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Motivation – One-loop Feynman diagrams

Landau conditions: contracting and cutting propagators

Cutkosky rules: relation between cuts and discontinuities

‘First entry condition’: physical thresholds or masses in first entry

Reverse unitarity: same relations for cut and uncut integrals

Differential equations: written in dlog-form

Can all these be unified in a single picture?

Good candidate is coproduct of Hopf algebra of Feynman integrals

[Goncharov, series of papers; Duhr, JHEP 1208 (2012) 043]
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Goal – One-loop Feynman diagrams

Some coproduct entries have graphical representation:

- entries related to discontinuities as cut integrals
[SA, Britto, Duhr, Gardi, JHEP 1410 (2014) 125; SA, Britto, Grönqvist, JHEP 1507 (2015) 111]

- evidence for first entries as uncut integrals
[M. Spradlin, A. Volovich; JHEP 1111 (2011) 084]

Is there a completely diagrammatic representation of the full
coproduct of any one-loop Feynman integral?

In this presentation we show that yes:

- the above properties are given a diagrammatic representation
- we find a recursive construction of the symbol of any (basis)
one-loop integral
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Outline

Brief introduction to algebras, coalgebras and Hopf algebras

The Hopf algebra of MPLs and the Hopf algebra of Feynman graphs

One-loop Feynman integrals, cut and uncut

A map between the diagrammatic coproduct and the coproduct of
MPLs

Conclusion and outlook
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Brief introduction to algebras,
coalgebras and Hopf algebras



Algebra

An algebra over a field K (like Q, R or C) is a K-vector space A
together with a product µ (and a unit ε):

µ : A⊗ A −→ A ϵ : K −→ A
(a,b) 7−→ µ(a⊗ b) ≡ a · b

Associativity of the product:

µ(id⊗ µ) = µ(µ⊗ id)

A⊗ A⊗ A A⊗ A

AA⊗A

id⊗ µ

µ⊗ id µ

µ

µ(id⊗ µ)(a⊗ b⊗ c) = µ(a⊗ (b · c)) = a · (b · c)
µ(µ⊗ id)(a⊗ b⊗ c) = µ((a · b)⊗ c) = (a · b) · c
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Coalgebra

A coalgebra is defined as the dual of an algebra, equipped with a
coproduct ∆ (dual to the product) and a counit η (dual to the unit).
For simplicity, I assume the dual of A is A itself. Then:

∆ : A −→ A⊗ A η : A −→ K

Cossociativity of the coproduct is dual to associativity of the product:

(id⊗∆)∆ = (∆⊗ id)∆

A⊗ A⊗ A A⊗ A

AA⊗A

id⊗∆

∆⊗ id ∆

∆
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Bialgebra and Hopf algebra

A bialgebra is an algebra that is at the same time a coalgebra (as our
A), for which the product and the coproduct are compatible:

∆(a · b) = ∆(a) ·∆(b)

(a1 ⊗ a2) · (b1 ⊗ b2) = (a1 · b1)⊗ (a2 · b2)

A Hopf algebra is a bialgebra equipped with an antipode S : A −→ A:

S(a · b) = S(b) · S(a) ; µ(id⊗ S)∆ = µ(S⊗ id)∆ = 0

for reviews, [Duhr, JHEP 1208 (2012) 043; Weinzierl, arXiv:1506.09119]
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The Hopf algebra of MPLs and
the Hopf algebra of Feynman
graphs



Example 1: MPL and their coproduct

Multiple Polylogarithms:

G (a1, . . . ,an; z) =
∫ z

0

dt
t− a1

G (a2, . . . ,an; t) ai, z ∈ C

A large class of Feynman diagrams can be written in terms of MPL.
[Goncharov, series of papers]

Q-vector space of MPL forms a Hopf algebra H:

Graded by weight: H =
∞⊕
n=0

Hn ; [weight of G(a1, . . . , an; z) is n]

Coproduct respects weight: Hn
∆MPL
−→

n⊕
k=0

Hk ⊗Hn−k ;

Action of ∆MPL on Hn: ∆MPL =
∑
p+q=n

∆MPL
p,q ; [∆MPL

p,q takes values in Hp ⊗Hq]
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Example 1: MPL and their coproduct

Example: Li3(x) = −G(0, 0, 1; z), function of weight 3.

