
 Diagrammatic Hopf algebra of cut Feynman INTEGRALS: THE ONE-LOOP CASE

Samuel Abreu - Albert-Ludwigs-Universität Freiburg
In collaboration with: Ruth Britto, Claude Duhr and Einan Gardi

Aspects of Amplitudes, July 1, 2016

Motivation - One-Loop Feynman diagrams

Landau conditions: contracting and cutting propagators
Cutkosky rules: relation between cuts and discontinuities
'First entry condition': physical thresholds or masses in first entry
Reverse unitarity: same relations for cut and uncut integrals
Differential equations: written in dlog-form

Can all these be unified in a single picture?

Good candidate is coproduct of Hopf algebra of Feynman integrals
[Goncharov, series of papers; Duhr, JHEP 1208 (2012) 043]

GOAL - ONE-LOOP FEYNMAN DIAGRAMS

Some coproduct entries have graphical representation:

- entries related to discontinuities as cut integrals
[SA, Britto, Duhr, Gardi, JHEP 1410 (2014) 125; SA, Britto, Grönqvist, JHEP 1507 (2015) 111]
- evidence for first entries as uncut integrals
[M. Spradlin, A. Volovich; JHEP 1111 (2011) 084]

Is there a completely diagrammatic representation of the full coproduct of any one-loop Feynman integral?

In this presentation we show that yes:

- the above properties are given a diagrammatic representation
- we find a recursive construction of the symbol of any (basis)
one-loop integral

Outline

Brief introduction to algebras, coalgebras and Hopf algebras

The Hopf algebra of MPLs and the Hopf algebra of Feynman graphs

One-loop Feynman integrals, cut and uncut

A map between the diagrammatic coproduct and the coproduct of MPLs

Conclusion and outlook

Brief introduction to Algebras, coalgebras and Hopf algebras

ALgEBRA

An algebra over a field K (like \mathbb{Q}, \mathbb{R} or \mathbb{C}) is a K-vector space A together with a product μ (and a unit ε):

$$
\begin{array}{rlrl}
\mu: A \otimes A \longrightarrow A & & \epsilon: K \longrightarrow A \\
& (a, b) & \longmapsto \mu(a \otimes b) \equiv a \cdot b &
\end{array}
$$

Associativity of the product:
$\mu(\mathrm{id} \otimes \mu)=\mu(\mu \otimes \mathrm{id})$

$$
\begin{aligned}
& \mu(\mathrm{id} \otimes \mu)(a \otimes b \otimes c)=\mu(a \otimes(b \cdot c))=a \cdot(b \cdot c) \\
& \mu(\mu \otimes \mathrm{id})(a \otimes b \otimes c)=\mu((a \cdot b) \otimes c)=(a \cdot b) \cdot c
\end{aligned}
$$

COALGEBRA

A coalgebra is defined as the dual of an algebra, equipped with a coproduct Δ (dual to the product) and a counit η (dual to the unit). For simplicity, I assume the dual of A is A itself. Then:

$$
\Delta: A \longrightarrow A \otimes A \quad \eta: A \longrightarrow K
$$

Cossociativity of the coproduct is dual to associativity of the product:

$$
(\mathrm{id} \otimes \Delta) \Delta=(\Delta \otimes \mathrm{id}) \Delta
$$

Bialgebra and Hopf algebra

A bialgebra is an algebra that is at the same time a coalgebra (as our A), for which the product and the coproduct are compatible:

$$
\begin{gathered}
\Delta(a \cdot b)=\Delta(a) \cdot \Delta(b) \\
\left(a_{1} \otimes a_{2}\right) \cdot\left(b_{1} \otimes b_{2}\right)=\left(a_{1} \cdot b_{1}\right) \otimes\left(a_{2} \cdot b_{2}\right)
\end{gathered}
$$

A Hopf algebra is a bialgebra equipped with an antipode $S: A \longrightarrow A$:

$$
S(a \cdot b)=S(b) \cdot S(a) ; \quad \mu(\mathrm{id} \otimes S) \Delta=\mu(S \otimes \mathrm{id}) \Delta=0
$$

for reviews, [Duhr, JHEP 1208 (2012) 043; Weinzierl, arXiv:1506.09119]

The Hopf algebra of MPLs and the Hopf algebra of Feynman GRAPHS

EXAMPLE 1: MPL AND THEIR COPRODUCT

Multiple Polylogarithms:

$$
G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \quad a_{i}, z \in \mathbb{C}
$$

A large class of Feynman diagrams can be written in terms of MPL.
[Goncharov, series of papers]

EXAMPLE 1: MPL AND THEIR COPRODUCT

Multiple Polylogarithms:

$$
G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \quad a_{i}, z \in \mathbb{C}
$$

A large class of Feynman diagrams can be written in terms of MPL.

