

Landau Singularities and Symbology

Anastasia Volovich Brown University

Nordita, June 2016

1512.07909

with Tristan Dennen and Marcus Spradlin

Introduction

- A general goal of modern S-matrix program is to compute amplitudes with minimal effort.
- This relies on understanding both the **physical** principles they satisfy and **mathematical** properties they have.
- In best case scenarios, we would like these conditions to determine amplitudes **uniquely**.
- Our previous work has revealed that the mathematical structure of N=4 Yang-Mills amplitudes is at least partially dictated by cluster algebra structure.

Goncharov, Spradlin, Vergu; Golden, Paulos; Parker, Scherlis, AV

 The goal of my talk is to explore the most basic physical principle --- locality, expressed through the Landau equations --- from which we will see cluster coordinates emerge.

Dennen, Spradlin, AV 1512.07909

Motivated by Maldacena, Simons-Duffin, Zhiboedov 1509.03612

BETWEEN CLUSTER COORDINATES AND LANDAU SINGULARITIES

Plan

- Landau equations
- Solution: one and two-loop n-point MHV in N=4 SYM
- Connection with symbol alphabet of an amplitude
- Connection with cluster structure of an amplitude
- Conclusions and open questions

Landau Singularities

Landau equations for a given Feynman integral are a set of kinematic constraints that are necessary for the appearance of a pole or branch point in the integrated function

$$I = c \int \prod_{r=1}^{L} d^{D} \ell_{r} \int_{\alpha_{i} \ge 0} d^{\nu} \alpha \, \delta(1 - \sum_{i=1}^{\nu} \alpha_{i}) \frac{\mathcal{N}(\ell_{r}^{\mu}, p_{i}^{\mu}, \ldots)}{\mathcal{D}^{\nu}}$$

$$\mathcal{D} = \sum_{i=1}^{\nu} \alpha_i (q_i^2 - m_i^2) \,,$$

In this talk:

only focus on singularities describes by Landau equation

Landau Equations

$$\sum_{i \in \text{loop}} \alpha_i q_i^{\mu} = 0 \quad \forall \text{ loops},$$
$$\alpha_i (q_i^2 - m_i^2) = 0 \quad \forall i.$$

Landau 1959 Eden, Landshoff, Olive, Polkinghorne "The Analytic S-Matrix"

Landau Singularities

locus in external kinematic data where Landau equations admit solutions

Leading LS all $\alpha_i \neq 0$ LLS Subleading LS some $\alpha_i = 0$ SLLS, S²LLS etc

One-Loop Box

Landau 1959 Eden, Landshoff, Olive, Polkinghorne "The Analytic S-Matrix"

The Landau equations are easily solved for one-loop box integrals in four dimensions.

(and bubbles and triangles)

i + 1

$$p_i^{\mu} = x_i^{\mu} - x_{i-1}^{\mu}$$
$$x_{ij}^2 \equiv (x_i - x_j)^2$$
$$(x_i - x_j)^2 = (p_{i+1} + p_{i+2} + \dots + p_j)^2$$

The second Landau equation puts the propagators on-shell (no constraints on external kinematics).

$$(x - x_i)^2 = 0$$
, $(x - x_j)^2 = 0$, $(x - x_k)^2 = 0$, $(x - x_l)^2 = 0$

The solvability of the first equation gives a determinant constraint.

$$\alpha_i(x - x_i) + \alpha_j(x - x_j) + \alpha_k(x - x_k) + \alpha_l(x - x_l) = 0$$

Leading Landau Singularities

$$0 = (x_{ij}^2 x_{kl}^2 - x_{ik}^2 x_{jl}^2 + x_{il}^2 x_{jk}^2)^2 - 4x_{ij}^2 x_{jk}^2 x_{kl}^2 x_{il}^2$$

For generic integrals it becomes a hard problem, so next we focus on specific N=4 SYM integrals.

