Integration-by-parts reductions from unitarity cuts and algebraic geometry

Kasper J. Larsen
ETH Zürich

Aspects of Amplitudes
Nordita, June 27, 2016
(based on Phys. Rev. D 93 (2016) 041701 with Yang Zhang)

What are integration-by-parts identities?

Integration-by-parts identities arise from the vanishing integration of total derivatives,
[Chertyrkin, Tchakov, Nucl. Phys. B 192, 159 (1981)]

$$
\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\pi^{D / 2}} \sum_{j=1}^{L} \frac{\partial}{\partial \ell_{j}^{\mu}} \frac{v_{j}^{\mu} P}{D_{1}^{\alpha_{1}} \cdots D_{k}^{a^{2 k}}}=0 .
$$

where P and v_{j}^{μ} are polynomials in ℓ_{i}, p_{j}, and $a_{i} \in \mathbb{N}$.
An example of an IBP relation ($\chi \equiv t / s$):

How are integration-by-parts identities useful?

Integration-by-parts (IBP) identities play a central role in loop-level QFT calculations.

- Reduction. IBP identities enable the reduction of any set of loop integrals to a typically much smaller set of master integrals.
The reduction is quite dramatic:

1) $g g \rightarrow g g$ at two loops: $\quad \sim 400 \longrightarrow 13$ integrals
2) $g g \rightarrow H$ at N^{3} LO in $\alpha_{s}: 5 \cdot 10^{8} \longrightarrow \sim 1000$ integrals.

- Computing master integrals. Using IBP reduction, the master integrals \mathcal{I}_{j} can be computed via differential equations:
[T. Gehrmann and E. Remiddi, Nucl. Phys., B580, 485 (2000)]

$$
\frac{\partial}{\partial x_{m}} \boldsymbol{\mathcal { I }}(\boldsymbol{x}, \epsilon)=A_{m}(\boldsymbol{x}, \epsilon) \mathcal{I}(\boldsymbol{x}, \epsilon)
$$

where x_{m} denotes a kinematical invariant.

IBP reductions on unitarity cuts

Key idea: study IBP reductions on generalized-unitarity cuts

$$
\frac{1}{D_{i}} \longrightarrow \delta\left(D_{i}\right), \quad i \in S
$$

where S can be an arbitrary subset of propagators. Also: [lta, 1510.05626]

The cuts break the construction of IBPs into simpler pieces.

- Any integral missing any of the propagators in S is set to zero by the cut.
- By choosing appropriate sets S_{1}, \ldots, S_{c} of cuts we can reconstruct all terms in the IBPs.

Setup: D-dimensional integration measure

I will focus on the two-loop case. A generic integral takes the form

$$
I^{(2)}=\int \frac{\mathrm{d}^{D} \ell_{1}}{\pi^{D / 2}} \frac{\mathrm{~d}^{D} \ell_{2}}{\pi^{D / 2}} \frac{P\left(\ell_{1}, \ell_{2}\right)}{D_{1} \cdots D_{k}}
$$

Decompose $\ell_{i}=\bar{\ell}_{i}+\ell_{i}^{\perp}$ where $\bar{\ell}_{i} \in \mathbb{R}^{1,3}$, and change to the hyperspherical coordinates $\mu_{i i} \equiv-\left(\ell_{i}^{\perp}\right)^{2} \geq 0$ and $\mu_{12} \equiv-\ell_{1}^{\perp} \cdot \ell \frac{\perp}{2}$.

The integral then takes the form

$$
\begin{array}{r}
I^{(2)}=\frac{2^{D-6}}{\pi^{5} \Gamma(D-5)} \int_{0}^{\infty} \mathrm{d} \mu_{11} \int_{0}^{\infty} \mathrm{d} \mu_{22} \int_{-\sqrt{\mu_{11} \mu_{22}}}^{\sqrt{\mu_{11} \mu_{22}}} \mathrm{~d} \mu_{12} \\
\quad \times\left(\mu_{11} \mu_{22}-\mu_{12}^{2}\right)^{\frac{D-7}{2}} \int \mathrm{~d}^{4} \bar{\ell}_{1} \mathrm{~d}^{4} \bar{\ell}_{2} \frac{P\left(\bar{\ell}_{i}, \mu_{i j}\right)}{D_{1} \cdots D_{k}} .
\end{array}
$$

Useful variables

The use of cuts motivates the following choice of variables:

$$
z_{i} \equiv\left\{\begin{array}{lr}
D_{i} & 1 \leq i \leq k \\
g_{i-k} & k+1 \leq i \leq m
\end{array}\right.
$$

The g_{j} are irreducible numerator insertions. If the g_{j} are chosen as $\frac{1}{2}\left(\ell_{i}+K_{j}\right)^{2}$, the map $\left\{\bar{\ell}_{i}, \mu_{i j}\right\} \longrightarrow\left\{z_{1}, \ldots, z_{m}\right\}$ has a polynomial inverse.

