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Introduc=on	



§  Non-perturbaXve	effects	are	important:	

•  in	gauge	theories:	confinement,	chiral	symmetry	breaking,	AGT,	...	
•  in	string	theories:	D-branes,	duality,	AdS/CFT,	...	

§  They	 are	 essenXal	 to	 complete	 the	 perturbaXve	 expansion	
and	lead	to	results	valid	at	all	couplings	

§  In	 supersymmetric	 theories,	 tremendous	 progress	 has	 been	
possible	 thanks	 to	 the	 developement	 of	 localizaXon	
techniques		

(Nekrasov	‘02,	Nekrasov-Okounkov	’03,	Pestun	‘07,	…,	Nekrasov-Pestun	‘13,	….)	

§  In	 superconformal	 theories	 these	 methods	 allowed	 us	 to	
compute	exactly	several	quanXXes:	

•  Sphere	parXXon	funcXon	and	free	energy	
•  Wilson	loops	
•  CorrelaXon	funcXons,	amplitudes	
•  Cusp	anomalous	dimensions	and	bremsstrahlung	funcXon		

	



§  We	will	focus	on	SYM	theories	in	4d	with	N=2	supersymmetry	

•  They	are	less	constrained	than	the	N=4	theories	
•  They	are	sufficiently	constrained	to	be	analyzed	exactly	

§  Building	 on	 the	 Seiberg-Wiqen	 approach,	 there	 has	 been	 a	
quest	for	an	exact	quantum	descripXon	of	these	theories	and	
their	duality	paqern:	
•  Insights	from	M-theory	embedding	and	6d	realizaXons																(Gaioqo)	
•  4d/2d	relaXons	(AGT)	
•  Resurgence	
•  FormulaXon	on	curved	manifolds	
•  Large	N	limit,	holography	
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•  We	 will	 be	 interested	 in	 studying	 how	 S-duality	 on	 the	
quantum	effecXve	couplings	costrains	the	prepotenXal	of	N=2	
theories.																																																(earlier	work	by	Minahan	et	al.	’96,	‘97)	

•  We	 will	 make	 use	 of	 these	 constraints	 to	 obtain	 exact	
expressions	valid	at	all	couplings	



N=4	SYM	



§  Consider	N	=4	SYM	in	d=4		

•  This	theory	is	maximally	supersymmetric	(16	SUSY	charges)	
•  The	field	content	is	

•  All	fields	are	in	the	adjoint	representaXon	of	the	gauge	
group							.	

•  The	β–funcXon	vanishes	to	all	orders	in	perturbaXon	theory.	
•  If																			,	the	theory	is	superconformal	(i.e.	invariant	
under																					)	also	at	the	quantum	level.	

N=4		SYM	
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§  The	relevant	ingredients	of	N	=4	SYM	are:		

•  The	gauge	group								(or	the	gauge	algebra					)	
•  The	(complexified)	coupling	constant	
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§  The	relevant	ingredients	of	N	=4	SYM	are:		

•  The	gauge	group								(or	the	gauge	algebra					)	
•  The	(complexified)	coupling	constant	

	

§  Many	exact	results	have	been	obtained	using:	
•  Explicit	expressions	of	scaqering	amplitudes	
•  Integrability	
•  AdS/CFT	correspondence	
•  Duality	
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§  N	=4	SYM	is	believed	to	possess	an	exact	duality	invariance	
which	contains	the	electro-magneXc	duality		

(Montonen-Olive	‘77,	Vafa-Wiqen	‘94,	Sen	’94,	...)	
	

§  If	the	gauge	algebra				is	simply	laced	(ADE)	
•  				maps	the	theory	to	itself	but	with	electric	and	magneXc	
states	exchanged		
•  It	is	a	weak/strong	duality,	acXng	on	the	coupling	by	

•  Together	with																													(																							),	it	generates	
the	modular	group																											:		
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§  This	can	be	extended	to	the	non-simply	laced	algebras	
(BCFG)									(Goddard	et	al	‘77,	Dorey	et	al	‘96,	Argyres	et	al.	’06,	KapusXn-Wiqen	’07,	...)	
	