Planar N=4 SYM and Momentum Twistors

Null momentum

$$p_a^{\mu} \mapsto (p_a)_{\underline{\alpha}\,\underline{\dot{\alpha}}} \equiv p_a^{\mu}(\sigma_{\mu})_{\underline{\alpha}\underline{\dot{\alpha}}} \equiv \lambda_{\underline{\alpha}}^{(a)}\widetilde{\lambda}_{\underline{\dot{\alpha}}}^{(a)}$$

Momentum conservation

$$p_a \equiv x_a - x_{a-1}$$
 Z_{a-2}
 $Z = (\lambda, \mu) = (\lambda_{\alpha}, x_{\alpha \dot{\alpha}} \lambda^{\alpha})$
 $\langle ABCD
angle \equiv \epsilon_{IJKL} Z_A^I Z_B^J Z_C^K Z_D^L$

If x, y are points in Minkowski space associated to two lines (A, B), (C, D) in \mathbb{P}^3

$$(x-y)^2 = \frac{\langle A B C D \rangle}{\langle I A B \rangle \langle I C D \rangle}$$

$$= \int d^4x \frac{N}{(x-x_1)^2(x-x_2)^2(x-x_3)^2(x-x_4)^2}$$
$$\int_{AB} \frac{\langle 1234 \rangle^2}{\langle AB\,12 \rangle \langle AB\,23 \rangle \langle AB\,34 \rangle \langle AB\,41 \rangle}$$

Hodges Arkani-Hamed, Bourjaily, Cachazo, Trnka

Momentum twistors simplify the problem of analyzing solutions to Landau equations.

One-loop boxes

 \bar{a} is the plane (a-1, a, a+1)

$$\begin{split} \langle C(A,B)(D,E)(G,H) \rangle &\equiv \langle (A,B,C) \cap (D,E,C) \, G \, H \rangle \\ \langle (A,B,C) \cap (D,E,F) \, G \, H \rangle &= \langle A \, B \, C \, G \rangle \langle D \, E \, F \, H \rangle - \langle A \, B \, C \, H \rangle \langle D \, E \, F \, G \rangle \end{split}$$

One-loop n-point MHV in N=4 SYM

Bern, Dixon, Dunbar, Kosower

Arkani-Hamed, Bourjaily, Cachazo, Trnka

chiral pentagon

$\langle AB\overline{i}\cap\overline{j} angle\langle ijn1 angle$
$\langle ABi-1i\rangle\langle ABii+1\rangle\langle ABj-1j\rangle\langle ABjj+1\rangle\langle ABn1\rangle$

(LLS) $\langle i j n 1 \rangle \langle n 1 \overline{i} \cap \overline{j} \rangle = 0$

(A,B) = (i,j) or $(A,B) = \overline{i} \cap \overline{j}$ $\langle AB \, n \, 1 \rangle = 0$

(SLLS)	$ \begin{array}{l} \langle j(j-1,j+1)(i,i+1)(n,1)\rangle = 0 , \\ \langle j(j-1,j+1)(i-1,i)(n,1)\rangle = 0 , \\ \langle i(i-1,i+1)(j,j+1)(n,1)\rangle = 0 , \\ \langle i(i-1,i+1)(j-1,j)(n,1)\rangle = 0 , \\ \langle \bar{i}j\rangle\langle i\bar{j}\rangle = 0 . \end{array} $	Reduces to boxes
$(S^{2}LLS)$	$ \begin{array}{l} \langle i-1 \ i \ j-1 \ j \rangle \langle j-1 \ j \ n \ 1 \rangle \langle n \ 1 \ i-1 \ i \rangle = 0 , \\ \langle i \ i+1 \ j-1 \ j \rangle \langle j-1 \ j \ n \ 1 \rangle \langle n \ 1 \ i \ i+1 \rangle = 0 , \\ \langle i \ i \ i \ i \ i \ i \ i \ 1 \rangle \langle n \ 1 \ i \ i \ i \ 1 \rangle = 0 , \end{array} $	Reduces to triangles

Dennen, Spradlin, AV

 $\begin{array}{l} \langle i-1 \ i \ j \ j+1 \rangle \langle j \ j+1 \ n \ 1 \rangle \langle n \ 1 \ i-1 \ i \rangle = 0 \,, \\ \langle i \ i+1 \ j \ j+1 \rangle \langle j \ j+1 \ n \ 1 \rangle \langle n \ 1 \ i \ i+1 \rangle = 0 \,. \end{array}$

Two-loop n-point MHV in N=4 SYM

 $(S^{3}LLS)$

It would have been very difficult to solve Landau equations without momentum twistors.