∆MPL (Li3(x)) = 1⊗ Li3(x)︸ ︷︷ ︸
∆MPL
0,3

+ Li3(x)⊗ 1︸ ︷︷ ︸
∆MPL
3,0

+ Li2(x)⊗ log(x)︸ ︷︷ ︸
∆MPL
2,1

+ Li1(x)⊗
log2(x)
2︸ ︷︷ ︸

∆MPL
1,2

Coassociativity of the coproduct of MPL: ∆MPL
1,1
(
∆MPLLi3(x)

)
(
∆MPL
1,1 ⊗ id

) [
∆MPL (Li3(x))

]
=

(
∆MPL
1,1 ⊗ id

) [
∆MPL
2,1 (Li3(x))

]
= Li1(x)⊗log(x)⊗log(x)(

id⊗∆MPL
1,1

) [
∆MPL (Li3(x))

]
=

(
id⊗∆MPL

1,1

) [
∆MPL
1,2 (Li3(x))

]
= Li1(x)⊗ log(x)⊗ log(x)︸ ︷︷ ︸

=∆MPL
1,1,1(Li3(x))

Symbol tensor and maximal iteration of coproduct: S(F) ∼ ∆MPL
1,...,1(F)

10



Example 1: MPL and their coproduct

Example: Li3(x) = −G(0, 0, 1; z), function of weight 3.

∆MPL (Li3(x)) = 1⊗ Li3(x)︸ ︷︷ ︸
∆MPL
0,3

+ Li3(x)⊗ 1︸ ︷︷ ︸
∆MPL
3,0

+ Li2(x)⊗ log(x)︸ ︷︷ ︸
∆MPL
2,1

+ Li1(x)⊗
log2(x)
2︸ ︷︷ ︸

∆MPL
1,2

Coassociativity of the coproduct of MPL: ∆MPL
1,1
(
∆MPLLi3(x)

)
(
∆MPL
1,1 ⊗ id

) [
∆MPL (Li3(x))

]
=

(
∆MPL
1,1 ⊗ id

) [
∆MPL
2,1 (Li3(x))

]
= Li1(x)⊗log(x)⊗log(x)(

id⊗∆MPL
1,1

) [
∆MPL (Li3(x))

]
=

(
id⊗∆MPL

1,1

) [
∆MPL
1,2 (Li3(x))

]
= Li1(x)⊗ log(x)⊗ log(x)︸ ︷︷ ︸

=∆MPL
1,1,1(Li3(x))

Symbol tensor and maximal iteration of coproduct: S(F) ∼ ∆MPL
1,...,1(F)

10



Example 1: MPL coproduct and discontinuities

Discontinuities act on the first entry of the coproduct

∆MPLDisc = (Disc⊗ id)∆MPL

- Discontinuity lowers weight by one: Disc(Fn) = 2πiF̃n−1 ;
- Trivial to identify F̃n−1 in the coproduct of Fn — fixed by ∆MPL

1,n−1

∆MPL (Li3(x)) = 1⊗ Li3(x) + Li3(x)⊗ 1+ Li2(x)⊗ log(x) + Li1(x)⊗
log2(x)
2

Discx[Li3(x)] = Discx[Li1(x)]
log2(x)
2 ∼ 2πi log

2(x)
2 θ(x > 1)
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Example 1: MPL coproduct and differential operators

Differential operators act on the last entry of the coproduct

∆MPL ∂

∂z =

(
id⊗ ∂

∂z

)
∆MPL

- Derivative lowers weight by one: ∂
∂xFn(x) = r(x)F̂n−1(x) ;

- Trivial to identify F̂n−1 in the coproduct of Fn — fixed by ∆MPL
n−1,1

∆MPL (Li3(x)) = 1⊗ Li3(x) + Li3(x)⊗ 1+ Li2(x)⊗ log(x) + Li1(x)⊗
log2(x)
2

∂

∂x [Li3(x)] = Li2(x)
∂ log x
∂x =

1
xLi2(x)
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Example 2: A diagrammatic coproduct on Feynman graphs

Two natural operations on graph G with propagators EG:

- Cutting propagators
- Contracting propagators

We can construct a family of coproducts acting on one-loop graphs
with these two operations.

