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Introduction




Non-perturbative effects are important:

* in gauge theories: confinement, chiral symmetry breaking, AGT, ...
* in string theories: D-branes, duality, AdS/CFT, ...

They are essential to complete the perturbative expansion
and lead to results valid at all couplings

In supersymmetric theories, tremendous progress has been
possible thanks to the developement of localization
techniques

(Nekrasov ‘02, Nekrasov-Okounkov ‘03, Pestun ‘07, ..., Nekrasov-Pestun ‘13, ....)

In superconformal theories these methods allowed us to
compute exactly several quantities:

* Sphere partition function and free energy

* Wilson loops

e Correlation functions, amplitudes

* Cusp anomalous dimensions and bremsstrahlung function



= We will focus on SYM theories in 4d with N=2 supersymmetry

They are less constrained than the N=4 theories
They are sufficiently constrained to be analyzed exactly

= Building on the Seiberg-Witten approach, there has been a
quest for an exact quantum description of these theories and
their duality pattern:

Insights from M-theory embedding and 6d realizations (Gaiotto)
4d/2d relations (AGT)

Resurgence

Formulation on curved manifolds

Large N limit, holography
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We will be interested in studying how S-duality on the

guantum effective couplings costrains the prepotential of N=2
theories. (earlier work by Minahan et al. '96, ‘97)

We will make use of these constraints to obtain exact

expressions valid at all couplings



N=4 SYM




N=4 SYM

= Consider N =4 SYM in d=4

* This theory is maximally supersymmetric (16 SUSY charges)
* The field content is

A 1 vector
A\ (a =1, 74) 4 Weyl spinors
X" (i=1,---,6) 6 real scalars

* All fields are in the adjoint representation of the gauge
group (5 .
* The —function vanishes to all orders in perturbation theory.

e If (X*) =0, the theory is superconformal (i.e. invariant
under SU(2, 2|4)) also at the quantum level.



N=4 SYM

" The relevant ingredients of N =4 SYM are:

* The gauge group (G (or the gauge algebra g )
* The (complexified) coupling constant

o 4
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= Many exact results have been obtained using:

Explicit expressions of scattering amplitudes

Integrability

AdS/CFT correspondence

Duality



N=4 SYM

= N=4SYM is believed to possess an exact duality invariance

which contains the electro-magnetic duality S
(Montonen-Olive ‘77, Vafa-Witten ‘94, Sen ’94, ...)

= |f the gauge algebra g is simply laced (ADE)

* S maps the theory to itself but with electric and magnetic
states exchanged

* It is a weak/strong duality, acting on the coupling by
S(t)=—-1/7

* Togetherwith T'(7) =7+ 1 (6§ — 0 + 27), it generates
the modular group I' = SL(2,7Z) :

(0 -1 (1 Iy e 3
T (I R



N=4 SYM

= This can be extended to the non-simply laced algebras

(BCFG) (Goddard et al ‘77, Dorey et al ‘96, Argyres et al. ‘06, Kapustin-Witten ‘07, ...)

= S-duality maps the algebra g to its GNO dual g
* in g’ the long and short roots are exchanged

2
V2

&w
>
>

BY =Cyn, C) =B, F/=F, Gj=GY



N=4 SYM

= We can treat all algebras 9 €{A4,, B, Cy, Dy, E¢ 75, Fa,Ga}
at the same time, introducing

ar - ap

’]”L p—
° ag-ag

with ar,and ag being the long and short roots of 9
" One has Ng = 1 for g = An, Dn, E6,7,8
ng =2 for g=2Db,,Cy, I}
ng =3 for g=Gs

ng — ng\/



N=4 SYM

* For ge{A,,B,,Cn, Dy, Esrs, Fy, G2}, the duality group is
generated by

1
S(T):—m , T(T):T+1
g

" They generate the so-called Hecke group H(pg) C SL(2,R)
(0 =1/ /ng (1 1) |
s=(m 0™) =00 1)
S?=—-1, (ST)Ps =—1

ng |1 2 3
pg‘346

where ng = 4 cos? (i) :



N=4 SYM

= The fundamental domain JF of the Hecke group H(pg)

fixed points

= (STS) and T generate a subgroup I'g(ng) C SL(2,7Z)



N=4 SYM as a N=2 theory

Let us decompose the N=4 multiplet into
* one N=2 vector multiplet

; / 2 Weyl fermions
—/>A y ¢ y ¢<\

1 vector 1 complex scalar

* one N=2 hypermultiplet

4 2 Weyl fermions
At X X
2 complex scalars

By introducing the v.e.v.
(¢p) = a = diag(ay, ..., an)
* we break the gauge group G — U(1)"
* we spontaneously break conformal invariance

 we can describe the dynamics in terms of a holomorphic
prepotential F'(a), as in N=2 theories.