 We have produced a long list of Landau singularities for one and two-loop N=4 SYM integrals.

 For amplitudes of generalized polylogarithm form there should be a close connection between Landau singularities and symbol alphabet.

> Maldacena, Simons-Duffin, Zhiboedov Abreu, Britto, Duhr, Gardi, Gronqvist

Symbol and Singularities

Many of the simplest (and hence best understood) amplitudes can be expressed in terms of a class of generalized polylogs defined by iterated integrals

$$Li_k(z) = \int_0^z Li_{k-1}(t)d\log t \qquad Li_1(z) = -\log(1-z)$$

$$G(a_k, a_{k-1}, \dots; z) = \int_0^z G(a_{k-1}, \dots; t) \frac{dt}{t - a_k}, \qquad G(z) \equiv 1$$

Example: 2-loop 6-point MHV

$$R_{6}^{(2)} = \sum_{\text{cyclic}} \text{Li}_{4} \left(-\frac{\langle 1234 \rangle \langle 2356 \rangle}{\langle 1236 \rangle \langle 2345 \rangle} \right) - \frac{1}{4} \text{Li}_{4} \left(-\frac{\langle 1246 \rangle \langle 1345 \rangle}{\langle 1234 \rangle \langle 1456 \rangle} \right)$$

+ products of $Li_k(-x)$ functions of lower weight

$$v_{1} = \frac{\langle 1246 \rangle \langle 1345 \rangle}{\langle 1234 \rangle \langle 1456 \rangle}, \qquad v_{2} = \frac{\langle 1235 \rangle \langle 2456 \rangle}{\langle 1256 \rangle \langle 2345 \rangle}, \qquad v_{3} = \frac{\langle 1356 \rangle \langle 2346 \rangle}{\langle 1236 \rangle \langle 3456 \rangle}$$
$$v_{1}^{+} = \frac{\langle 1456 \rangle \langle 2356 \rangle}{\langle 1256 \rangle \langle 3456 \rangle}, \qquad x_{2}^{+} = \frac{\langle 1346 \rangle \langle 2345 \rangle}{\langle 1234 \rangle \langle 3456 \rangle}, \qquad x_{3}^{+} = \frac{\langle 1236 \rangle \langle 1245 \rangle}{\langle 1234 \rangle \langle 1256 \rangle}$$
$$v_{1}^{-} = \frac{\langle 1234 \rangle \langle 2356 \rangle}{\langle 1236 \rangle \langle 2345 \rangle}, \qquad x_{2}^{-} = \frac{\langle 1256 \rangle \langle 1346 \rangle}{\langle 1236 \rangle \langle 1456 \rangle}, \qquad x_{3}^{-} = \frac{\langle 1245 \rangle \langle 3456 \rangle}{\langle 1456 \rangle \langle 2345 \rangle}$$

$$x_a^{\pm} = \frac{u_a}{2u_1u_2u_3}(u_1 + u_2 + u_3 - 1 \pm \sqrt{(u_1 + u_2 + u_3 - 1)^2 - 4u_1u_2u_3})$$

$$u_{a} = \frac{(p_{a} + p_{a+1})^{2}(p_{a+3} + p_{a+4})^{2}}{(p_{a} + p_{a+1} + p_{a+2})^{2}(p_{a+2} + p_{a+3} + p_{a+4})^{2}}$$

 $v_a = \frac{1}{u_a} - 1$

Example: 2-loop 6-point MHV

- Function $R_{6}^{(2)} = \sum_{\text{cyclic}} \text{Li}_{4} \left(-\frac{\langle 1234 \rangle \langle 2356 \rangle}{\langle 1236 \rangle \langle 2345 \rangle} \right) - \frac{1}{4} \text{Li}_{4} \left(-\frac{\langle 1246 \rangle \langle 1345 \rangle}{\langle 1234 \rangle \langle 1456 \rangle} \right) + \text{products of } \text{Li}_{k}(-x) \text{ functions of lower weight}$
- Symbol : much of the information about the analytic structure of such function is captured in an object called symbol