[Goncharov, series of papers]
\mathbb{Q}-vector space of MPL forms a Hopf algebra \mathcal{H} :
Graded by weight: $\mathcal{H}=\bigoplus_{n=0}^{\infty} \mathcal{H}_{n}$; [weight of $G\left(a_{1}, \ldots, a_{n} ; z\right)$ is n]

Coproduct respects weight: $\mathcal{H}_{n} \xrightarrow{\Delta^{\text {MPL }}} \bigoplus_{k=0}^{n} \mathcal{H}_{k} \otimes \mathcal{H}_{n-k}$;
Action of Δ^{MPL} on $\mathcal{H}_{n}: \Delta^{\mathrm{MPL}}=\sum_{p+q=n} \Delta_{p, q}^{\mathrm{MPL}} ; \quad\left[\Delta_{p, q}^{\mathrm{MPL}}\right.$ takes values in $\left.\mathcal{H}_{p} \otimes \mathcal{H}_{q}\right]$

EXAMPLE 1: MPL AND THEIR COPRODUCT

Example: $\mathrm{Li}_{3}(x)=-G(0,0,1 ; z)$, function of weight 3 .
$\Delta^{\mathrm{MPL}}\left(\mathrm{Li}_{3}(x)\right)=\underbrace{1 \otimes \mathrm{Li}_{3}(x)}_{\Delta_{0,3}^{\text {MPL }}}+\underbrace{\mathrm{Li}(x) \otimes 1}_{\Delta_{3,0}^{\text {MML }}}+\underbrace{\operatorname{Li}_{2}(x) \otimes \log (x)}_{\Delta_{2,1}^{\text {MPL }}}+\underbrace{\mathrm{Li}_{1}(x) \otimes \frac{\log ^{2}(x)}{2}}_{\Delta_{1,2}^{\text {MpL }}}$

EXAMPLE 1: MPL AND THEIR COPRODUCT

Example: $\mathrm{Li}_{3}(x)=-G(0,0,1 ; z)$, function of weight 3 .
$\Delta^{\mathrm{MPL}}\left(\mathrm{Li}_{3}(x)\right)=\underbrace{1 \otimes \operatorname{Li}_{3}(x)}_{\Delta_{0,3}^{\text {MPL }}}+\underbrace{\operatorname{Li}_{3}(x) \otimes 1}_{\Delta_{3,0}^{\text {MPL }}}+\underbrace{\operatorname{Li}_{2}(x) \otimes \log (x)}_{\Delta_{2,1}^{\text {MPL }}}+\underbrace{\operatorname{Li}_{1}(x) \otimes \frac{\log ^{2}(x)}{2}}_{\Delta_{1,2}^{\text {MpL }}}$

Coassociativity of the coproduct of MPL: $\Delta_{1,1}^{\mathrm{MPL}}\left(\Delta^{\mathrm{MPL} \mathrm{Li}_{3}(x)}\right)$
$\left(\Delta_{1,1}^{\mathrm{MPL}} \otimes \mathrm{id}\right)\left[\Delta^{\mathrm{MPL}}\left(\mathrm{Li}_{3}(x)\right)\right]=\left(\Delta_{1,1}^{\mathrm{MPL}} \otimes \mathrm{id}\right)\left[\Delta_{2,1}^{\mathrm{MPL}}\left(\mathrm{Li}_{3}(x)\right)\right]=\mathrm{Li}_{1}(x) \otimes \log (x) \otimes \log (x)$
$\left(\mathrm{id} \otimes \Delta_{1,1}^{\mathrm{MPL}}\right)\left[\Delta^{\mathrm{MPL}}\left(\mathrm{Li}_{3}(x)\right)\right]=\left(\mathrm{id} \otimes \Delta_{1,1}^{\mathrm{MPL}}\right)\left[\Delta_{1,2}^{\mathrm{MPL}}\left(\mathrm{LL}_{3}(x)\right)\right]=\underbrace{\mathrm{Li}_{1}(x) \otimes \log (x) \otimes \log (x)}_{=\Delta_{1,1,1}^{\mathrm{MP}}(\mathrm{Li}(x))}$
Symbol tensor and maximal iteration of coproduct: $\mathcal{S}(F) \sim \Delta_{1, \ldots,}^{\mathrm{MPL}}$

EXAMPLE 1: MPL COPRODUCT AND DISCONTINUITIES

Discontinuities act on the first entry of the coproduct

$$
\Delta^{\mathrm{MPL}} \text { Disc }=(\text { Disc } \otimes \mathrm{id}) \Delta^{\mathrm{MPL}}
$$

EXAMPLE 1: MPL COPRODUCT AND DISCONTINUITIES

Discontinuities act on the first entry of the coproduct

$$
\Delta^{\mathrm{MPL}} \text { Disc }=(\text { Disc } \otimes \mathrm{id}) \Delta^{\mathrm{MPL}}
$$