A generic two-loop integral now reads

$$
l_{n \geq 5}^{(2)}=\frac{2^{D-6}}{\pi^{5} \Gamma(D-5) J} \int \prod_{i=1}^{11} \mathrm{~d} z_{i} F(z)^{\frac{D-7}{2}} \frac{P(z)}{z_{1} \cdots z_{k}}
$$

Caveat for multiplicity $n \leq 4$. $\exists \omega: p_{i} \cdot \omega=0$. The component of $\bar{\ell}_{i}$ along ω integrates out, replacing $D-D_{c} \rightarrow D-\left(D_{c}-1\right)$ above, and leaving $9 z_{j}$.

Example: Zurich-flag cut

Let us find the IBP reductions of the double-box integral. We start by allowing only integrals which contain all Zurich-flag propagators:

Define $S_{\text {cut }}=\{1,2,4,5,7\}$. We use the \widetilde{z}_{i}-variables

$$
\widetilde{z}_{i}=D_{i}, \quad i=1, \ldots, 7, \quad \widetilde{z}_{8}=\frac{1}{2}\left(\ell_{1}+p_{4}\right)^{2}, \quad \widetilde{z}_{9}=\frac{1}{2}\left(\ell_{2}+p_{1}\right)^{2} .
$$

After cutting $\frac{1}{\widetilde{z}_{i}} \rightarrow \delta\left(\widetilde{z}_{i}\right), i \in S_{\text {cut }}$, the double-box integral takes the form

$$
I_{\mathrm{cut}}^{\mathrm{DB}}[P]=\left.\int \prod_{i=1}^{9} \mathrm{~d} \widetilde{z}_{i} \frac{F(\widetilde{z})^{\frac{D-6}{2}}}{\widetilde{z}_{3} \widetilde{z}_{6}} \prod_{j \in S_{\text {cut }}} \delta\left(\widetilde{z}_{j}\right) P(\widetilde{z})\right|_{\tilde{z}_{\text {cut }}=0}
$$

As the cut sets $\widetilde{z}_{\{1,2,4,5,7\}}$ to zero, we set $z_{\{1,2,3,4\}}=\widetilde{z}_{\{3,6,8,9\}}$ in the following.

Generic total derivative

After integrating out the delta functions and relabeling we have

$$
I_{\mathrm{cut}}^{\mathrm{DB}}[P]=\int \frac{\mathrm{d} z_{1} \mathrm{~d} z_{2} \mathrm{~d} z_{3} \mathrm{~d} z_{4}}{z_{1} z_{2}} F(\boldsymbol{z})^{\frac{D-6}{2}} P(\boldsymbol{z}) .
$$

An IBP relation corresponds to a total derivative or, equivalently, an exact diff. form. The generic exact diff. form of the form $I_{\text {cut }}^{\mathrm{DB}}$ is

$$
\begin{aligned}
0 & =\int \mathrm{d}\left[\sum_{i=1}^{4} \frac{(-1)^{i+1} a_{i}(z) F(z)^{\frac{D-6}{2}}}{z_{1} z_{2}} \mathrm{~d} z_{1} \wedge \cdots \wedge \widehat{\mathrm{~d} z_{i}} \wedge \cdots \wedge \mathrm{~d} z_{4}\right] \\
& =\int\left[\sum_{i=1}^{4} \frac{\partial}{\partial z_{i}}\left(\frac{a_{i}(z) F(z)^{\frac{D-6}{2}}}{z_{1} z_{2}}\right)\right] \mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{4} \\
& =\int\left[\sum_{i=1}^{4}\left(\frac{\partial a_{i}}{\partial z_{i}}+\frac{D-6}{2 F} a_{i} \frac{\partial F}{\partial z_{i}}\right)-\sum_{j=1,2} \frac{a_{j}}{z_{j}}\right] \frac{F(z)^{\frac{D-6}{2}}}{z_{1} z_{2}} \mathrm{~d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{4}
\end{aligned}
$$

The red term corresponds to an integral in $(D-2)$ dimensions, and the purple term in general produces squared propagators.

