i
$$

Eden, Landshoff, Olive, Polkinghorne
"The Analytic S-Matrix"

Landau Singularities
locus in external kinematic data where Landau equations admit solutions

Leading LS	all $\alpha_{i} \neq 0$	$L L S$
Subleading LS	some $\alpha_{i}=0$	$S L L S, S^{2} L L S$
		etc

One-Loop Box

The Landau equations are easily solved for one-loop box integrals in four dimensions.

(and bubbles and triangles)

$$
\begin{aligned}
& p_{i}^{\mu}=x_{i}^{\mu}-x_{i-1}^{\mu} \\
& x_{i j}^{2} \equiv\left(x_{i}-x_{j}\right)^{2} \\
& \left(x_{i}-x_{j}\right)^{2}=\left(p_{i+1}+p_{i+2}+\cdots+p_{j}\right)^{2}
\end{aligned}
$$

The second Landau equation puts the propagators on-shell (no constraints on external kinematics).

$$
\left(x-x_{i}\right)^{2}=0, \quad\left(x-x_{j}\right)^{2}=0, \quad\left(x-x_{k}\right)^{2}=0, \quad\left(x-x_{l}\right)^{2}=0
$$

The solvability of the first equation gives a determinant constraint.

$$
\alpha_{i}\left(x-x_{i}\right)+\alpha_{j}\left(x-x_{j}\right)+\alpha_{k}\left(x-x_{k}\right)+\alpha_{l}\left(x-x_{l}\right)=0
$$

Leading Landau Singularities

$$
0=\left(x_{i j}^{2} x_{k l}^{2}-x_{i k}^{2} x_{j l}^{2}+x_{i l}^{2} x_{j k}^{2}\right)^{2}-4 x_{i j}^{2} x_{j k}^{2} x_{k l}^{2} x_{i l}^{2}
$$

Planar N=4 SYM and Momentum Twistors

Null momentum

$$
p_{a}^{\mu} \mapsto\left(p_{a}\right)_{\underline{\alpha} \dot{\alpha}} \equiv p_{a}^{\mu}\left(\sigma_{\mu}\right)_{\underline{\alpha} \dot{\alpha}} \equiv \lambda_{\underline{\alpha}}^{(a)} \widetilde{\lambda}_{\dot{\alpha}}^{(a)}
$$

Momentum conservation

$$
p_{a} \equiv x_{a}-x_{a-1}
$$

$$
\begin{aligned}
& Z=(\lambda, \mu)=\left(\lambda_{\alpha}, x_{\alpha \dot{\alpha}} \lambda^{\alpha}\right) \\
& \langle A B C D\rangle \equiv \epsilon_{I J K L} Z_{A}^{I} Z_{B}^{J} Z_{C}^{K} Z_{D}^{L}
\end{aligned}
$$

If x, y are points in Minkowski space associated to two lines $(A, B),(C, D)$ in \mathbb{P}^{3} $(x-y)^{2}=\frac{\langle A B C D\rangle}{\langle I A B\rangle\langle I C D\rangle}$

$$
\begin{aligned}
= & \int d^{4} x \frac{N}{\left(x-x_{1}\right)^{2}\left(x-x_{2}\right)^{2}\left(x-x_{3}\right)^{2}\left(x-x_{4}\right)^{2}} \\
& \int_{A B} \frac{\langle 1234\rangle^{2}}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 41\rangle}
\end{aligned}
$$

Hodges
Arkani-Hamed, Bourjaily, Cachazo, Trnka

Momentum twistors simplify the problem of analyzing solutions to Landau equations.

One-loop boxes

(b)

(c)

(d)

(e)

Box (b):
$0=\langle i(i-1, i+1)(j, j+1)(k, k+1)\rangle$
Box (c): $\quad 0=\langle i-1 i i+1 i+2\rangle\langle i i+1 j j+1\rangle$
Box (d): $\quad 0=\langle i \bar{j}\rangle\langle\bar{i} j\rangle$
Box (e): $\quad 0=\langle i-1 i i+1 i+2\rangle\langle i i+1 i+2 i+3\rangle$
\bar{a} is the plane $(a-1, a, a+1)$
$\langle C(A, B)(D, E)(G, H)\rangle \equiv\langle(A, B, C) \cap(D, E, C) G H\rangle$
$\langle(A, B, C) \cap(D, E, F) G H\rangle=\langle A B C G\rangle\langle D E F H\rangle-\langle A B C H\rangle\langle D E F G\rangle$