- Discontinuity lowers weight by one: $\operatorname{Disc}\left(F_{n}\right)=2 \pi i \tilde{F}_{n-1}$;
- Trivial to identify \tilde{F}_{n-1} in the coproduct of F_{n} - fixed by $\Delta_{1, n-1}^{\mathrm{MPL}}$

$$
\begin{gathered}
\Delta^{\mathrm{MPL}}\left(\mathrm{Li}_{3}(x)\right)=1 \otimes \mathrm{Li}_{3}(x)+\mathrm{Li}_{3}(x) \otimes 1+\mathrm{Li}_{2}(x) \otimes \log (x)+\mathrm{Li}_{1}(x) \otimes \frac{\log ^{2}(x)}{2} \\
\operatorname{Disc}_{x}\left[\mathrm{Li}_{3}(x)\right]=\operatorname{Disc}_{x}\left[\mathrm{Li}_{1}(x)\right] \frac{\log ^{2}(x)}{2} \sim 2 \pi i \frac{\log ^{2}(x)}{2} \theta(x>1)
\end{gathered}
$$

EXAMPLE 1: MPL COPRODUCT AND DIFFERENTIAL OPERATORS

Differential operators act on the last entry of the coproduct

$$
\Delta^{\mathrm{MPL}} \frac{\partial}{\partial z}=\left(\mathrm{id} \otimes \frac{\partial}{\partial z}\right) \Delta^{\mathrm{MPL}}
$$

EXAMPLE 1: MPL COPRODUCT AND DIFFERENTIAL OPERATORS

Differential operators act on the last entry of the coproduct

$$
\Delta^{\mathrm{MPL}} \frac{\partial}{\partial z}=\left(\mathrm{id} \otimes \frac{\partial}{\partial z}\right) \Delta^{\mathrm{MPL}}
$$

- Derivative lowers weight by one: $\frac{\partial}{\partial x} F_{n}(x)=r(x) \hat{F}_{n-1}(x)$;
- Trivial to identify \hat{F}_{n-1} in the coproduct of F_{n} - fixed by $\Delta_{n-1,1}^{\text {MPL }}$

$$
\begin{gathered}
\Delta^{\mathrm{MPL}}\left(L \mathrm{~L}_{3}(x)\right)=1 \otimes L \mathrm{~L}_{3}(x)+\mathrm{Li}_{3}(x) \otimes 1+\mathrm{Li}(x) \otimes \log (x)+\mathrm{Li}_{1}(x) \otimes \frac{\log ^{2}(x)}{2} \\
\frac{\partial}{\partial x}\left[L \mathrm{~L}_{3}(x)\right]=L \mathrm{~L}_{2}(x) \frac{\partial \log x}{\partial x}=\frac{1}{x} L \mathrm{Li}_{2}(x)
\end{gathered}
$$

EXAMPLE 2: A DIAGRAMMATIC COPRODUCT ON FEYNMAN GRAPHS

Two natural operations on graph G with propagators E_{G} :

- Cutting propagators
- Contracting propagators

We can construct a family of coproducts acting on one-loop graphs with these two operations.

Different coproducts are labeled by a rational number a_{x}.
$\Delta_{a_{x}}$: coproduct on one-loop graphs

EXAMPLE 2: A DIAGRAMMATIC COPRODUCT ON FEYNMAN GRAPHS

Incidence Hopf algebra: For graph G, with propagators E_{G}

- Last entry: cut subset of propagators $X \subseteq E_{G}$
- First entry: contract uncut propagators

EXAMPLE 2: $\left|E_{G}\right|=3, C=\emptyset$

Less trivial construction: distinguish odd and even cuts.

$$
\begin{aligned}
& +\underset{\sim}{2}+\sqrt{e_{3}}
\end{aligned}
$$

EXAMPLE 2: DIAGRAMMATIC COPRODUCT OF UNCUT GRAPHS ($C=\emptyset$)

One edge $\left(\left|E_{G}\right|=1, C=\emptyset\right)$ - tadpole:

$$
A_{i}(Q)=O . O
$$

Two edges $\left(\left|E_{G}\right|=2, C=\emptyset\right)$ - bubble:

$$
\begin{aligned}
\Delta(-\theta) & =0 \cdot-\infty+\theta \cdot-\infty- \\
& \left(-\infty-\frac{1}{2} \theta+\frac{1}{2} \theta\right) \cdot-\infty
\end{aligned}
$$

EXAMPLE 2: DIAGRAMMATIC COPRODUCT OF UNCUT GRAPHS ($C=\emptyset$)

Four edges $\left(\left|E_{G}\right|=4, C=\emptyset\right)$ - box:

EXAMPLE 2: DIAGRAMMATIC COPRODUCT OF CUT GRAPHS $(C \neq \emptyset)$

Two edges, one cut $\left(\left|E_{G}\right|=2,|C|=1\right)$ - single cut bubble:

