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What are integration-by-parts identities?

Integration-by-parts identities arise from the vanishing integration
of total derivatives, [Chertyrkin, Tchakov, Nucl. Phys. B 192, 159 (1981)]∫ L∏

i=1

dD`i
πD/2

L∑
j=1

∂

∂`µj

vµj P

Da1
1 · · ·D

ak
k

= 0 .

where P and vµj are polynomials in `i , pj , and ai ∈ N.

An example of an IBP relation (χ ≡ t/s):
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How are integration-by-parts identities useful?

Integration-by-parts (IBP) identities play a central role in loop-level
QFT calculations.

Reduction. IBP identities enable the reduction of any set of
loop integrals to a typically much smaller set of master
integrals.

The reduction is quite dramatic:
1) gg → gg at two loops: ∼ 400 −→ 13 integrals
2) gg → H at N3LO in αs : 5 · 108 −→ ∼ 1000 integrals.

Computing master integrals. Using IBP reduction, the
master integrals Ij can be computed via differential equations:

[T. Gehrmann and E. Remiddi, Nucl. Phys., B580, 485 (2000)]

∂

∂xm
I(x , ε) = Am(x , ε)I(x , ε) ,

where xm denotes a kinematical invariant.
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IBP reductions on unitarity cuts

Key idea: study IBP reductions on generalized-unitarity cuts

1

Di
−→ δ(Di ) , i ∈ S

where S can be an arbitrary subset of propagators. Also: [Ita, 1510.05626]

The cuts break the construction of IBPs into simpler pieces.

Any integral missing any of the propagators in S is set to zero
by the cut.

By choosing appropriate sets S1, . . . ,Sc of cuts we can
reconstruct all terms in the IBPs.
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Setup: D-dimensional integration measure

I will focus on the two-loop case. A generic integral takes the form

I (2) =

∫
dD`1
πD/2

dD`2
πD/2

P(`1, `2)

D1 · · ·Dk
.

Decompose `i = `i + `⊥i where `i ∈ R1,3, and change to the
hyperspherical coordinates µii ≡ −(`⊥i )2 ≥ 0 and µ12 ≡ −`⊥1 · `⊥2 .

The integral then takes the form

I (2) =
2D−6

π5Γ(D − 5)

∫ ∞
0

dµ11

∫ ∞
0

dµ22

∫ √µ11µ22

−√µ11µ22

dµ12

×
(
µ11µ22 − µ2

12

) D−7
2

∫
d4`1 d4`2

P(`i , µij)

D1 · · ·Dk
.
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Useful variables

The use of cuts motivates the following choice of variables:

zi ≡

{
Di 1 ≤ i ≤ k

gi−k k + 1 ≤ i ≤ m .

The gj are irreducible numerator insertions. If the gj are chosen as
1
2(`i + Kj)

2, the map {`i , µij} −→ {z1, . . . , zm} has a polynomial
inverse.

A generic two-loop integral now reads [Baikov, Phys.Lett. B385 (1996) 404-410]

I
(2)
n≥5 =

2D−6

π5Γ(D − 5)J

∫ 11∏
i=1

dzi F (z)
D−7
2

P(z)

z1 · · · zk
.

Caveat for multiplicity n ≤ 4. ∃ω : pi · ω = 0. The component of
`i along ω integrates out, replacing D−Dc → D−(Dc−1) above,
and leaving 9 zj .
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Example: Zurich-flag cut

Let us find the IBP reductions of the double-box integral. We start
by allowing only integrals which contain all Zurich-flag propagators:

Define Scut = {1, 2, 4, 5, 7}. We use the z̃i -variables

z̃i = Di , i = 1, . . . , 7, z̃8 =
1

2
(`1 + p4)2 , z̃9 =

1

2
(`2 + p1)2 .

After cutting 1
z̃i
→ δ(z̃i ), i ∈ Scut, the double-box integral takes the

form

IDB
cut [P] =

∫ 9∏
i=1

dz̃i
F (z̃)

D−6
2

z̃3 z̃6

∏
j∈Scut

δ(z̃j)P(z̃)
∣∣∣
z̃Scut=0

.

As the cut sets z̃{1,2,4,5,7} to zero, we set z{1,2,3,4} = z̃{3,6,8,9} in
the following.
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Generic total derivative

After integrating out the delta functions and relabeling we have

IDB
cut [P] =

∫
dz1 dz2 dz3 dz4

z1z2
F (z)

D−6
2 P(z) .