§  S-duality	maps	the	algebra					to	its	GNO	dual						
•  in							the	long	and	short	roots	are	exchanged	

•  		
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§  We	can	treat	all	algebras																																																													
at	the	same	Xme,	introducing																																														

	
				with							and								being	the	long	and	short	roots	of		

§  One	has	
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§  For																																																																,	the	duality	group	is	
generated	by																																														

§  They	generate	the	so-called	Hecke	group		

	
					
					where																															.	
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§  The	fundamental	domain						of	the	Hecke	group	

	

§  (STS)	and	T	generate	a	subgroup																																										
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Let	us	decompose	the	N=4	mulXplet	into		
•  one	N=2	vector	mulXplet	

•  one	N=2	hypermulXplet	

	

By	introducing	the	v.e.v.		
	
	

•  we	break	the	gauge	group		
•  we	spontaneously	break	conformal	invariance		
•  we	can	describe	the	dynamics	in	terms	of	a	holomorphic	

prepotenXal												,	as	in	N=2	theories.	
	

	
	

	

N=4		SYM	as	a	N=2	theory	
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•  The	prepotenXal	of	the	N=4	theory	is	simply	

•  S-duality	acts	as	

•  S-duality	also	relates	the	electric	variable					of	the				theory	
to	the	magneXc	variable								of	the							theory:	

•  The	dual	variables	are	defined	as		
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•  Let’s	find	the	S-dual	prepotenXal:	

•  S-duality	exchanges	the	descripXon	based	on					with	its	
Legendre-transform,	based	on								:	
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•  Let’s	find	the	S-dual	prepotenXal:	

•  S-duality	exchanges	the	descripXon	based	on					with	its	
Legendre-transform,	based	on								:	

•  Thus	
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•  We	want	 to	 show	that	 this	 structure	 is	present	also	 in	
N=2	theories	and	invesXgate	 its	consequences	on	their	
strong	coupling	dynamics.	

•  We	consider	two	cases:	

1. 		N=2*	theories	

2. 		N=2	SQCD	theories	with			
	
	

N=2	theories	

Nf = 2Nc



N=2*	SYM	



§  Field	content:	
•  one	N=2	vector	mulXplet	for	the	algebra		
•  one	N=2	hypermulXplet	in	the	adjoint	rep.	of					with	mass	
m	

§  Half	of	the	supercharges	are	broken,	and	we	have	N=2	SUSY	
§  The	β-funcXon	sXll	vanishes,	but	the	superconformal	

invariance	is	explicitly	broken	by	the	mass	m	

The	N=2*	set-up	

g
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N = 4 SYM

decoupling m ! 1



	
	
§  The	N=2*	theory	is	a	mass	deformaXon	of	the	N=4	SYM	
§  By	decoupling	the	massive	hypermulXplet	with																										
				
	

					one	recovers	the	pure	N=2	SYM	theory	where	
•  							is	the	dual	Coxeter	number	for		
•  																						is	the	instanton	counXng	parameter		
•  										is	the	β-funcXon	coefficient	of	the	pure	N=2	SYM	
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§  The	N=2*	prepotenXal	contains	classical,	1-loop	and	non-
perturbaXve	terms	

	
	
§  The	1-loop	term	reads	

•  						is	the	set	of	the	roots	α	of	the	algebra		
•  													is	the	mass	of	the	W-boson	associated	to	the	root	α

§  The	non-perturbaXve	contribuXons	come	from	all	instanton	
sectors	and	are	proporXonal	to							and	can	be	explicitly	
computed	using	localizaXon	for	all	classical	algebras													

(Nekrasov	‘02,	Nekrasov-Okounkov	‘03,	…,	Billò	et	al	15,	...)	
	

§  By	decoupling	the	massive	hypermulXplet	with																										
				
	

					one	recovers	the	pure	N=2	SYM	theory	where	
•  							is	the	dual	Coxeter	number	for		
•  																						is	the	instanton	counXng	parameter		
•  										is	the	β-funcXon	coefficient	of	the	pure	N=2	SYM	
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§  Take																for	simplicity	(i.e.	ADE	algebras														)		

§  The	dual	variables	are	defined	as		
	
	
§  Applying	S-duality	we	get	

			
§  CompuXng	the	Legendre	transform	we	get	

S-duality	and	the	prepoten=al	
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§  Take																for	simplicity	(i.e.	ADE	algebras														)		

§  The	dual	variables	are	defined	as		
	
	
§  Applying	S-duality	we	get	

			
§  CompuXng	the	Legendre	transform	we	get	
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§  Requiring	

					implies	
	
	

	
§  We	now	exploit	this	very	powerful	constraint	and	show	its	

implicaXons.	
				