Two edges, two cuts $\left(\left|E_{G}\right|=2,|C|=2\right)$ - double cut bubble:

$$
\Delta_{\frac{1}{2}}(\underbrace{e_{1}}_{e})=\underbrace{e_{1}}_{e_{e}} \otimes
$$

EXAMPLE 2: DIAGRAMMATIC COPRODUCT OF CUT GRAPHS $(C \neq \emptyset)$

Two edges, one cut $\left(\left|E_{G}\right|=2,|C|=1\right)$ - single cut bubble:

Two edges, two cuts $\left(\left|E_{G}\right|=2,|C|=2\right)$ - double cut bubble:

$$
\Delta_{\frac{1}{2}}(\overbrace{e^{2}}^{e_{1}+})=\overbrace{e^{2}}^{e_{1}+} \otimes \overbrace{e_{2}}^{e_{1}+}
$$

Compare with uncut bubble:

$$
\begin{aligned}
\Delta_{\frac{1}{2}}(-) & =\odot \otimes-O+\odot \otimes-\infty \\
& +\left(-\infty+\frac{1}{2} \odot+\frac{1}{2} \odot\right) \otimes-
\end{aligned}
$$

EXAMPLE 2: A DIAGRAMMATIC COPRODUCT ON FEYNMAN GRAPHS

$$
\Delta_{a_{X}}(G, C)=\sum_{\substack{C \subseteq X \subseteq E_{G}, X \neq \emptyset}}\left(\left(G_{X}, C\right)+a_{X} \sum_{e \in X \backslash C}\left(G_{X \backslash e}, C\right)\right) \otimes(G, X)
$$

[SA, Britto, Duhr, Gardi, to appear 16xx.xxxx]
(G, C) : Feynman graph G, with E_{G} propagators, and the ones in $C \subseteq E_{G}$ cut.
G_{X} : Feynman graph with X edges, built from G by contracting all edges but those in X.
a_{x} : rational number. We will be particularly interested in the case where $a_{X}=1 / 2$ if $|X|$ even and 0 otherwise.

EXAMPLE 2: COASSOCIATIVITY

$\Delta_{a_{x}}$ is coassociative:

$$
\left(\mathrm{id} \otimes \Delta_{a_{x}}\right) \Delta_{a_{x}}(G, C)=\left(\Delta_{a_{x}} \otimes \mathrm{id}\right) \Delta_{a_{x}}(G, C)
$$

Can construct all other structures necessary to have a Hopf algebra on graphs. A bit technical, and not too relevant for the rest of the talk.

EXAMPLE 2: COASSOCIATIVITY

$\Delta_{a_{x}}$ is coassociative:

$$
\left(\mathrm{id} \otimes \Delta_{a_{x}}\right) \Delta_{a_{x}}(G, C)=\left(\Delta_{a_{x}} \otimes \mathrm{id}\right) \Delta_{a_{x}}(G, C)
$$

Can construct all other structures necessary to have a Hopf algebra on graphs. A bit technical, and not too relevant for the rest of the talk.

Note: Coproduct VS coaction

Δ^{MPL} and $\Delta_{a_{x}}$ are really coactions: the first-entry of the tensor is special.
$\Delta^{\text {MPL. powers of } \pi \text { only appear in first entry. }}$
$\Delta_{a x}$: first entry with same number of cuts as (G, C).

One-LOOP FEYNMAN INTEGRALS, CUT AND UNCUT

A BASIS FOR ONE-LOOP FEYNMAN INTEGRALS

Diagram with n external legs of momenta p_{l}, in dim. reg.,

$$
\begin{aligned}
\tilde{J}_{n}=\frac{e^{\gamma_{E} \epsilon}}{\pi^{\frac{D}{2}}} \int d^{D} k \prod_{j=0}^{n-1} \frac{1}{\left(k-q_{j}\right)^{2}-m_{j}^{2}+i 0} \\
q_{j}=\sum_{l} \beta_{j l} p_{l}, \quad \beta_{j l} \in\{-1,0,1\}
\end{aligned}
$$

We choose $D=d-2 \epsilon$ with $d \in \mathbb{N}, d=2\lceil n / 2\rceil$:

- tadpoles and bubbles: $D=2-2 \epsilon$;
- triangles and boxes: $D=4-2 \epsilon$;
- pentagons and hexagons: $D=6-2 \epsilon$;
- ...;

A BASIS FOR ONE-LOOP FEYNMAN INTEGRALS

Diagram with n external legs of momenta p_{l}, in dim. reg.,

$$
\begin{aligned}
\widetilde{J}_{n}=\frac{e^{\gamma_{E} \epsilon}}{\pi^{\frac{D}{2}}} \int d^{D} k \prod_{j=0}^{n-1} \frac{1}{\left(k-q_{j}\right)^{2}-m_{j}^{2}+i 0} \\
q_{j}=\sum_{l} \beta_{j l} p_{l}, \quad \beta_{j l} \in\{-1,0,1\}
\end{aligned}
$$