An IBP relation corresponds to a total derivative or, equivalently,
an exact diff. form. The generic exact diff. form of the form IDB

cut is

0 =

∫
d

[ 4∑
i=1

(−1)i+1ai (z)F (z)
D−6
2

z1z2
dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dz4

]

=

∫ [ 4∑
i=1

∂

∂zi

(
ai (z)F (z)

D−6
2

z1z2

)]
dz1 ∧ · · · ∧ dz4

=

∫ [ 4∑
i=1

(∂ai
∂zi

+
D − 6

2F
ai
∂F

∂zi

)
−
∑
j=1,2

aj
zj

]
F (z)

D−6
2

z1z2
dz1 ∧ · · · ∧ dz4 .

The red term corresponds to an integral in (D − 2) dimensions,
and the purple term in general produces squared propagators.
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IBPs from syzygy equations

To get the generic exact form

0 =

∫ [ 4∑
i=1

(∂ai
∂zi

+
D − 6

2F
ai
∂F

∂zi

)
−
∑
j=1,2

aj
zj

]
F (z)

D−6
2

z1z2
dz1 ∧ · · · ∧ dz4

to correspond to an IBP relation in D dimensions with only
single-power propagators, we demand that each term is polynomial,

4∑
i=1

D − 6

2F
ai
∂F

∂zi
= b̃ =⇒

4∑
i=1

ai
∂F

∂zi
+ bF = 0

(
with b = 2

6−D b̃
)

aj = b̃jzj =⇒ aj + bjzj = 0 (with bj = −b̃j) ,

with ai , bi , b polynomials in z . Such equations, with polynomial
solutions, are known in algebraic geometry as syzygy equations.

[Gluza, Kajda, Kosower, PRD 83 (2011) 045012], [Schabinger, JHEP 1201 (2012) 077], [Ita, 1510.05626]

−→ [Harald Ita’s talk]

Obtain IBPs by plugging (ai , bi , b) into the top equation.
Note: (qai , qbi , qb) is also a solution, for polynomial q.
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Complete set of cuts for IBPs

To find the complete IBP reduction, we must consider the cuts
associated with “uncollapsible” masters:

A bit more explicitly, the cuts we need to consider are
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Example of IBP reduction obtained by our approach

By solving the syzygy equations on the following cuts

we can reconstruct the complete IBP reduction by merging the
partial results.

An example of an IBP relation produced by our method (χ ≡ t/s):
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Overview of our algorithm for generating IBPs

1 Find a set of masters. Solve syzygy equations without cuts
for numerical external kinematics, then row-reduce linear
equations and decide on a set of masters.

2 Find the subset of uncollapsible masters. Find the subset
of masters with the property that their graphs cannot be
obtained by adding propagators to another master.

3 Solve syzygy equations on cuts. For each uncollapsible
master, solve the syzygy eqs. on the cut Scut where all its
propagators are on shell. Multiply q =

∏
i /∈Scut D

ai
i onto the

syzygy solutions and feed back into ansatz to find the IBP
identities.

4 Solve IBP identities linearly to get reductions.
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Timing compared to other IBP solvers

CPU time for reduction of IDB[(`1·k4)n1(`2·k1)n2 ] with 0 ≤ ni ≤ 4,
0 ≤ n1+n2 ≤ 6:

# of external masses FIRE 5 (in C++ mode) syzygy approach

zero 350 s 39 s
one 560 s 162 s

The origins of this are presumably

The variables zi simplify the syzygy equations.

The syzygy equations are solved on cuts. As a result, fewer
variables are involved in the polynomial eqs. This greatly
speeds up the step of solving.

The cuts block-diagonalize the linear system to be inverted
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Conclusions and Outlook

We have developed a new general method for generating
integration-by-parts reductions.

The method is based on reconstructing the IBP reductions on
a set of generalized cuts, through solving polynomial
equations, and merging the partial results.

In the cases tested so far, the method in its current
implementation is roughly a factor of 5 faster than publically
available IBP solvers.

Ongoing work:

1) optimization of syzygy and linear solving

2) generalization to squared propagators;
linear (eikonal) propagators; µ-integrals.
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