N=4 SYM as a N=2 theory

The prepotential of the N=4 theory is simply

F9 =ngirTa

S-duality actsas ., _ g—g

S-duality also relates the electric variable a of the gtheory
. . V
to the magnetic variable apof the 9 theory:

() (5 ) () (0

The dual variables are defined as

1 OF9
an = =Ta
D 2ming Oa




N=4 SYM as a N=2 theory

e Let’s find the S-dual prepotential:

1 1
g

T

e S-duality exchanges the description based on a with its
Legendre-transform, based on ap :

y v OF%
L(F® )=F% —a 5 =ngimTa’

1,
=(—ngim™—ap
T

—2mingaap



N=4 SYM as a N=2 theory

e Let’s find the S-dual prepotential:

1 1
g

T

e S-duality exchanges the description based on a with its
Legendre-transform, based on ap :

y v OF%
L(F® )=F% —a 5 =ngimTa’

1,
=(—ngim™—ap
T

S(F9) = L(F?)

—2mingaap

e Thus



N=2 theories

* We want to show that this structure is present also in
N=2 theories and investigate its consequences on their
strong coupling dynamics.

e We consider two cases:

1. N=2* theories

2. N=2 SQCD theories with Ny = 2N,



N=2* SYM




The N=2* set-up

= Field content:
* one N=2 vector multiplet for the algebra g

e one N=2 hypermultiplet in the adjoint rep. of g with mass
m

= Half of the supercharges are broken, and we have N=2 SUSY

* The B-function still vanishes, but the superconformal
invariance is explicitly broken by the mass m

pure N =2 SYM
N =27

m :O/ /deg:lpling m — 00

N =4 SYM




The N=2* set-up
pure N' =2 SYM

N=22 >®

m :O/ decoupling m — oo

N =4 SYM

= The N=2* theory is a mass deformation of the N=4 SYM
= By decoupling the massive hypermultiplet with

m — oo and A2 = qm%v fixed

one recovers the pure N=2 SYM theory where

e hY isthe dual Coxeter number for

e (g = 627”’7 is the instanton counting parameter

« 2hY isthe B-function coefficient of the pure N=2 SYM



Structure of the N=2* prepotential

= The N=2* prepotential contains classical, 1-loop and non-
perturbative terms

. 9 :
Fg:ngZﬂ-Ta/ —I_fg Wlth fg:f:[g_loop+f7gon—p€Tt

"= The 1-loop term reads /

LY [ aton (%0 o mption (4 ]

OéE g

* U, is the set of the roots a of the algebra 9
e «v - @ isthe mass of the W-boson associated to the root o

= The non-perturbative contributions come from all instanton
sectors and are proportional to ¢" and can be explicitly

computed using localization for all classical algebras
(Nekrasov ‘02, Nekrasov-Okounkov ‘03, ..., Billo et al 15, ...)



S-duality and the prepotential

Take ng = 1 for simplicity (i.e. ADE algebras g =g")

The dual variables are defined as

1 OF®

D=5 da

Applying S-duality we get

S(F9) :m(

1

B N 1 O0f%
— T\ 2miT Oa

1

Computing the Legendre transform we get

L(F®)=F%—2ima-ap

=i

1

T

Jad + fo(r,0) +

-2 )ab+ /(= o)

1
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)

:7'<a,—|—

1 8f9>

2miT Oa
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S-duality and the prepotential

= Requiring
S(F®) = L(F?)

1 1 [0f%\°
f (_;’aD> = fA(ra)+ AT ( 8@ )

= We now exploit this very powerful constraint and show its
implications.

implies




S-duality and the prepotential

= Requiring
S(F®) = L(F?)

1 1 [0f%\°
f (_;’aD> = fA(ra)+ AT ( 8@ )

= We now exploit this very powerful constraint and show its
implications.

implies

= For a generic algebra g we have:

v\ 2
() = ()

4@7777,97'



S-duality and the prepotential
= Requiring
S(F9) = L(F9)

implies

1 [/8f9\
dimT \ Oa

= We now exploit this very powerful constraint and show its
implications.