We choose $D=d-2 \epsilon$ with $d \in \mathbb{N}, d=2\lceil n / 2\rceil$:

- tadpoles and bubbles: $D=2-2 \epsilon$;
- triangles and boxes: $D=4-2 \epsilon$;
- pentagons and hexagons: $D=6-2 \epsilon$;
- ...;
\tilde{J}_{n} evaluates to MPLs and is a pure function of weight $\frac{d}{2}=\left\lceil\frac{n}{2}\right\rceil$
(N.B.: we assume $w(\epsilon)=-1$, coefficient of ϵ^{j} has weight $\frac{d}{2}+j$)

A BASIS FOR ONE-LOOP FEYNMAN INTEGRALS

Diagram with n external legs of momenta p_{l}, in dim. reg.,

$$
\begin{aligned}
& \widetilde{J}_{n}=\frac{e^{\gamma_{\epsilon} \epsilon}}{\pi^{\frac{D}{2}}} \int d^{D} k \prod_{j=0}^{n-1} \frac{1}{\left(k-q_{j}\right)^{2}-m_{j}^{2}+i 0} \\
& q_{j}=\sum_{l} \beta_{j l} p_{l}, \quad \beta_{j l} \in\{-1,0,1\}
\end{aligned}
$$

Relation to other integrals:

- Non-scalar integrals: tensor reduction ;
- Propagators raised to a power: Integration-By-Parts (IBP) relations ;

Tkachov, Phys.Lett. B100 (1981); Chetyrkin, Tkachov, Nucl.Phys. B192 (1981); Laporta, Int.J.Mod.Phys. A15 (2000)

- Integrals in other dimensions: dimensional shift and IBP relations.

CUTS OF ONE-LOOP FEYNMAN INTEGRALS-CUTS AS DISCONTINUITIES

Discontinuities on external channels, apply Cutkosky prescription:
[Landau ('59); Cutkosky ('60); t'Hooft \& Veltman ('73); SA, Britto, Duhr, Gardi, JHEP 1410 (2014) 125]

- cut propagators identifying channel, replace by delta functions;
- θ-function to fix energy flow ;
- complex-conjugate one side of cut diagram ;
- keep integration contour of uncut diagram, evaluate in specific kinematic region.

Discontinuities on internal mass:

- replace propagator with the specific mass by delta function ;
- keep integration contour of uncut diagram, evaluate in specific kinematic region.
* Well defined integration contour $-\odot$
* Vanish if pole of propagator outside integration region

Can we generalise rules to capture all poles and keep a well defined countour?

CUTS OF ONE-LOOP FEYNMAN INTEGRALS-NEW PRESCRIPTION

For $g(x)$ behaving well enough around $x=a$, and $a_{1}<a<a_{2}$

$$
\int_{a_{1}}^{a_{2}} d x g(x) \delta(x-a)=\operatorname{Res}_{x=a} \frac{g(x)}{x-a}=g(a)
$$

But: Resa still non-zero for $a \notin\left[a_{1}, a_{2}\right]$!

New prescription:

- change variables $k_{j} \rightarrow x_{j}$ such that propagator D_{j} is linear in x_{j} :

$$
D_{j} \equiv B_{j}\left(x_{j}-x_{j, p}\right) ;
$$

- if propagator D_{j} is not cut, do nothing ;
- if propagator D_{j} is cut,

$$
\int_{x_{j, \text { min }}}^{x_{j, \text { max }}} d x_{j} \frac{g\left(x_{j}\right)}{B_{j}\left(x_{j}-x_{j, p}\right)} \rightarrow \operatorname{Res}_{x_{j}=x_{j, p}} \frac{g\left(x_{j}\right)}{B_{j}\left(x_{j}-x_{j, p}\right)}=\frac{g\left(x_{j, p}\right)}{B_{j}}
$$

CUTS OF ONE-LOOP FEYnMAN INTEGRALS—NEW RESULTS

$$
\mathcal{C} \widetilde{J}_{n}=\frac{(2 \pi)^{\lfloor c / 2\rfloor} e^{\gamma_{E \epsilon}}}{2^{c} \pi^{D / 2}} \frac{{\sqrt{Y_{C}}}^{D-c-1}}{{\sqrt{G r a m_{C}}}^{D-c}} \int d \Omega_{D-c+1}\left[\prod_{j \notin C} \frac{1}{\left(k-q_{j}\right)^{2}-m_{j}^{2}}\right]_{C}
$$