Different coproducts are labeled by a rational number aX.

∆aX : coproduct on one-loop graphs
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Example 2: A diagrammatic coproduct on Feynman graphs

Incidence Hopf algebra: For graph G, with propagators EG

- Last entry: cut subset of propagators X ⊆ EG
- First entry: contract uncut propagators

∆0

 e2

e1

e3

 =
e1 ⊗

e1

e3

e2

+
e2 ⊗

e2

e1

e3

+
e3 ⊗

e2

e3
e1

+
e1

e2

⊗
e2

e1

e3

+
e2

e3

⊗
e2

e3
e1

+
e1

e3

⊗
e2

e1
e3

+
e2

e1

e3 ⊗
e2

e3e1
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Example 2: |EG| = 3, C = ∅

Less trivial construction: distinguish odd and even cuts.

∆ 1
2

 e2

e1

e3

 =
e1 ⊗

e1

e3

e2

+
e2 ⊗

e2

e1

e3 +
e3 ⊗

e2

e3
e1

+

 e1

e2

+
1
2

e1

+
1
2

e2

⊗ e2

e1

e3

+

 e1

e3

+
1
2

e1

+
1
2

e3

⊗ e2

e1
e3

+

 e2

e3

+
1
2

e2

+
1
2

e3

⊗ e2

e3
e1

+

e2

e1

e3 ⊗

e2

e3e1
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Example 2: Diagrammatic coproduct of uncut graphs (C = ∅)

One edge (|EG| = 1, C = ∅) — tadpole:

∆ 1
2

( )
= ⊗

Two edges (|EG| = 2, C = ∅) — bubble:

∆ 1
2

(
e1

e2

)
=

e1 ⊗
e1

e2

+
e2 ⊗

e1

e2

+

(
e1

e2

+
1
2

e1

+
1
2

e2

)
⊗

e1

e2
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Example 2: Diagrammatic coproduct of uncut graphs (C = ∅)

Four edges (|EG| = 4, C = ∅) — box:

∆ 1
2

( )
=
∑
i

ei ⊗
ei

+
∑
ij

(
ei

ej

+
1
2

ei
+
1
2

ej

)
⊗ ej

ei

+
∑
ijk

ej

ei

ek ⊗ ek

ei

ej

+

 +
1
2
∑
ijk

ej

ei

ek

⊗
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Example 2: Diagrammatic coproduct of cut graphs (C ̸= ∅)

Two edges, one cut (|EG| = 2, |C| = 1) — single cut bubble:

∆ 1
2

(
e1

e2

)
=

e1 ⊗
e1

e2

+

(
e1

e2

+
1
2

e1

)
⊗

e1

e2

Two edges, two cuts (|EG| = 2, |C| = 2) — double cut bubble:

∆ 1
2

(
e1

e2

)
=

e1

e2

⊗
e1

e2

Compare with uncut bubble:

∆ 1
2

(
e1

e2

)
=

e1 ⊗
e1

e2

+
e2 ⊗

e1

e2

+

(
e1

e2

+
1
2

e1 +
1
2

e2

)
⊗

e1

e2
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Example 2: A diagrammatic coproduct on Feynman graphs

∆aX(G, C) =
∑

C⊆X⊆EG,
X ̸=∅

(GX, C) + aX
∑
e∈X\C

(GX\e, C)

⊗ (G, X)

[SA, Britto, Duhr, Gardi, to appear 16xx.xxxx]

(G, C): Feynman graph G, with EG propagators, and the ones in C ⊆ EG
cut.

GX: Feynman graph with X edges, built from G by contracting all
edges but those in X.

aX: rational number. We will be particularly interested in the case
where aX = 1/2 if |X| even and 0 otherwise.
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Example 2: Coassociativity

∆aX is coassociative:

(id⊗∆aX)∆aX(G, C) = (∆aX ⊗ id)∆aX(G, C)

Can construct all other structures necessary to have a Hopf algebra on
graphs. A bit technical, and not too relevant for the rest of the talk.