One-loop n-point MHV in N=4 SYM

$\frac{\mathcal{A}_{\mathrm{MHV}}^{1 \text {-loop }}}{\mathcal{A}_{\mathrm{MHV}}^{\text {tree }}}=\int_{A B} \sum_{1<i<j<n}$

Bern, Dixon, Dunbar, Kosower

Arkani-Hamed, Bourjaily, Cachazo, Trnka
chiral pentagon
(SLLS)
(\mathbf{S}^{2} LLS)

$$
\frac{\langle A B \bar{i} \cap \bar{j}\rangle\langle i j n 1\rangle}{\langle A B i-1 i\rangle\langle A B i i+1\rangle\langle A B j-1 j\rangle\langle A B j j+1\rangle\langle A B n 1\rangle}
$$

$\langle i j n 1\rangle\langle n 1 \bar{i} \cap \bar{j}\rangle=0$

$$
(A, B)=(i, j) \quad \text { or } \quad(A, B)=\bar{i} \cap \bar{j}
$$

$$
\langle A B n 1\rangle=0
$$

$$
\begin{aligned}
& \langle j(j-1, j+1)(i, i+1)(n, 1)\rangle=0, \\
& \langle j(j-1, j+1)(i-1, i)(n, 1)\rangle=0, \\
& \langle i(i-1, i+1)(j, j+1)(n, 1)\rangle=0, \\
& \langle i(i-1, i+1)(j-1, j)(n, 1)\rangle=0, \\
& \langle i j\rangle\langle i j\rangle=0 .
\end{aligned}
$$

Reduces to boxes

Reduces to triangles

Dennen, Spradlin, AV

$$
\begin{aligned}
& \langle i-1 i j j+1\rangle\langle j j+1 n 1\rangle\langle n 1 i-1 i\rangle=0 \text {, } \\
& \langle i i+1 j j+1\rangle\langle j j+1 n 1\rangle\langle n 1 i i+1\rangle=0 \text {. }
\end{aligned}
$$

Two-loop n-point MHV in N=4 SYM

($\left.\mathrm{S}^{3} \mathrm{LLS}\right)$
It would have been very difficult to solve Landau equations without momentum twistors.

- We have produced a long list of Landau singularities for one and two-loop N=4 SYM integrals.
- For amplitudes of generalized polylogarithm form there should be a close connection between Landau singularities and symbol alphabet.

Maldacena, Simons-Duffin, Zhiboedov
Abreu, Britto, Duhr, Gardi, Gronqvist

Symbol and Singularities

Many of the simplest (and hence best understood) amplitudes can be expressed in terms of a class of generalized polylogs defined by iterated integrals

$$
\begin{aligned}
& L i_{k}(z)=\int_{0}^{z} L i_{k-1}(t) d \log t \quad L i_{1}(z)=-\log (1-z) \\
& G\left(a_{k}, a_{k-1}, \ldots ; z\right)=\int_{0}^{z} G\left(a_{k-1}, \ldots ; t\right) \frac{d t}{t-a_{k}}, \quad G(z) \equiv 1
\end{aligned}
$$

Example: 2-loop 6-point MHV

GSVV

$$
R_{6}^{(2)}=\sum_{\text {cyclic }} \operatorname{Li}_{4}\left(-\frac{\langle 1234\rangle\langle 2356\rangle}{\langle 1236\rangle\langle 2345\rangle}\right)-\frac{1}{4} \operatorname{Li}_{4}\left(-\frac{\langle 1246\rangle\langle 1345\rangle}{\langle 1234\rangle\langle 1456\rangle}\right)
$$

+ products of $\mathrm{Li}_{k}(-x)$ functions of lower weight

$$
\begin{array}{lll}
v_{1}=\frac{\langle 1246\rangle\langle 1345\rangle}{\langle 1234\rangle\langle 1456\rangle}, & v_{2}=\frac{\langle 1235\rangle\langle 2456\rangle}{\langle 1256\rangle\langle 2345\rangle}, & v_{3}=\frac{\langle 1356\rangle\langle 2346\rangle}{\langle 1236\rangle\langle 3456\rangle}, \\
x_{1}^{+}=\frac{\langle 1456\rangle\langle 2356\rangle}{\langle 1256\rangle\langle 3456\rangle}, & x_{2}^{+}=\frac{\langle 1346\rangle\langle 2345\rangle}{\langle 1234\rangle\langle 3456\rangle}, & x_{3}^{+}=\frac{\langle 1236\rangle\langle 1245\rangle}{\langle 1234\rangle\langle 1256\rangle}, \\
x_{1}^{-}=\frac{\langle 1234\rangle\langle 2356\rangle}{\langle 1236\rangle\langle 2345\rangle}, & x_{2}^{-}=\frac{\langle 1256\rangle\langle 1346\rangle}{\langle 1236\rangle\langle 1456\rangle}, & x_{3}^{-}=\frac{\langle 1245\rangle\langle 3456\rangle}{\langle 1456\rangle\langle 2345\rangle},
\end{array}
$$