$-c=|C|$: number of cut propagators

- Y_{c} : modified Cayley determinant

$$
Y_{C}=\left|\operatorname{det}\left(\frac{1}{2}\left(m_{i}^{2}+m_{j}^{2}-\left(q_{i}-q_{j}\right)^{2}\right)\right)_{i, j \in c}\right|
$$

- Gramc: Gram determinant (e arbitrary element of C)

$$
G_{C}=\left|\operatorname{det}\left(\left(q_{i}-q_{e}\right) \cdot\left(q_{j}-q_{e}\right)\right)_{i, j \in C \backslash e}\right|
$$

- keep contour for uncut propagators, evaluate under cut conditions

CUTS OF ONE-LOOP FEYnMAN INTEGRALS—NEW RESULTS

Maximal cuts and Leading Singularity:

$$
\begin{aligned}
& \mathcal{C}_{G} \widetilde{J}_{G}=2^{1-2 \epsilon-n / 2} \frac{e^{\gamma_{E} \epsilon} \Gamma(1-\epsilon)}{\Gamma(1-2 \epsilon)} \frac{Y_{G}^{-1 / 2-\epsilon}}{\operatorname{Gram}_{G}^{-\epsilon}}=\frac{2^{1-n / 2}}{\sqrt{Y_{G}}}+\mathcal{O}(\epsilon), \quad n \text { even. } \\
& \mathcal{C}_{G} \widetilde{J}_{G}=2^{-(1+n) / 2} \frac{e^{\gamma_{E} \epsilon}}{\Gamma(1-\epsilon)} \frac{Y_{G}^{-\epsilon}}{\operatorname{Gram}_{G}^{1 / 2-\epsilon}}=\frac{2^{-(1+n) / 2}}{\sqrt{\operatorname{Gram}_{G}}}+\mathcal{O}(\epsilon), \quad n \text { odd } .
\end{aligned}
$$

Integrals normalised to leading singularity:

$$
J_{n}=\tilde{J}_{n} / L S\left[\tilde{\jmath}_{n}\right]
$$

Next-to-maximal cuts in closed formula for both even and odd.

CUTS OF ONE-LOOP FEYNMAN INTEGRALS—POLYTOPE GEOMETRY

$$
\begin{aligned}
\operatorname{Gram}_{a+2} & =\left|\operatorname{det}\left(\left(q_{0}^{E}, \ldots, q_{a}^{E}\right)^{\top}\left(q_{0}^{E}, \ldots, q_{a}^{E}\right)\right)\right| \\
H_{a+2} & =\left|\operatorname{det}\left(\left(k^{E}, q_{0}^{E}, \ldots, q_{a}^{E}\right)^{\top}\left(k^{E}, q_{0}^{E}, \ldots, q_{a}^{E}\right)\right)\right| \xrightarrow[\text { conditions }]{\text { cut }} Y_{a+2}
\end{aligned}
$$

CUTS OF ONE-LOOP FEYNMAN INTEGRALS-POLYTOPE GEOMETRY

$$
\begin{aligned}
& \operatorname{Gram}_{a+2}=\left|\operatorname{det}\left(\left(q_{0}^{E}, \ldots, q_{a}^{E}\right)^{T}\left(q_{0}^{E}, \ldots, q_{a}^{E}\right)\right)\right| \\
& \quad H_{a+2}=\left|\operatorname{det}\left(\left(k^{E}, q_{0}^{E}, \ldots, q_{a}^{E}\right)^{T}\left(k^{E}, q_{0}^{E}, \ldots, q_{a}^{E}\right)\right)\right| \xrightarrow[\text { conditions }]{\text { cut }} Y_{a+2} \\
& \mathcal{C} \tilde{J}_{n}=\frac{(2 \pi)^{\lfloor c / 2\rfloor} e^{\gamma_{E} \epsilon}}{2^{C} \pi^{D / 2}} \frac{{\sqrt{Y_{C}}}^{D-c-1}}{{\sqrt{G r a m_{C}}}^{D-c}} \int d \Omega_{D-c+1}\left[\prod_{j \notin C} \frac{1}{\left(k-q_{j}\right)^{2}-m_{j}^{2}}\right]_{c}
\end{aligned}
$$

CUTS OF ONE-LOOP FEYnMAN INTEGRALS—GENERAL RESULTS

One- and two-propagator cuts of any J_{G}

The sum of all one- and two-propagator cuts at order ϵ^{n} equals the uncut function at order ϵ^{n-1} up to analytic continuation.

CUTS OF ONE-LOOP FEYnMAN INTEGRALS—GENERAL RESULTS

One- and two-propagator cuts of any J_{G}

The sum of all one- and two-propagator cuts at order ϵ^{n} equals the uncut function at order ϵ^{n-1} up to analytic continuation.

Maximal and next-to-maximal cuts of J_{G} with $\left|E_{G}\right|$ even propagators

Unless they vanish, the $\left|E_{G}\right|$ different next-to-maximal cuts of a diagram with n even propagators are equal to $-1 / 2$.