S-duality	and	the	prepoten=al	
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§  Requiring	

					implies	
	
	

	
§  We	now	exploit	this	very	powerful	constraint	and	show	its	

implicaXons.	
§  For	a	generic	algebra				we	have:			
	
				

S-duality	and	the	prepoten=al	
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§  Requiring	

					implies	
	
	

	
§  We	now	exploit	this	very	powerful	constraint	and	show	its	

implicaXons.	
§  For	SU(2)	this	is	related	to	a	recursion	relaXon	and	a	

modular	anomaly	equaXon	(also	in	the	Omega-background)	
			(Minahan	et	al		‘98,	Grimm	et	al	‘07,	Huang	et	al	09,	Mironov-Morozov	’09,…,	Billò	et	al	’13,	…			

Nemkov	’13,	Billò	et	al	’15	)	

S-duality	and	the	prepoten=al	
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§  Requiring	

					implies	
	
	

	
§  We	now	exploit	this	very	powerful	constraint	and	show	its	

implicaXons.	
§  The	modular	anomaly	equaXon	is	related	to	the	

holomorphic	anomaly	equaXon	of	the	local	CY	topological	
string	descripXon	of	the	low-energy	effecXve	theory	
			(BCOV	‘93,	Wiqen	‘93,	…	Aganagic	et	al	’06,	Gunaydin	et	al	‘06,	Huang	et	al	09,	Huang	‘13,	…	)	

S-duality	and	the	prepoten=al	

S(F g) = L(F g)

fg

✓
�1

⌧
, aD

◆
= fg(⌧, a) +

1

4i⇡⌧

✓
@fg

@a

◆2



§  We	organize	the	quantum	prepotenXal							in	a	mass	
expansion	

§  From	explicit	calculaXons,	one	sees	that:		
•  							is	only	1-loop	and	thus	τ-independent	

•  																					are	both	1-loop	and	non-perturbaXve.	They	are	
homogeneous	funcXons	

			(This	is	because	the	prepotenXal	has	mass	dimension	2)	

	

Solving	the	modular	anomaly	eq.	
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§  The	modular	anomaly	equaXon	

						
				implies	
	

	

	

S-duality	and	the	prepoten=al	
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§  The	modular	anomaly	equaXon	

						
				implies	
	

§  n	=	1	
	

•  Using																																																																			and		
	
				requiring	that	under	S-duality																								,	we	have	

	
	

S-duality	and	the	prepoten=al	
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§  n	=	2	

	

•  Using	the	definiXon	of	the	dual	variable	and	the	homogeneity	
property,	we	have	

•  In	order	to	solve	the	equaXon,	we	must	require	that	

•  i.e.																						should	have	modular	weight	2	under	S-duality	!				

§  The	only	quanXty	with	this	property	is	the	second	Eisenstein	
series	E2	(quasi-modular)	
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§  Generic	n		

	

•  The	previous	analysis	can	be	easily	generalized	to	arbitrary	n.		
•  In	order	to	be	able	to	solve	the	equaXon,	we	must	have		

	
•  Thus	we	must	require	that							depends	on	τ	through	“modular”	
funcXons	with	weight																,	i.e.		

					where																																											are	the	Eisenstein	series	
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§  The	Eisenstein	series	are	“modular”	forms	with	a	well-known	

Fourier	expansion	in																		:		

	
	

§  	E4	and	E6	are	truly	modular	forms	of	weight	4	and	6	

	

§  E2	is	quasi-modular	of	weight	2	
	
	

§  Thus	a	modular	form	of	weight						is	mapped	under	S	into	a	
form	of	weight						Xmes							,	up	to	shivs	induced	by	E2	
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§  S-duality	

§  Modular	anomaly	equaXon		
	

•  In	order	to	be	able	to	solve	the	equaXon,	we	must	have		

	
•  Thus	we	must	require	that							depends	on	τ	through	“modular”	
funcXons	with	weight																,	i.e.		