IBPs from syzygy equations

To get the generic exact form

$$
0=\int\left[\sum_{i=1}^{4}\left(\frac{\partial a_{i}}{\partial z_{i}}+\frac{D-6}{2 F} a_{i} \frac{\partial F}{\partial z_{i}}\right)-\sum_{j=1,2} \frac{a_{j}}{z_{j}}\right] \frac{F(z)^{\frac{D-6}{2}}}{z_{1} z_{2}} \mathrm{~d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{4}
$$

to correspond to an IBP relation in D dimensions with only single-power propagators, we demand that each term is polynomial,

$$
\begin{aligned}
\sum_{i=1}^{4} \frac{D-6}{2 F} a_{i} \frac{\partial F}{\partial z_{i}}=\widetilde{b} & \Longrightarrow \sum_{i=1}^{4} a_{i} \frac{\partial F}{\partial z_{i}}+b F=0 \quad\left(\text { with } \quad b=\frac{2}{6-D} \widetilde{b}\right) \\
a_{j}=\widetilde{b}_{j} z_{j} & \Longrightarrow \quad a_{j}+b_{j} z_{j}=0 \quad\left(\text { with } \quad b_{j}=-\widetilde{b}_{j}\right)
\end{aligned}
$$

with a_{i}, b_{i}, b polynomials in z. Such equations, with polynomial solutions, are known in algebraic geometry as syzygy equations.
[Gluza, Kajda, Kosower, PRD 83 (2011) 045012], [Schabinger, JHEP 1201 (2012) 077], [Ita, 1510.05626]
\longrightarrow [Harald Ita's talk]
Obtain IBPs by plugging ($\left.a_{i}, b_{i}, b\right)$ into the top equation.
Note: $\left(q a_{i}, q b_{i}, q b\right)$ is also a solution, for polynomial q.

Complete set of cuts for IBPs

To find the complete IBP reduction, we must consider the cuts associated with "uncollapsible" masters:

A bit more explicitly, the cuts we need to consider are

By solving the syzygy equations on the following cuts

reduction by merging the partial results.

An example of an IBP relation produced by our method ($\chi \equiv t / s$):

$$
+\frac{9(3 D-10)(3 D-8)}{4(D-4)^{2} s^{2} \chi}
$$

Overview of our algorithm for generating IBPs

(1) Find a set of masters. Solve syzygy equations without cuts for numerical external kinematics, then row-reduce linear equations and decide on a set of masters.
(2) Find the subset of uncollapsible masters. Find the subset of masters with the property that their graphs cannot be obtained by adding propagators to another master.
(3) Solve syzygy equations on cuts. For each uncollapsible master, solve the syzygy eqs. on the cut $S_{\text {cut }}$ where all its propagators are on shell. Multiply $q=\prod_{i \notin S_{\text {cut }}} D_{i}^{a_{i}}$ onto the syzygy solutions and feed back into ansatz to find the IBP identities.
(9) Solve IBP identities linearly to get reductions.

Timing compared to other IBP solvers

CPU time for reduction of $I_{\mathrm{DB}}\left[\left(\ell_{1} \cdot k_{4}\right)^{n_{1}}\left(\ell_{2} \cdot k_{1}\right)^{n_{2}}\right]$ with $0 \leq n_{i} \leq 4$, $0 \leq n_{1}+n_{2} \leq 6$:

\# of external masses	FIRE 5 (in C + + mode)	syzygy approach
zero	350 s	39 s
one	560 s	162 s

The origins of this are presumably

- The variables z_{i} simplify the syzygy equations.
- The syzygy equations are solved on cuts. As a result, fewer variables are involved in the polynomial eqs. This greatly speeds up the step of solving.
- The cuts block-diagonalize the linear system to be inverted

Conclusions and Outlook

- We have developed a new general method for generating integration-by-parts reductions.
- The method is based on reconstructing the IBP reductions on a set of generalized cuts, through solving polynomial equations, and merging the partial results.
- In the cases tested so far, the method in its current implementation is roughly a factor of 5 faster than publically available IBP solvers.
- Ongoing work:

1) optimization of syzygy and linear solving
2) generalization to squared propagators;
linear (eikonal) propagators; μ-integrals.