$$
\begin{array}{ll}
x_{a}^{ \pm}=\frac{u_{a}}{2 u_{1} u_{2} u_{3}}\left(u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3}}\right) & \\
v_{a}=\frac{1}{u_{a}}-1 & u_{a}=\frac{\left(p_{a}+p_{a+1}\right)^{2}\left(p_{a+3}+p_{a+4}\right)^{2}}{\left(p_{a}+p_{a+1}+p_{a+2}\right)^{2}\left(p_{a+2}+p_{a+3}+p_{a+4}\right)^{2}}
\end{array}
$$

Example: 2-loop 6-point MHV

- Function

$$
\begin{array}{r}
R_{6}^{(2)}=\sum_{\text {cyclic }} \operatorname{Li}_{4}\left(-\frac{\langle 1234\rangle\langle 2356\rangle}{\langle 1236\rangle\langle 2345\rangle}\right)-\frac{1}{4} \operatorname{Li}_{4}\left(-\frac{\langle 1246\rangle\langle 1345\rangle}{\langle 1234\rangle\langle 1456\rangle}\right) \\
+ \text { products of } \mathrm{Li}_{k}(-x) \text { functions of lower weight }
\end{array}
$$

- Symbol : much of the information about the analytic structure of such function is captured in an object called symbol

$$
\langle 1256\rangle \otimes\langle 1346\rangle \otimes\langle 1246\rangle \otimes\langle 1456\rangle+\cdots
$$

7272 terms

Symbol of Transcendental Function

Goncharov, Spradlin, Vergu, AV

$$
T_{k} \rightarrow S\left(T_{k}\right)=R_{1} \otimes \cdots \otimes R_{k}
$$

Symbol is an element of the k-fold tensor product of the multiplicative group of rational functions.

$$
\begin{aligned}
d T_{k}=\sum_{i} T_{k-1}^{i} d & \log R_{i}
\end{aligned} \rightarrow S\left(T_{k}\right)=\sum_{i} S\left(T_{k-1}^{i}\right) \otimes R_{i} .
$$

Symbol converts polylog functional equation into rational function identities.
Very useful for practical computations.

Symbol and Singularities

- Much of the information about the analytic structure of such function is captured in an object called symbol.
- We expect that the symbol entries appearing in any amplitude should be such that their zeros specify values of the external momenta where solutions of the Landau equations exist.

Maldacena, Simons-Duffin, Zhiboedov
Abreu, Britto, Duhr, Gardi, Gronqvist

One-loop n-point MHV in N=4 SYM

Bern, Dixon, Dunbar, Kosower
Arkani-Hamed, Bourjaily, Cachazo, Trnka

Symbol:

First Entry

$$
\begin{array}{rrrr}
\langle i-1 i j-1 j\rangle, & \langle i-1 i j j+1\rangle, & \langle i-1 i n 1\rangle, & \langle i i+1 j-1 j\rangle \\
\langle i i+1 j j+1\rangle, & \langle i i+1 n 1\rangle, & \langle j-1 j n 1\rangle, & \langle j j+1 n 1\rangle
\end{array}
$$

Second Entry

$$
\begin{aligned}
& \langle i-1 i n 1\rangle,\langle i i+1 n 1\rangle,\langle j-1 j n 1\rangle \text { and }\langle j j+1 n 1\rangle \\
& \langle\bar{i} j\rangle, \quad\langle i(i-1, i+1)(j, j+1)(n, 1)\rangle, \quad\langle i(i-1, i+1)(j-1, j)(n, 1)\rangle \\
& \langle\bar{j} i\rangle, \quad\langle j(j-1, j+1)(i, i+1)(n, 1)\rangle, \quad\langle j(j-1, j+1)(i-1, i)(n, 1)\rangle
\end{aligned}
$$

One-loop n-point MHV in N=4 SYM

(LLS)
(SLLS)
(\mathbf{S}^{2} LLS)

$$
\langle i j n 1\rangle\langle n 1 \bar{i} \cap \bar{j}\rangle=0
$$

$$
\begin{aligned}
& \langle j(j-1, j+1)(i, i+1)(n, 1)\rangle=0, \\
& \langle j(j-1, j+1)(i-1, i)(n, 1)\rangle=0, \\
& \langle i(i-1, i+1)(j, j+1)(n, 1)\rangle=0, \\
& \langle i(i-1, i+1)(j-1, j)(n, 1)\rangle=0, \\
& \langle i j\rangle\langle i \bar{j}\rangle=0 .
\end{aligned}
$$

$$
\left.\begin{array}{l}
\langle i-1 i j-1 j\rangle\langle j-1 j
\end{array} \quad n 1\right\rangle\left\langle\begin{array}{llll}
\langle i & i-1 & i\rangle=0 \\
\langle i i+1 & j-1 & j\rangle\langle j-1 & j
\end{array}\right)
$$