= For SU(2) this is related to a recursion relation and a
modular anomaly equation (also in the Omega-background)

(Minahan et al ‘98, Grimm et al ‘07, Huang et al 09, Mironov-Morozov ’09,..., Billo et al '13, ...
Nemkov 13, Billo et al ’15)



S-duality and the prepotential

= Requiring

S(F9) = L(F*)

implies

1 [/8f9\
dimT \ Oa

= We now exploit this very powerful constraint and show its
implications.

= The modular anomaly equation is related to the
holomorphic anomaly equation of the local CY topological
string description of the low-energy effective theory

(BCOV ‘93, Witten ‘93, ... Aganagic et al ‘06, Gunaydin et al ‘06, Huang et al 09, Huang ‘13, ...)



Solving the modular anomaly eq.

= We organize the quantum prepotential f¢ in a mass
expansion

= Zf,g(f, a) with f% oc m*"
n=1

= From explicit calculations, one sees that:
. flg is only 1-loop and thus t-independent

= Z log(a a)

aeg

* f8 (n > 2) are both 1-loop and non-perturbative. They are
homogeneous functions

fR(m Xa) = X7 f3(7,a)

(This is because the prepotential has mass dimension 2)



S-duality and the prepotential

= The modular anomaly equation

1 9\? 6
fg __aD nga_|__ i : 5:._

implies
e




S-duality and the prepotential

" The modular anomaly equation

/e —lCLD fg(TCL)-I-— @ 2 : 52.1
ITTT
implies
SEE
s n=1
* Using f{(a = Z log a a and
ac¥,

requiring that under S-duality A — 7 A, we have

flap) = rat )= ff @+



S-duality and the prepotential

" nN=2

e Using the definition of the dual variable and the homogeneity
property, we have

1 1 _
f29(_ _7aD) :fZQ(_ _77_(0“_'_'”)) =T 2f29(_
T T /r
* In order to solve the equation, we must require that
1 5 2/
f29(__’a/_|_...):7' f5(77a/_|_...):7- f2g(7-7a)+
-

1

T

* j.e. f2g (7-, a) should have modular weight 2 under S-duality !

= The only quantity with this property is the second Eisenstein
series E, (quasi-modular)



S-duality and the prepotential

= Genericn

* The previous analysis can be easily generalized to arbitrary n.
* In order to be able to solve the equation, we must have

HE %,a+-~-) =722 f8(7.0) + -

* Thus we must require that fﬁf depends on t through “modular”
functions with weight 2n — 2, i.e.

£3(r.a) = 2 E2(7), Ea(r), Bo(r).a)

where FEs(7), E4(7), Eg(T) are the Eisenstein series



Eisenstein series

The Eisenstein series are “modular” forms with a well-known

2T |

Fourier expansionin g =€ ;
Es(1) =1—24q — 72¢° — 96¢° — 168¢™* + - - -
E.(7) =1+ 240q + 2160¢> + 6720¢> + 17520¢" + - - -
Eg(1) = 1 — 504q — 16632¢” — 1229764 — 532728¢" + - - -

E, and E, are truly modular forms of weight 4 and 6

1 1

By(=2) =7 Eu(r) , Eo(- ) =7"Es(r)

E, is quasi-modular of weight 2 /
1 6
EQ(— ;) :7'2 [EQ(’T)"_(S] , 52%
Thus a modular form of weight w is mapped under S into a
form of weight w times 7", up to shifts induced by E,



S-duality and the prepotential

= S-duality
1 1 1 1 0 Jf°
(- Lan) = o (B by it DB Dyl 520
0 Of°
= f9 (EQ + 0, By, Eg, (a"l_ Ea—];)>
afe 1 [(9f\?
= f(r,a) +0 8—]];2+ T ( 8‘2) +0(6%)

= Modular anomaly equation

19 (— %,ap) = f%1,a)+ ¢

1 /9f%\°
24(8&)



S-duality and the prepotential

= S-duality
1 B 1 1 1 5 Of¢
(= Lian) = 10 (B30, B 1), B - 1) (o 1500 )
6 Of°
— f9 -7
=f (Ez + 0, Ey4, Eg, (a + 2 9a ))
ofs 1 [ofs :
— 9 _v
— f (T,G)+5Q12 ( 8@) + O(07)
= Modular anomaly equation \

1 1 /O0f"
fg(—;,aD):fg(T,a)—l—(S 4(8];) )



S-duality and the prepotential

= \We thus obtain

g g\ 2
8E2 24 Ja

which implies the following recursion relation
(Minahan et al ‘97)

ofs 1= 0ff of7,

OFE, 24 18& Oa

* This allows us to determine f,2 from the lower coefficients up to E.-
independent terms. These are fixed by comparison with the
perturbative expressions (or the first instanton corrections).