 $\langle 1256 \rangle \otimes \langle 1346 \rangle \otimes \langle 1246 \rangle \otimes \langle 1456 \rangle + \cdots$

7272 terms

Symbol of Transcendental Function

Goncharov, Spradlin, Vergu, AV

$$T_k \to S(T_k) = R_1 \otimes \cdots \otimes R_k$$

Symbol is an element of the k-fold tensor product of the multiplicative group of rational functions.

$$dT_k = \sum_i T_{k-1}^i d\log R_i \to S(T_k) = \sum_i S(T_{k-1}^i) \otimes R_i$$
$$log(R) \to R$$
$$Li_2(R) \to -(1-R) \otimes R$$

Symbol converts polylog functional equation into rational function identities.

Very useful for practical computations.

Symbol and Singularities

- Much of the information about the analytic structure of such function is captured in an object called symbol.
- We expect that the symbol entries appearing in any amplitude should be such that their zeros specify values of the external momenta where solutions of the Landau equations exist.

Maldacena, Simons-Duffin, Zhiboedov Abreu, Britto, Duhr, Gardi, Gronqvist

One-loop n-point MHV in N=4 SYM

Bern, Dixon, Dunbar, Kosower

Arkani-Hamed, Bourjaily, Cachazo, Trnka

$$\begin{array}{l} \operatorname{Li}_{2}\left(1-u_{n,i-1,i,j}\right)-\operatorname{Li}_{2}\left(1-u_{j,n,i,j-1}\right)-\operatorname{Li}_{2}\left(1-u_{i,j-1,n,i-1}\right)\\ -\operatorname{Li}_{2}\left(1-u_{i,j-1,n,i-1}\right)+\operatorname{Li}_{2}\left(1-u_{i,j-1,j,i-1}\right)\\ +\log\left(u_{j,n,i-1,j-1}\right)\log\left(u_{n,i-1,i,j}\right) \end{array}$$

$$u_{i,j,k,l} = \frac{\langle i\,i+1\,j\,j+1\rangle\langle k\,k+1\,l\,l+1\rangle}{\langle l\,l+1\,j\,j+1\rangle\langle k\,k+1i\,i+1\rangle} = \frac{x_{ij}^2 x_{kl}^2}{x_{lj}^2 x_{ki}^2}$$

Symbol:

	$\langle i-1 \ i \ j-1 \ j \rangle$,	$\langle i-1 \ i \ j \ j+1 \rangle$,	$\langle i-1 \ i \ n \ 1 \rangle$,	$\langle i \ i+1 \ j-1 \ j$
-irst Entry	$\langle i \ i+1 \ j \ j+1 \rangle$,	$\langle i \ i+1 \ n \ 1 \rangle$,	$\langle j-1 \ j \ n \ 1 \rangle$,	$\langle j \ j+1 \ n \ 1$

Second Entry

 $\begin{array}{l} \langle i-1 \ i \ n \ 1 \rangle, \ \langle i \ i+1 \ n \ 1 \rangle, \ \langle j-1 \ j \ n \ 1 \rangle \\ \langle \overline{i} j \rangle, \qquad \langle i(i-1,i+1)(j,j+1)(n,1) \rangle, \quad \langle i(i-1,i+1)(j-1,j)(n,1) \rangle \\ \langle \overline{j} i \rangle, \qquad \langle j(j-1,j+1)(i,i+1)(n,1) \rangle, \quad \langle j(j-1,j+1)(i-1,i)(n,1) \rangle \end{array}$

One-loop n-point MHV in N=4 SYM

$$= \frac{\langle AB\,\overline{i}\cap\overline{j}\rangle\langle i\,j\,n\,1\rangle}{\langle AB\,i-1\,i\rangle\langle AB\,i\,i+1\rangle\langle AB\,j-1\,j\rangle\langle AB\,j\,j+1\rangle\langle AB\,n\,1\rangle}$$