Prefactor

Second entries of the symbol

First/Second entries of the symbol

Dennen, Spradlin, AV

Two-loop n-point MHV in N=4 SYM

- Explicit analytic results for the chiral double pentagon have only been obtained in $\mathrm{n}=6$.
- Symbol of two-loop n-point MHV amplitude

$\langle a a+1 b b+1\rangle$	\otimes	$\langle a \bar{b}\rangle$	\otimes	$\langle a a+1 b c\rangle$	\otimes	$\langle a \bar{b}\rangle$
				$\langle a a+1 \bar{b} \cap \bar{c}\rangle$	Q	

$$
\begin{aligned}
a, b \in\{i-1, i, j-1, j, k-1, k, l-1, l\} & \langle a(a-1, a+1)(c, c+1)(d, d+1)\rangle \\
& a, b \in\{i, j, k, l\} \text { and } c, d \in\{i-1, i, j-1, j, k-1, k, l-1, l\} \quad \text { Caron-Huot }
\end{aligned}
$$

- It can be that individual chiral double pentagon integrals have an even larger symbol alphabet, with nontrivial cancelation in the sum which gives the amplitude.
- All of symbol entries are on the list of Landau singularities.

Landau Singularities, Symbology and

Cluster Structure

- All symbol entries are Landau singularities.
- Can we make a stronger statement? Why various other Landau singlularities don't appear in the symbol?
- SSLLS involve more complicated four-brackets than those which appear in amplitudes, but they are similar to cluster A-coordinates for the Grassmannian cluster algebra that it relevant to planar SYM.

$$
\begin{aligned}
& \langle\bar{i} \cap(i, j-1, j) \bar{l} \cap(k, k+1, l)\rangle=0 \\
& \langle\bar{i} \cap(i, j, j+1) \bar{l} \cap(k, k+1, l)\rangle=0 \\
& \langle\bar{i} \cap(i, j-1, j) \bar{l} \cap(k-1, k, l)\rangle=0 \\
& \langle\bar{i} \cap(i, j, j+1) \bar{l} \cap(k-1, k, l)\rangle=0
\end{aligned}
$$

All evidence to date says that for the simplest amplitudes in planar $\mathrm{N}=4$ Yang-Mills symbol entries are cluster coordinates on $\operatorname{Gr}(4, n)$.

Goncharov, Spradlin, Vergu; Golden, Paulos, Parker, Scherlis, AV

Quivers and Cluster Algebra

Encode a quiver by a skew-symmetric matrix

$$
\left(\begin{array}{cccccc}
0 & 1 & 0 & -1 & 0 & 0 \\
-1 & 0 & 1 & -1 & 0 & 0 \\
0 & -1 & 0 & -2 & 1 & 0 \\
1 & 1 & 2 & 0 & 1 & -1 \\
0 & 0 & -1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & -1 & 0
\end{array}\right)
$$

Cluster algebra is defined by
"a set of all cluster coordinates produced via mutations"

- Associate variable a_{i} (cluster coordinate) to each vertex i
- Define mutation relation at vertex k

$$
\begin{aligned}
& a_{k} a_{k}^{\prime}=\prod_{i \mid b_{i k}>0} a_{i}^{b_{i k}}+\prod_{i \mid b_{i k}<0} a_{i}^{-b_{i k}}, \\
& a_{2}^{\prime}=\frac{1}{a_{2}}\left(a_{1} a_{4}+a_{3}\right) \quad \begin{array}{l}
\text { Fomin, Zelevinsky } 2002 \\
\text { http://www.math.lsa.umich.edu/~fomin/cluster.html }
\end{array} \\
& \text { Cluster Algebra Portal }
\end{aligned}
$$

A_{2} Cluster Algebra

What does this have to do with amplitudes?

Amplitudes are functions on

$$
\operatorname{Gr}(4, n) /\left(\mathbb{C}^{*}\right)^{n-1} \simeq \operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)
$$

Drummond, Henn, Korchemsky, Sokatchev

Hodges

Let us look at Grassmannian cluster algebras.