Note: Coproduct VS coaction

∆MPL and ∆aX are really coactions: the first-entry of the tensor is special.

∆MPL: powers of π only appear in first entry.

∆aX : first entry with same number of cuts as (G, C).
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One-loop Feynman integrals, cut
and uncut



A basis for one-loop Feynman integrals

Diagram with n external legs of momenta pl, in dim. reg.,

J̃n =
eγEϵ

π
D
2

∫
dDk

n−1∏
j=0

1
(k− qj)2 −m2

j + i0

qj =
∑
l
βjlpl, βjl ∈ {−1, 0, 1}

We choose D = d− 2ϵ with d ∈ N, d = 2⌈n/2⌉:

- tadpoles and bubbles: D = 2− 2ϵ ;
- triangles and boxes: D = 4− 2ϵ ;
- pentagons and hexagons: D = 6− 2ϵ ;
- . . . ;

J̃n evaluates to MPLs and is a pure function of weight d2 = ⌈n2 ⌉

(N.B.: we assume w(ϵ) = −1, coefficient of ϵj has weight d2 + j)
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j + i0

qj =
∑
l
βjlpl, βjl ∈ {−1, 0, 1}

Relation to other integrals:

- Non-scalar integrals: tensor reduction ;
Passarino, Veltman, Nucl.Phys. B160 (1979)

- Propagators raised to a power: Integration-By-Parts (IBP) relations ;
Tkachov, Phys.Lett. B100 (1981); Chetyrkin, Tkachov, Nucl.Phys. B192 (1981); Laporta, Int.J.Mod.Phys. A15 (2000)

- Integrals in other dimensions: dimensional shift and IBP relations.
Tarasov, Phys.Rev.D54 (1996); Lee, Nucl.Phys. B830 (2010)
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Cuts of one-loop Feynman integrals—cuts as discontinuities

Discontinuities on external channels, apply Cutkosky prescription:
[Landau (’59); Cutkosky (’60); t’Hooft & Veltman (’73); SA, Britto, Duhr, Gardi, JHEP 1410 (2014) 125]

- cut propagators identifying channel, replace by delta functions ;
- θ-function to fix energy flow ;
- complex-conjugate one side of cut diagram ;
- keep integration contour of uncut diagram, evaluate in specific kinematic region.

Discontinuities on internal mass: [SA, Britto, Grönqvist, JHEP 1507 (2015) 111]

- replace propagator with the specific mass by delta function ;
- keep integration contour of uncut diagram, evaluate in specific kinematic region.

* Well defined integration contour,
* Vanish if pole of propagator outside integration region/
Can we generalise rules to capture all poles and keep a well defined

countour?
24



Cuts of one-loop Feynman integrals—new prescription

For g(x) behaving well enough around x = a, and a1 < a < a2∫ a2

a1
dxg(x)δ(x− a) = Resx=a

g(x)
x− a = g(a).

But: Resa still non-zero for a /∈ [a1, a2]!

New prescription: [SA, Britto, Duhr, Gardi, to appear 16yy.yyyy]

- change variables kj → xj such that propagator Dj is linear in xj:
Dj ≡ Bj(xj − xj,p);

- if propagator Dj is not cut, do nothing ;

- if propagator Dj is cut,∫ xj,max

xj,min
dxj

g(xj)
Bj(xj − xj,p)

→ Resxj=xj,p
g(xj)

Bj(xj − xj,p)
=
g(xj,p)
Bj

25



Cuts of one-loop Feynman integrals—new results

CC̃Jn =
(2π)⌊c/2⌋eγEϵ
2cπD/2

√
YC

D−c−1

√
GramC

D−c

∫
dΩD−c+1

∏
j/∈C

1
(k− qj)2 −m2

j


C

- c = |C|: number of cut propagators

- YC: modified Cayley determinant

YC =

∣∣∣∣∣det
(
1
2

(
m2
i +m2

j − (qi − qj)2
))

i,j∈C

∣∣∣∣∣
- GramC: Gram determinant (e arbitrary element of C)

GC =
∣∣∣det ((qi − qe) · (qj − qe))i,j∈C\e∣∣∣

- keep contour for uncut propagators, evaluate under cut conditions
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Cuts of one-loop Feynman integrals—new results

Maximal cuts and Leading Singularity:

CG̃JG = 21−2ϵ−n/2 eγEϵΓ(1− ϵ)

Γ(1− 2ϵ)
Y−1/2−ϵ
G
Gram−ϵ

G
=
21−n/2
√
YG

+O(ϵ) , n even.