(LLS)	$\langle ijn1\rangle\langle n1\overline{i}\cap\overline{j} angle=0$	Prefactor
(SLLS)	$ \begin{split} &\langle j(j{-}1,j{+}1)(i,i{+}1)(n,1)\rangle = 0,\\ &\langle j(j{-}1,j{+}1)(i{-}1,i)(n,1)\rangle = 0,\\ &\langle i(i{-}1,i{+}1)(j,j{+}1)(n,1)\rangle = 0,\\ &\langle i(i{-}1,i{+}1)(j{-}1,j)(n,1)\rangle = 0,\\ &\langle \bar{i}j\rangle\langle i\bar{j}\rangle = 0. \end{split} $	Second entries of the symbol
$(S^{2}LLS)$	$ \begin{array}{l} \langle i{-}1 \hspace{0.1cm} i \hspace{0.1cm} j{-}1 \hspace{0.1cm} j \rangle \langle j{-}1 \hspace{0.1cm} j \hspace{0.1cm} n \hspace{0.1cm} 1 \rangle \langle n \hspace{0.1cm} 1 \hspace{0.1cm} i{-}1 \hspace{0.1cm} i \rangle = 0 \hspace{0.1cm} , \\ \langle i \hspace{0.1cm} i{+}1 \hspace{0.1cm} j{-}1 \hspace{0.1cm} j \rangle \langle j{-}1 \hspace{0.1cm} j \hspace{0.1cm} n \hspace{0.1cm} 1 \rangle \langle n \hspace{0.1cm} 1 \hspace{0.1cm} i{+}1 \rangle = 0 \hspace{0.1cm} , \\ \langle i{-}1 \hspace{0.1cm} i \hspace{0.1cm} j{\hspace{0.1cm} j{+}1 } \rangle \langle j \hspace{0.1cm} j{+}1 \hspace{0.1cm} n \hspace{0.1cm} 1 \rangle \langle n \hspace{0.1cm} 1 \hspace{0.1cm} i{-}1 \hspace{0.1cm} i \rangle = 0 \hspace{0.1cm} , \\ \langle i \hspace{0.1cm} i{+}1 \hspace{0.1cm} j \hspace{0.1cm} j{+}1 \rangle \langle j \hspace{0.1cm} j{+}1 \hspace{0.1cm} n \hspace{0.1cm} 1 \rangle \langle n \hspace{0.1cm} 1 \hspace{0.1cm} i{+}1 \rangle = 0 \hspace{0.1cm} . \end{array} $	First/Second entries of the symbol

Dennen, Spradlin, AV

Two-loop n-point MHV in N=4 SYM

- Explicit analytic results for the chiral double pentagon have only been obtained in n=6.
- Symbol of two-loop n-point MHV amplitude

$$\begin{array}{c|c} \langle a \ a+1 \ b \ b+1 \rangle & \bigotimes & \langle a \overline{b} \rangle & \bigotimes & \langle a \ a+1 \ b \ c \rangle \\ a, b \in \{i-1, i, j-1, j, k-1, k, l-1, l\} & \langle a(a-1, a+1)(c, c+1)(d, d+1) \rangle & \langle a \ a+1 \ \overline{b} \cap \overline{c} \rangle \\ a, b \in \{i, j, k, l\} \text{ and } c, d \in \{i-1, i, j-1, j, k-1, k, l-1, l\} & \mathsf{Caron-Huot} \end{array}$$

- It can be that individual chiral double pentagon integrals have an even larger symbol alphabet, with nontrivial cancelation in the sum which gives the amplitude.
- All of symbol entries are on the list of Landau singularities.