A MAP BETWEEN THE DIAGRAMMATIC COPRODUCT AND THE COPRODUCT OF MPLS

QUICK SUMMARY OF WHAT WE HAVE DONE SO FAR

Coproduct of one-loop Feynman integrals $-\Delta^{\mathrm{MPL}}$

Coproduct of one-loop cut and uncut Feynman graphs $-\Delta_{\frac{1}{2}}$

Basis for one-loop Feynman integrals - J_{G}

Well defined cutting rules $-\mathcal{C}_{C}$

We combine these elements in a map between the diagrammatic coproduct and the coproduct of MPLs

COPRODUCT OF MPLS AND DIAGRAMMATIC COPRODUCT

Use the coproduct of MPLs to check diagrammatic coproduct

Make the following identifications:
Feynman diagram $G \longleftrightarrow$ integral J_{G}
Cut Feynman diagram $(G, C) \longleftrightarrow$ cut integral $\mathcal{C}_{C} J_{G}$

$$
\Delta_{\frac{1}{2}} \longleftrightarrow \Delta^{\mathrm{MPL}}
$$

- Graphs (G, C) understood in dimensional regularisation: can take massless limit, this is why we only considered graphs with generic masses;
- Δ^{MPL} acts order by order in $\epsilon \Rightarrow$ new relations to check at each order ;
- As order in ϵ increases, more and more $\Delta_{p, q}^{\mathrm{MPL}}$ terms to check ;
- Relation for some coproduct entries can be proven to all orders in ϵ.

MASSLESS LIMIT: EXAMPLE, $\left|E_{G}\right|=2, C=\emptyset$

Diagrammatic coproduct of all bubbles with massive external legs:

$$
\Delta
$$

First take massless limit of $\Delta_{\frac{1}{2}}$ then check $\Delta_{\text {MPL }}$ order by order in ϵ.

EXAMPLE: TWO-MASS-HARD BOX $B\left(s, t ; p_{1}^{2}, p_{2}^{2}\right)$

$$
\begin{aligned}
& +\longrightarrow\left(p_{1}^{2}, p_{2}^{2}, s\right) \otimes \underset{\square}{\square} \underset{ }{\square} \\
& +\left(\square+\frac{1}{2} \longrightarrow(s)+\frac{1}{2} \longrightarrow\left(s, p_{1}^{2}, p_{2}^{2}\right)\right. \\
& \left.\left.+\frac{1}{2}<\left(t, p_{1}^{2}\right)+\frac{1}{2}<\left(t, p_{2}^{2}\right)\right) \otimes\right]
\end{aligned}
$$

Checked up to weight 4 , i.e. $\mathcal{O}\left(\epsilon^{2}\right)$.
Relation between 3- and 4-propagator cuts explains why function is simple up to $\mathcal{O}(\epsilon)$: three-mass triangle starts contributing.

CHECKS

Explicitly checked for several orders in ϵ for:
tadpole: trivial ;
bubbles: $\operatorname{Bub}\left(p^{2}\right), \operatorname{Bub}\left(p^{2} ; m^{2}\right)$ and $\operatorname{Bub}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right)$;
triangles: several combinations of internal and external masses ;
box: $B(s, t), B\left(s, t, p_{1}^{2}\right), B\left(s, t, p_{1}^{2}, p_{3}^{2}\right), B\left(s, t, p_{1}^{2}, p_{2}^{2}\right), B\left(s, t ; m_{12}^{2}\right)$ and $B\left(s, t ; m_{12}^{2}, m_{23}^{2}\right)$.

Consistency checks for:
box: $B\left(s, t, p_{1}^{2}, p_{2}^{2}, p_{3}^{2}\right)$ and $B\left(s, t, p_{1}^{2}, p_{2}^{2}, p_{3}^{2}, p_{4}^{2}\right)$;
pentagon: zero mass ;
hexagon: zero mass.

Discontinuities of Feynman diagrams

Discontinuity operators act on first entry of the coproduct

$$
\Delta \text { Disc }=(\text { Disc } \otimes \mathrm{id}) \Delta
$$

First entries of coproduct of graph have the same cut edges as graph
\Rightarrow They have the same discontinuity structure (Landau equations).

The graphical coproduct is consistent with the action of discontinuity operators

First entry condition:
[Gaiotto, Maldacena, Sever, Vieira, JHEP 1112 (2011) 011]
Satisfied by construction by the diagrammatic coproduct of a Feynman diagram: first entry is always a Feynman diagram.