CG̃JG = 2−(1+n)/2 eγEϵ

Γ(1− ϵ)

Y−ϵ
G

Gram1/2−ϵ
G

=
2−(1+n)/2
√
GramG

+O(ϵ) , n odd.

Integrals normalised to leading singularity:

Jn = J̃n/LS
[̃
Jn
]

Next-to-maximal cuts in closed formula for both even and odd.
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Cuts of one-loop Feynman integrals—polytope geometry

kE

qEa

{qE
0
, . . . , qEa−1

}

0

√

Ha+2/Grama+2

qa

{q0, . . . , qa−1}0

√
Grama+2
(a+1)!

Grama+2 =
∣∣det ((qE0, . . . ,qEa)T(qE0, . . . ,qEa))∣∣

Ha+2 =
∣∣det ((kE,qE0, . . . ,qEa)T(kE,qE0, . . . ,qEa))∣∣ cut−−−−−−→

conditions
Ya+2

CC̃Jn =
(2π)⌊c/2⌋eγEϵ

2cπD/2

√
YC

D−c−1

√
GramC

D−c

∫
dΩD−c+1

∏
j/∈C

1
(k− qj)2 −m2

j


C
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Cuts of one-loop Feynman integrals—general results

One- and two-propagator cuts of any JG

∑
ej∈EG

i

+
∑

(ej,ek)∈EG,j<k

i

j = ϵ mod [iπ]

The sum of all one- and two-propagator cuts at order ϵn equals the uncut function at
order ϵn−1 up to analytic continuation.

Maximal and next-to-maximal cuts of JG with |EG| even propagators

i

= − 12

∣∣∣∣∣
ϵ0

+O(ϵ) ∀i

Unless they vanish, the |EG| different next-to-maximal cuts of a diagram with n even
propagators are equal to −1/2.
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A map between the diagrammatic
coproduct and the coproduct of
MPLs



Quick summary of what we have done so far

Coproduct of one-loop Feynman integrals — ∆MPL

Coproduct of one-loop cut and uncut Feynman graphs — ∆ 1
2

Basis for one-loop Feynman integrals — JG

Well defined cutting rules — CC

We combine these elements in a map between the diagrammatic
coproduct and the coproduct of MPLs
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Coproduct of MPLs and diagrammatic coproduct

Use the coproduct of MPLs to check diagrammatic coproduct

Make the following identifications:

Feynman diagram G←→ integral JG
Cut Feynman diagram (G, C)←→ cut integral CCJG

∆ 1
2
←→ ∆MPL

- Graphs (G, C) understood in dimensional regularisation: can take
massless limit, this is why we only considered graphs with generic masses;

- ∆MPL acts order by order in ϵ⇒ new relations to check at each order ;

- As order in ϵ increases, more and more ∆MPL
p,q terms to check ;

- Relation for some coproduct entries can be proven to all orders in ϵ.
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Massless limit: example, |EG| = 2, C = ∅

Diagrammatic coproduct of all bubbles with massive external legs:

∆

(
e1

e2

)
=

e1 ⊗
e1

e2

+
e2 ⊗

e1

e2

+

(
e1

e2

+
1
2

e1

+
1
2

e2

)
⊗

e1

e2

∆

(
e1

e2

)
=

e1 ⊗
e1

e2

+

(
e1

e2

+
1
2

e1

)
⊗

e1

e2

∆
( )

= ⊗

First take massless limit of ∆ 1
2
then check ∆MPL order by order in ϵ.
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Example: two-mass-hard box B(s, t;p21 ,p22)

∆

( )
= (s)⊗ + (t)⊗

+ (p21)⊗ + (p22)⊗

+ (p21 ,p22, s) ⊗

+

(
+
1
2 (s) + 1

2 (s,p21 ,p22)

+
1
2 (t,p21) +

1
2 (t,p22)

)
⊗

Checked up to weight 4, i.e. O(ϵ2).