 The modular anomaly equation is a symmetry requirement; it does
not eliminate the need of a dynamical input

= Once this is done, the result is valid to all instanton orders.



Exploiting the recursion: first step

= Start from _m? Z log(a a)

acW,
and get
a_f?g__i (’9f 2:_m_4 Z a-p :_m_409
OFs da 96a66\If (a-a)(f-a) 24 2

= Here we introduced the root lattice sums

1
nm1 “ My Z Z (a.a)n(ﬁl.a)m1...(6£.a)m£

acWqy B17£ BV ()

with U, (a)={8€ ¥, : a'-B=1}

4

* Thus f3 = —ﬂEQ C3




Exploiting the recursion: first step

= For example

1
CU(Z) _
? (a1 — az)?
1 1 1
UG _
2 (a1 — &2)2 * (CLl — CL2)2 + (CLQ — CL3>2
and thus U2 m? U(2
2 = _gE2(7) 02( )
4
U(3 m u(3
2 @ = _gE2(T) 02< )

" From the Fourier expansion of E, we get the perturbative and
all non-perturbative contributions to the prepotential at

order m* |
= There are no free parameters |



Exploiting the recursion: first step
= More explicitly for U(2)

m
uR _ M 1
2 24 2( ) (a1 — a2)2
m* 1
= —— (1 —24q — 72¢* — 96¢°
TR q —T2q q° + - )(al_@)g
m? m* ,  3m? 5 4m?
- 5 T4 5 T4 5 T4 2
CL1 — CLQ / CL1 — CLQ) / (&1 — CLQ) / (a,1 — ag)
1-Ioop 1-instanton 2-instanton 3-instanton

= One can check that these expressions exactly agree with the
perturbative 1-loop calculations and the multi-instanton

results from localization
(Nekrasov ‘02, ... (Billo et al “13)?, ... (Billo et al “15)?)



Exploiting the recursion: second step

Knowing f; and f5, from the recursion relation we find

g g g 6 .
df3 18f1.8f2:_m_E2 Z a-f

- .a)3(A3 .
OF, 12 da  Oa 288 oot (- a)3(6-a)
m9 1
Hence
fBQZ_MEQ(Cg_i_ C§11)+$E4

The integration constant is fixed by comparing the m® term
with the perturbative 1-loop result, leading to

g _ m° g m’ g
f 720 (5E2 + E4)C 576 (EQ E4)02;1,1




Exploiting the recursion

The perturbative expression + the modular anomaly equation
uniquely determine the exact result to all instantons !!

This method can be generalized to all algebras, even the non-
simply laced ones (ny = 2,3) (Billo et al “15)

In this case a few technical issues have to be addressed:

e the S-duality is

1
T— ———
ngT

* there is a modular form of weight 2

Hs(71) = [(nng (T))Ag 4 )\gg (7771g (ngT))Ag] g

n(ngT) n(T)

where Ay = 8,3 for ng = 2,3



Exploiting the recursion

The perturbative expression + the modular anomaly equation
uniquely determine the exact result to all instantons !!

This method can be generalized to all algebras, even the non-
simply laced ones (ny = 2,3) (Billo et al “15)

In this case a few technical issues have to be addressed:
* the S-duality transformations of {H,, E,, E,, E. } are

~(ygT) M /

S R

Hy

ngT

Eﬁ

E?

(Vg )" [Ba + 5(ng = D3 + (ng = 1)(ng — )B4 ,

NgT

(= 57)
(= 57)
(= 57)
(= 77)

&

; (Viig7) [Es + §(ng — 1)(3ng — 4) HS

NgT

N

(ng — 1)(ng — 2)(7E4 Hy + 2E6)} |



Exploiting the recursion

The perturbative expression + the modular anomaly equation
uniquely determine the exact result to all instantons !!