Discontinuities of Feynman diagrams

Diagrammatic coproduct encodes know relations between cuts and discontinuities

$$
\begin{aligned}
\Delta(\longrightarrow) & =-\infty\left(p_{1}^{2}\right) \otimes-\infty+\infty\left(p_{2}^{2}\right) \otimes-\infty \\
& +-\infty\left(p_{3}^{2}\right) \otimes \rightarrow+\infty+\infty<\infty
\end{aligned}
$$

Single discontinuity:

$$
\operatorname{Disc}_{p_{1}^{2}}(-<)= \pm(2 \pi i)-i<
$$

Iterated discontinuities:

$$
\operatorname{Disc}_{p_{1}^{2}, p_{2}^{2}}(-<)= \pm(2 \pi i)^{2}-\infty
$$

WEIGHT ONE LAST ENTRY IN DIAGRAMMATIC COPRODUCT, $\left|E_{G}\right|=n$ ODD

Very few contributions to last entry of weight one:

WEIGHT ONE LAST ENTRY IN DIAGRAMMATIC COPRODUCT, $\left|E_{G}\right|=n$ ODD

Very few contributions to last entry of weight one:

Alphabet \mathcal{A} to $\mathcal{O}\left(\epsilon^{0}\right)$ (set of entries in symbol tensor):

Symbol alphabet $\mathcal{A},\left|E_{G}\right|=n$ odd

At order ϵ, one extra contribution:

Alphabet to all orders in ϵ :

$\cup \mathcal{A}\left({ }_{\epsilon^{0}}\right) \cup \mathcal{A}($

LAST ENTRY OF DIAGRAMMATIC COPRODUCT AND SYMBOL ALPHABET

To all orders in ϵ last entry of symbol of J_{G} is $\left(\left|E_{G}\right|\right.$ odd $)$:

- next-to-maximal (NMax) cut at order ϵ^{0}
- NNMax cut at order ϵ^{0}
- Max cut at order ϵ^{1} contributes from order ϵ^{1} of J_{G})

These are the only new symbol letters introduced by this topology.

Similar results for $\left|E_{G}\right|$ even, one extra contribution:

- NNNMax and NNMax at order ϵ^{0} cuts contribute from order ϵ^{0}
- NMax and Max cuts at order ϵ^{1} contribute from order ϵ^{1}

Symbol alphabet \mathcal{A}-Some comments

From maximal cut \mathcal{A} (MaxCut) $=\left\{Y_{G}, \operatorname{Gram}_{G}\right\}$:
Y_{G} : Leading Landau Singularity
(see also A. Volovich talk on Wednesday)
Gram $_{G}$: beyond Landau singularities

Ingredient for two-loop calculations.

We can be more precise and determine at which order in ϵ each new symbol letter appears.

Recursive construction of symbol of J_{G} :
For any J ${ }_{G}$, symbol built iteratively by appending letters to the symbol of weight one integrals, the tadpole and bubble (new perspective on first entry condition)

DIFFERENTIAL EQUATIONS OF FEYNMAN DIAGRAMS

Differential operators act on last entry of the coproduct

$$
\Delta \frac{\partial}{\partial z}=\left(\mathrm{id} \otimes \frac{\partial}{\partial z}\right) \Delta
$$

Last entries of coproduct of graph have same number of edges as graph \Rightarrow They obey the same differential equations.

The graphical coproduct is consistent with the action of differential operators

DIFFERENTIAL EQUATIONS OF FEYNMAN DIAGRAMS

Sufficient to consider last entries we just discussed, which are of weight one-d log-forms

DIfFERENTIAL EQUATIONS OF FEYNMAN DIAGRAMS

Diagrammatic coproduct determines differential equations:

Coefficient of differential equations are derivatives of the weight one term in the ϵ-expansion of cuts
$\left|E_{G}\right|$ odd:

- NNMax and NMax cuts contribute from order ϵ^{0}
- Max cut contributes from order ϵ^{1}
$\left|E_{G}\right|$ even:
- NNNMax and NNMax cuts contribute from order ϵ^{0}
- NMax and Max cuts contribute from order ϵ^{1}

Conclusion and outlook

CONCLUSION

We conjecture and give evidence that:

The coproduct of all one-loop Feynman diagrams has a completely diagrammatic representation

We construct the diagrammatic coproduct of any one-loop diagram.
New definition of cut of Feynman integrals.
New relation between cut and uncut integrals.
Explicitly checked for several non-trivial examples.
Diagrammatic coproduct consistent with relation between cuts and discontinuities.
Construct iteratively the alphabet and even symbol of one-loop integrals.
Diagrammatic representation of differential equations.

OUTLOOK

Can our construction be generalised to two and more loops?

What is a good basis of pure Feynman integrals beyond one-loop?
Which combinations of diagrams appear in the first entry?

Can our construction be generalised to diagrams that do not evaluate to MPLs?

Elliptic functions appear beyond one loop.
Possible connection with recent work by Francis Brown, independent of integrals evaluating to polylogarithms [Notes on motivic periods, arxiv:1512.06410].

THANK YOU!