Dennen, Spradlin, AV

Landau Singularities, Symbology and Cluster Structure

- All symbol entries are Landau singularities.
- Can we make a stronger statement? Why various other Landau singlularities don't appear in the symbol?
- SSLLS involve more complicated four-brackets than those which appear in amplitudes, but they are similar to cluster A-coordinates for the Grassmannian cluster algebra that it relevant to planar SYM.

$$\begin{split} &\langle \overline{i} \cap (i, j - 1, j) \ \overline{l} \cap (k, k + 1, l) \rangle = 0 \\ &\langle \overline{i} \cap (i, j, j + 1) \ \overline{l} \cap (k, k + 1, l) \rangle = 0 \\ &\langle \overline{i} \cap (i, j - 1, j) \ \overline{l} \cap (k - 1, k, l) \rangle = 0 \\ &\langle \overline{i} \cap (i, j, j + 1) \ \overline{l} \cap (k - 1, k, l) \rangle = 0 \end{split}$$

All evidence to date says that for the simplest amplitudes in planar N=4 Yang-Mills symbol entries are cluster coordinates on Gr(4,n).

Goncharov, Spradlin, Vergu; Golden, Paulos, Parker, Scherlis, AV

Quivers and Cluster Algebra Encode a quiver by a skew-symmetric matrix

Cluster algebra is defined by

"a set of all cluster coordinates produced via mutations"

- Associate variable a_i (cluster coordinate) to each vertex i
- Define mutation relation at vertex k

$$a_{k}a'_{k} = \prod_{i|b_{ik}>0} a_{i}^{b_{ik}} + \prod_{i|b_{ik}<0} a_{i}^{-b_{ik}},$$

$$a_{k}a'_{k} = \prod_{i|b_{ik}>0} a_{i}^{b_{ik}} + \prod_{i|b_{ik}<0} a_{i}^{-b_{ik}},$$

$$a'_{2} = \frac{1}{a_{2}}(a_{1}a_{4} + a_{3})$$

Fomin, Zelevinsky 2002
Cluster Algebra Portal
http://www.math.lsa.umich.edu/~fomin/cluster.html

A_2 Cluster Algebra

$$a_1, a_2, a_3 = \frac{1+a_2}{a_1}, a_4 = \frac{1+a_1+a_2}{a_1a_2}, a_5 = \frac{1+a_1}{a_2}$$

$$\{a_1, a_2\}$$
 $a_{n+1} = \frac{1+a_n}{a_{n-1}}$

What does this have to do with amplitudes?

Amplitudes are functions on

$$\operatorname{Gr}(4, n)/(\mathbb{C}^*)^{n-1} \simeq \operatorname{Conf}_n(\mathbb{P}^3)$$

Drummond, Henn, Korchemsky, Sokatchev

Hodges

Let us look at Grassmannian cluster algebras.

Grassmannian cluster algebras

Gekhtman, Shapiro, Vainshtein

Gr(4,n)

Fomin, Zelevinsky, Scott

3 x (n-5) initial quiver with initial cluster variables which we then mutate to obtain all cluster coordinates

Examples: n=6 & n=7

14 quivers

15 coordinates

$\langle 14 \rangle, \langle 15 \rangle, \langle 24 \rangle,$
$\langle 14 \rangle, \langle 24 \rangle, \langle 46 \rangle,$
$\langle 24 \rangle, \langle 25 \rangle, \langle 26 \rangle,$
$\langle 26 \rangle, \langle 36 \rangle, \langle 46 \rangle.$

 $\langle ii+1 \rangle \quad \langle ij \rangle$

 $\begin{array}{ll} \langle 13\rangle, \langle 15\rangle, \langle 35\rangle, & \langle 13\rangle, \langle \\ \langle 15\rangle, \langle 25\rangle, \langle 35\rangle, & \langle 13\rangle, \langle \\ \langle 24\rangle, \langle 26\rangle, \langle 46\rangle, & \langle 25\rangle, \langle \end{array}$

 $\begin{array}{l} \langle 13\rangle, \langle 14\rangle, \langle 46\rangle, \\ \langle 13\rangle, \langle 35\rangle, \langle 36\rangle, \\ \langle 25\rangle, \langle 26\rangle, \langle 35\rangle, \end{array}$