This method can be generalized to all algebras, even the non-
simply laced ones (ny = 2,3) (Billo et al “15)

In this case a few technical issues have to be addressed:

* the lattice sums over the roots are of two types, namely long sums
and short sums:

1
Ly s Z Z (a-a)*(B1-a)m - (Be-a)me

acWL  Bi#-Bre¥y(a)

] B 1
Snm1 mz_z Z (a.a)n(V.a)m1...(52/.a)me’

a€Wg PrF-BreVy(a)




Solving the recursion
m” Z log<a a> |

acWw g
4 m4
f§ =2 By L - i By + (ng — 1)Hs | S5,
m6 4
f§ == [5]32 + E4} L§ - [EZ E4} L8,
m6

— 5o |5E3 + Eu + 10(ng — 1) Ex Hy
g

+5ng(ng — D) HZ + (ng — 1)(ng — 4)E4] S

m6

- 576n2

+ (ng = 1) (ng — 6)H3 — (ng — 1)(ng — 4) B | S5,

[Eg — By +2(ng — 1) ExHo



Checks on the results

For the classical algebras A, B, Cand D
 the ADHM construction of the k instanton moduli spaces is avaliable

* the integration of the moduli action over the instanton moduli
spaces can be performed a la Nekrasov using localization techniques

In principle straightforward; in practice computationally
rather intense. Not many explicit results for the N=2*
theories in the literature.

We worked it out:
e for A, and D, with n<6, up to 5 instantons;
* for C, with n<6, up to 4 instantons;
* for B, with n<6, up to 2 instantons.

The results match the g-expansion of those obtained above

For the exceptional algebras our results are predictions!



One instanton terms

= Consider the g-expansion of the prepotential coefficients fr,
obtained from the recursion relation

= At order g only the sums of the type L3,;. ; survive and we
remain with 20



One instanton terms

Consider the g-expansion of the prepotential coefficients fr,
obtained from the recursion relation

This can be given a closed form expression which is exact in

R EEDS (;.iy [l (“/;Z)

acly BeWq ()

In the decoupling limit, taking into account that|\Iﬂ£[ =2hy —4
we retain the highest power of m

y 1 1
A" Z (- a)? H B-a
ae\Ifg BeEY ()

This result for the pure N=2 SYM has been derived from
completely different methods (5d realizations, Hilbert series,...)

(Benvenuti et al ‘10, Keller et al ‘11; Hanany et al ‘12, Cremonesi et al 14, ...)



One instanton terms

Consider the g-expansion of the prepotential coefficients fr,
obtained from the recursion relation

This can be given a closed form expression which is exact in

R EEDS (;.iy [l (“/;Z)

acly BeWq ()

In the decoupling limit, taking into account that|\Iﬂ£[ =2hy —4
we retain the highest power of m

y 1 1
A" Z (- a)? H B-a
ae\Ifg BeEY ()

Our result generalizes this to the N=2* theory, even for the
exceptional algebras




Generalizations

= These results can be extended to non-flat space-times by
turning-on the so-called €2 background

0 €1 0 0

—e1 O 0 0
0 0 0 €2 (Nekrasov ‘02)
0 0 —e O

which actually was already present in the localization

calculations

» For €1,€9 # 0 one finds that the generalized prepotential
F9 =nginTa®+ f%a,e)
obeys a generalized modular anomaly equation

g 1 g\ 2 2 £g
% 4 8f 1 €1€2 0 f —0
8E2 24 da 24 8&2
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turning-on the so-called €2 background

0 €1 0 0

—e1 O 0 0
0 0 0 €2 (Nekrasov ‘02)
0 0 —e O

which actually was already present in the localization

calculations

» For €1,€9 # 0 one finds that the generalized prepotential
F9 =nginTa®+ f%a,e)
obeys a generalized modular anomaly equation

Off 1 [9f%\°
8—E2+24<0a) i




Generalizations

= |n the ADE case, this equation can be used to prove that S-
duality acts on the prepotential as a Fourier transform

o (087) = G e ()

(Billo et al “13)

= This is consistent with viewing
e aand @p as canonically conjugate variables
e S-duality as a canonical transformation and

Z(a,€) = exp ( -~ Fe(lc:;))

as a wave-function in this space with €1€9 as Planck’s
constant, in agreement with the topological string

(BCOV ‘93, Witten ‘93,Aganagic et al ‘06, Gunaydin et al ‘06 ...)