Relation between 3- and 4-propagator cuts explains why function is simple
up to O(ϵ): three-mass triangle starts contributing.
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Checks

Explicitly checked for several orders in ϵ for:

tadpole: trivial ;

bubbles: Bub(p2), Bub(p2;m2) and Bub(p2;m2
1 ,m2

2) ;

triangles: several combinations of internal and external masses ;

box: B(s, t), B(s, t,p21), B(s, t,p21 ,p23), B(s, t,p21 ,p22), B(s, t;m2
12) and

B(s, t;m2
12,m2

23).

Consistency checks for:

box: B(s, t,p21 ,p22,p23) and B(s, t,p21 ,p22,p23,p24) ;

pentagon: zero mass ;

hexagon: zero mass. [M. Spradlin, A. Volovich; JHEP 1111 (2011) 084]
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Discontinuities of Feynman diagrams

Discontinuity operators act on first entry of the coproduct

∆Disc = (Disc⊗ id)∆

First entries of coproduct of graph have the same cut edges as graph
⇒They have the same discontinuity structure (Landau equations).

The graphical coproduct is consistent with the action of
discontinuity operators

First entry condition: [Gaiotto, Maldacena, Sever, Vieira, JHEP 1112 (2011) 011]

Satisfied by construction by the diagrammatic coproduct of a Feynman
diagram: first entry is always a Feynman diagram.
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Discontinuities of Feynman diagrams

Diagrammatic coproduct encodes know relations between cuts and
discontinuities

∆

( )
= (p21)⊗ + (p22)⊗

+ (p23)⊗ + ⊗

Single discontinuity:

Discp21

( )
= ±(2πi)

Iterated discontinuities:

Discp21 ,p22

( )
= ±(2πi)2
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Weight one last entry in diagrammatic coproduct, |EG| = n odd

Very few contributions to last entry of weight one:

∆2,1

 ∣∣∣∣∣
ϵ0

 =
∑

(ijk)∈EG

j

i

k

∣∣∣∣∣
ϵ0

⊗
i

k
j

∣∣∣∣∣
ϵ0

+
∑

(ijkl)∈EG

 i

j

k

l

∣∣∣∣∣
ϵ0

+
1
2

∑
(ei,ej,ek)∈(ijkl)

ej

ei

ek

∣∣∣∣∣
ϵ0

⊗
i

k
j

l

∣∣∣∣∣
ϵ0

Alphabet A to O(ϵ0) (set of entries in symbol tensor):

A

 ∣∣∣∣∣
ϵ0

 =A

 j

i

k

∣∣∣∣∣
ϵ0

 ∪ A

 i

k
j

∣∣∣∣∣
ϵ0


∪ A

(
i

j

k

l

∣∣∣∣∣
ϵ0

)
∪ A

 i

k
j

l

∣∣∣∣∣
ϵ0
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Weight one last entry in diagrammatic coproduct, |EG| = n odd

Very few contributions to last entry of weight one:

∆2,1

 ∣∣∣∣∣
ϵ0
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∑

(ijk)∈EG

j

i

k

∣∣∣∣∣
ϵ0

⊗
i

k
j

∣∣∣∣∣
ϵ0

+
∑

(ijkl)∈EG

 i

j

k

l

∣∣∣∣∣
ϵ0

+
1
2

∑
(ei,ej,ek)∈(ijkl)

ej

ei

ek

∣∣∣∣∣
ϵ0

⊗
i

k
j

l

∣∣∣∣∣
ϵ0

Alphabet A to O(ϵ0) (set of entries in symbol tensor):