 $\langle 124 \rangle \longleftarrow \langle 247 \rangle \longrightarrow \langle 5 \times 6, 7 \times 2, 3 \times 4 \rangle \longleftarrow \langle 3 \times 4, 5 \times 6, 7 \times 1 \rangle \longrightarrow \langle 157 \rangle$

833 quivers 49 coordinates $\langle ijk \rangle$

 $\langle 1 \times 2, 3 \times 4, 5 \times 6 \rangle, \qquad \langle 1 \times 2, 3 \times 4, 5 \times 7 \rangle$

 $\langle 1 \times 2, 3 \times 4, 5 \times 6 \rangle = \langle 512 \rangle \langle 634 \rangle - \langle 534 \rangle \langle 612 \rangle$ Picture by D. Parker

What do cluster algebras have to do with amplitudes?

Goncharov, Spradlin, Vergu; Golden, Paulos, Parker, Scherlis, AV

- Symbols: all n-point amplitudes in SYM theory have symbol alphabet with subset of cluster A-coordinates on Gr(4,n)
- Coproduct: for two-loop MHV amplitudes, only cluster X-coordinates appear (with particular Poisson brackets)

 ⁽¹²³⁵⁾⁽¹²⁷⁸⁾⁽²⁴⁵⁶⁾⁽⁵⁶⁷⁸⁾/_{(1256)(2578)(78(123) ∩ (456))}
 and ⁽²⁽¹³⁾⁽⁵⁶⁾⁽⁷⁸⁾⁾⁽⁵⁽¹²⁾⁽⁴⁶⁾⁽⁷⁸⁾⁾/_{(1256)(2578)(78(123) ∩ (456))}
 and ⁽²⁽¹³⁾⁽⁵⁶⁾⁽⁷⁸⁾⁾⁽⁵⁽¹²⁾⁽⁴⁶⁾⁽⁷⁸⁾⁾/_{(1256)(2578)(78(123) ∩ (456))}
- Functions: there is a particular class of natural functions which exhibit these properties (cluster functions, A_n-functions)

Why is cluster structure useful?

 We can use cluster structure for advancing computations of multi-loop N=4 Yang-Mills amplitudes.

much more in Spradlin's talk

Examples: 3-loop 7-point symbol,
 2-loop n-point function.

Goncharov, Spradlin, Vergu; Golden, Paulos, Parker, Scherlis, AV

Caron-Huot, He; Dixon, Drummond, Duhr, Henn, Pennington, Von Hippel

Landau Singularities and Cluster Structure

- SSLLS involve more complicated four-brackets then those which appear in MHV amplitudes.
- These brackets resemble cluster A-coordinates in Gr(4,n) cluster algebra.

```
 \begin{array}{l} \langle 1246 \rangle \langle 1256 \rangle \langle 1378 \rangle \langle 3457 \rangle - \langle 1246 \rangle \langle 1257 \rangle \langle 1378 \rangle \langle 3456 \rangle - \\ \langle 1246 \rangle \langle 1278 \rangle \langle 1356 \rangle \langle 3457 \rangle + \langle 1278 \rangle \langle 1257 \rangle \langle 1346 \rangle \langle 3456 \rangle + \\ \langle 1236 \rangle \langle 1278 \rangle \langle 1457 \rangle \langle 3456 \rangle \end{array}
```

• It will be very interesting to understand the connection in detail.

in progress

Conclusion

- We initiated a study of Landau singularities of Feynman integrals relevant to one- and two-loop MHV amplitudes in N=4 SYM.
- A quantity appears in symbol of some Feynman integral/amplitude only it is Landau singularity.
- At one loop: SSLS/SLS correspond to first/second entries of the symbol.
- At two loops: all symbol entries are Landau singularities. We also found additional solutions which don't seem to have direct connection with symbol alphabet.

Open questions

 We have only taken first steps in exploring connection between symbology, cluster algebras and Landau singularities.

- Many questions remain:
 - Role of numerator factors in SYM vs Landau singularity analysis
 - Generalization to other cases/non-DCI theories, etc
 - Symbol of integral vs symbol of amplitude
 - Connection between cluster structure and Landau singularities

Dennen

- Landau singularities from Amplituhedron