N=2 SQCD




N=2 SQCD

Consider N=2 SYM with foundamental flavours
If N. 2N, the f—function vanishes (SCFT)

One can repeat the previous analysis of S-duality by turning
on masses for the flavours

Even in the massless case, there are quantum corrections to
the classical prepotential which show that the bare-coupling
T, is not the good modular parameter for the duality group

The effective theory is described by a matrix of couplings
0°F
8&1'8&]'

which are functions of t,

Tz’j



N=2 SQCD

Consider N=2 SYM with foundamental flavours
If N. 2N, the f—function vanishes (SCFT)

One can repeat the previous analysis of S-duality by turning
on masses for the flavours

Even in the massless case, there are quantum corrections to
the classical prepotential which show that the bare-coupling
T, is not the good modular parameter for the duality group

For SU(2) the single effective coupling reads

. . . 1 13 ,
27TZT:27TZTQ—|—Z7T—10g16—|—§q0—|—aqo + -

which can be inverted to give

qo = 627Ti7’() — —16(



N=2 SQCD

Consider N=2 SYM with foundamental flavours
If N._2N_ the p—function vanishes (SCFT)

One can repeat the previous analysis of S-duality by turning
on masses for the flavours

Even in the massless case, there are quantum corrections to
the classical prepotential which show that the bare-coupling
T, is not the good modular parameter for the duality group

For SU(3) in a “special vacuum” the coupling matrix is
proportional to the Cartan matrix 7;; = 7 C;; with

. . . 4 14 ,
2miT =2wiTo + 17 — log 27 + g0 + 310 T
which can be inverted to give
. 3 12
go = *™70 = —27(77( T))
n(7)



N=2 SQCD

Consider N=2 SYM with foundamental flavours
If N._2N_ the p—function vanishes (SCFT)

One can repeat the previous analysis of S-duality by turning
on masses for the flavours

Even in the massless case, there are quantum corrections to
the classical prepotential which show that the bare-coupling
T, is not the good modular parameter for the duality group

These results can be generalized to SU(N) in terms of the
absolute-invariants (j-invariants) of the modular group(s), at

least in the so-called special vacuum
(Ashoke et al. ’16)



Applications

= Using Pestun’s localization formula

Zs4 — /dnCC

and our modular anomaly equation, one can easily prove
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that the partition function on the sphere Zq4 is modular
invariant (a result that was expected on general grounds)

" From Zg2 one can compute (by simply doing gaussian
integrations) several interesting observables

* Wilson loops

e Zamolodchikov metric (Pestun 07, ..., ,
Baggio, Papadpdimas et al ‘14,
e Correlation functions Fiol et al ’15,

Gerchkovitz, Gomis, Komagordki et al ‘16)



Applications

= Using Pestun’s localization formula

Zs4 — /dnCC

and our modular anomaly equation, one can easily prove

2

F(a,e))

o ( -
€1€2

a=1 x;G]_:EQ:%

that the partition function on the sphere Zq4 is modular
invariant (a result that was expected on general grounds)

" From Zg2 one can compute (by simply doing gaussian
integrations) several interesting observables

= Qur S-duality results could be used to promote these
calculations to the fully non-perturbative regime



Conclusions




Conclusions

= The requirement that the duality group acts simply as in the
N=4 theories also in the mass-deformed cases leads to a
modular anomaly equation

= This allows one to efficiently reconstruct the mass-expansion
of the prepotential resumming all instanton corrections into
(quasi-)modular forms of the duality group

= Asimilar pattern (although a bit more intricate) arises in N=2
SQCD theories with N=2N_fundamental flavours



Conclusions

= This approach can be profitably used in other contexts to
study the consequences of S-duality on:

* theories formulated in curved spaces (e.g. S%)
e correlation functions of chiral and anti-chiral operators
e other observables (e.g. Wilson loops, cusp anomaly, ... )

* more general extended observables (surface operators, ...

with the goal of studying the strong-coupling regime
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e correlation functions of chiral and anti-chiral operators
e other observables (e.g. Wilson loops, cusp anomaly, ... )

* more general extended observables (surface operators, ...

with the goal of studying the strong-coupling regime.

Thank you for your attention