Grassmannian cluster algebras

Gekhtman, Shapiro, Vainshtein

$$
\operatorname{Gr}(4, n)
$$

Fomin, Zelevinsky, Scott
$3 \times(n-5)$ initial quiver with initial cluster variables which we then mutate to obtain all cluster coordinates

Examples: $\mathrm{n}=6$ \& $\mathrm{n}=7$

$\langle 13\rangle,\langle 14\rangle,\langle 15\rangle$,	$\langle 14\rangle,\langle 15\rangle,\langle 24\rangle$,	$\langle 13\rangle,\langle 15\rangle,\langle 35\rangle$,	$\langle 13\rangle,\langle 14\rangle,\langle 46\rangle$,
$\langle 15\rangle,\langle 24\rangle,\langle 25\rangle$,	$\langle 14\rangle,\langle 24\rangle,\langle 46\rangle$,	$\langle 15\rangle,\langle 25\rangle,\langle 35\rangle$,	$\langle 13\rangle,\langle 35\rangle,\langle 36\rangle$,
$\langle 13\rangle,\langle 36\rangle,\langle 46\rangle$,	$\langle 24\rangle,\langle 25\rangle,\langle 26\rangle$,	$\langle 24\rangle,\langle 26\rangle,\langle 46\rangle$,	$\langle 25\rangle,\langle 26\rangle,\langle 35\rangle$,
$\langle 26\rangle,\langle 35\rangle,\langle 36\rangle$,	$\langle 26\rangle,\langle 36\rangle,\langle 46\rangle$.		

833 quivers 49 coordinates
$\langle i j k\rangle$
$\langle 1 \times 2,3 \times 4,5 \times 6\rangle, \quad\langle 1 \times 2,3 \times 4,5 \times 7\rangle$
$\langle 256\rangle$

$\langle 3 \times 4,5 \times 6,7 \times 1\rangle$
$\langle 157\rangle$

$$
\langle 1 \times 2,3 \times 4,5 \times 6\rangle=\langle 512\rangle\langle 634\rangle-\langle 534\rangle\langle 612\rangle
$$

Picture by D. Parker

What do cluster algebras have to do with amplitudes?

Goncharov, Spradlin, Vergu; Golden, Paulos, Parker, Scherlis, AV

- Symbols: all n-point amplitudes in SYM theory have symbol alphabet with subset of cluster A-coordinates on $\operatorname{Gr}(4, \mathrm{n})$
- Coproduct: for two-loop MHV amplitudes, only cluster X-coordinates appear (with particular

- Functions: there is a particular class of natural functions which exhibit these properties (cluster functions, A_{n}-functions)

Why is cluster structure useful?

- We can use cluster structure for advancing computations of multi-loop $\mathrm{N}=4$ Yang-Mills amplitudes.

much more in Spradlin's talk

- Examples: 3-loop 7-point symbol,
2-loop n-point function.

Goncharov, Spradlin, Vergu; Golden, Paulos, Parker, Scherlis, AV

Landau Singularities and Cluster Structure

- SSLLS involve more complicated four-brackets then those which appear in MHV amplitudes.
- These brackets resemble cluster A-coordinates in Gr(4,n) cluster algebra.

$$
\begin{aligned}
&\langle 1246\rangle\langle 1256\rangle\langle 1378\rangle\langle 3457\rangle-\langle 1246\rangle\langle 1257\rangle\langle 1378\rangle\langle 3456\rangle- \\
&\langle 1246\rangle\langle 1278\rangle\langle 1356\rangle\langle 3457\rangle+\langle 1278\rangle\langle 1257\rangle\langle 1346\rangle\langle 3456\rangle+ \\
&\langle 1236\rangle\langle 1278\rangle\langle 1457\rangle\langle 3456\rangle
\end{aligned}
$$

- It will be very interesting to understand the connection in detail.

Conclusion

- We initiated a study of Landau singularities of Feynman integrals relevant to one- and two-loop MHV amplitudes in $\mathrm{N}=4 \mathrm{SYM}$.
- A quantity appears in symbol of some Feynman integral/amplitude only it is Landau singularity.
- At one loop: SSLS/SLS correspond to first/second entries of the symbol.
- At two loops: all symbol entries are Landau singularities. We also found additional solutions which don't seem to have direct connection with symbol alphabet.

Open questions

- We have only taken first steps in exploring connection between symbology, cluster algebras and Landau singularities.
- Many questions remain:
- Role of numerator factors in SYM vs Landau singularity analysis
- Generalization to other cases/non-DCI theories, etc
- Symbol of integral vs symbol of amplitude
- Connection between cluster structure and Landau singularities
- Landau singularities from Amplituhedron