A

 ∣∣∣∣∣
ϵ0

 =A

 j

i

k

∣∣∣∣∣
ϵ0

 ∪ A

 i

k
j

∣∣∣∣∣
ϵ0


∪ A

(
i

j

k

l

∣∣∣∣∣
ϵ0

)
∪ A

 i

k
j

l

∣∣∣∣∣
ϵ0
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Symbol alphabet A, |EG| = n odd

At order ϵ, one extra contribution:∣∣∣∣∣
ϵ0

⊗

∣∣∣∣∣
ϵ1

Alphabet to all orders in ϵ:

A

  =A

 j

i

k

 ∪ A
(

i

j

k

l

)
∪ A

 i

k
j

∣∣∣∣∣
ϵ0


∪ A

 i

k
j

l

∣∣∣∣∣
ϵ0

 ∪ A

 ∣∣∣∣∣
ϵ1
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Last entry of diagrammatic coproduct and symbol alphabet

To all orders in ϵ last entry of symbol of JG is (|EG| odd):

- next-to-maximal (NMax) cut at order ϵ0

- NNMax cut at order ϵ0

- Max cut at order ϵ1 contributes from order ϵ1 of JG)

These are the only new symbol letters introduced by this topology.

Similar results for |EG| even, one extra contribution:

- NNNMax and NNMax at order ϵ0 cuts contribute from order ϵ0

- NMax and Max cuts at order ϵ1 contribute from order ϵ1
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Symbol alphabet A—Some comments

From maximal cut A (MaxCut) = {YG,GramG}:

YG: Leading Landau Singularity [T. Dennen, M. Spradlin, A. Volovich, JHEP 1603 (2016) 069]

(see also A. Volovich talk on Wednesday)

GramG: beyond Landau singularities

Ingredient for two-loop calculations.

We can be more precise and determine at which order in ϵ each new
symbol letter appears.

Recursive construction of symbol of JG:
For any JG, symbol built iteratively by appending letters to the
symbol of weight one integrals, the tadpole and bubble (new
perspective on first entry condition)
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Differential equations of Feynman diagrams

Differential operators act on last entry of the coproduct

∆ ∂
∂z =

(
id⊗ ∂

∂z
)
∆

Last entries of coproduct of graph have same number of edges as graph

⇒They obey the same differential equations.

The graphical coproduct is consistent with the action of
differential operators
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Differential equations of Feynman diagrams

Sufficient to consider last entries we just discussed, which are of
weight one—d log-forms

d

  =
∑

(ijk)∈EG

j

i

k d

 i

k
j

∣∣∣∣∣
ϵ0


+

∑
(ijkl)∈EG

 i

j

k

l
+
1
2

∑
(ei,ej,ek)∈(ijkl)

ej

ei

ek

d

 i

k
j

l

∣∣∣∣∣
ϵ0


+ ϵ d

 ∣∣∣∣∣
ϵ1
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Differential equations of Feynman diagrams

Diagrammatic coproduct determines differential equations:

Coefficient of differential equations are derivatives of the weight one
term in the ϵ-expansion of cuts

|EG| odd:

- NNMax and NMax cuts contribute from order ϵ0

- Max cut contributes from order ϵ1

|EG| even:

- NNNMax and NNMax cuts contribute from order ϵ0

- NMax and Max cuts contribute from order ϵ1
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Conclusion and outlook



Conclusion

We conjecture and give evidence that:

The coproduct of all one-loop Feynman diagrams has a
completely diagrammatic representation

We construct the diagrammatic coproduct of any one-loop diagram.

New definition of cut of Feynman integrals.

New relation between cut and uncut integrals.

Explicitly checked for several non-trivial examples.

Diagrammatic coproduct consistent with relation between cuts and discontinuities.

Construct iteratively the alphabet and even symbol of one-loop integrals.

Diagrammatic representation of differential equations.
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Outlook

Can our construction be generalised to two and more loops?

What is a good basis of pure Feynman integrals beyond one-loop?

Which combinations of diagrams appear in the first entry?

Can our construction be generalised to diagrams that do not
evaluate to MPLs?

Elliptic functions appear beyond one loop.

Possible connection with recent work by Francis Brown, independent of
integrals evaluating to polylogarithms [Notes on motivic periods, arXiv:1512.06410].
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Thank you!
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