					where																																											are	the	Eisenstein	series	
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§  S-duality	

§  Modular	anomaly	equaXon		
	

•  In	order	to	be	able	to	solve	the	equaXon,	we	must	have		

	
•  Thus	we	must	require	that							depends	on	τ	through	“modular”	
funcXons	with	weight																,	i.e.		

					where																																											are	the	Eisenstein	series	
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§  We	thus	obtain	

					which	implies	the	following	recursion	relaXon	
(Minahan	et	al	‘97)		

	

	
	

•  This	allows	us	to	determine							from	the	lower	coefficients	up	to	E2-
independent	terms.	These	are	fixed	by	comparison	with	the	
perturbaXve	expressions	(or	the	first	instanton	correcXons).		

•  The	modular	anomaly	equaXon	is	a	symmetry	requirement;	it	does	
not	eliminate	the	need	of	a	dynamical	input	

§  Once	this	is	done,	the	result	is	valid	to	all	instanton	orders.	
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§  Start	from		

					and	get	
	
	

	
§  Here	we	introduced	the	root	laxce	sums	

with	
	

§  Thus	

Exploi=ng	the	recursion:	first	step	
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§  For	example	

						
	
	
					and	thus		
	
	

	

§  From	the	Fourier	expansion	of	E2	we	get	the	perturbaXve	and	
all	non-perturbaXve	contribuXons	to	the	prepotenXal	at	
order	m4	!	

§  There	are	no	free	parameters	!		
	

•  We	This	allows	us	to	determine						from	the	lower	coefficients	up	to	
E2-independent	terms.	These	are	fixed	by	comparison	with	the	
perturbaXve	expressions	(or	the	first	instanton	correcXons).		

•  The	modular	anomaly	equaXon	is	a	symmetry	requirement;	it	does	
not	eliminate	the	need	of	a	dynamical	input	

§  Once	this	is	done,	the	result	is	valid	to	all	instanton	orders.	
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§  More	explicitly	for	U(2)	

§  One	can	check	that	these	expressions	exactly	agree	with	the	
perturbaXve	1-loop	calculaXons	and	the	mulX-instanton	
results	from	localizaXon		

(Nekrasov	‘02,	…	(Billò	et	al	‘13)2,	…	(Billò	et	al	‘15)2)	
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§  Knowing						and					,	from	the	recursion	relaXon	we	find	

§  Hence	

§  The	integraXon	constant	is	fixed	by	comparing	the	m6	term	
with	the	perturbaXve	1-loop	result,	leading	to	
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§  The	perturbaXve	expression	+	the	modular	anomaly	equaXon	

uniquely	determine	the	exact	result	to	all	instantons	!!	

§  This	method	can	be	generalized	to	all	algebras,	even	the	non-
simply	laced	ones	(																	)	

§  In	this	case	a	few	technical	issues	have	to	be	addressed:	
•  the	S-duality	is	

•  there	is	a	modular	form	of	weight	2	
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§  The	perturbaXve	expression	+	the	modular	anomaly	equaXon	

uniquely	determine	the	exact	result	to	all	instantons	!!	

§  This	method	can	be	generalized	to	all	algebras,	even	the	non-
simply	laced	ones	(																	)	

§  In	this	case	a	few	technical	issues	have	to	be	addressed:	
•  the	S-duality	transformaXons	of	{H2	,	E2	,	E4	,	E6	}	are	
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§  The	perturbaXve	expression	+	the	modular	anomaly	equaXon	

uniquely	determine	the	exact	result	to	all	instantons	!!	

§  This	method	can	be	generalized	to	all	algebras,	even	the	non-
simply	laced	ones	(																	)	

§  In	this	case	a	few	technical	issues	have	to	be	addressed:	
•  the	laxce	sums	over	the	roots	are	of	two	types,	namely	long	sums	
and	short	sums:	
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Solving	the	recursion	

fg
1 =

m2

4

X

↵2 g

log

⇣↵ · a
⇤

⌘2
,

fg
2 = �m4

24

E2 L
g
2 �

m4

24ng

h
E2 + (ng � 1)H2

i
Sg
2 ,

fg
3 = �m6

720

h
5E2

2 + E4

i
Lg
4 �

m4

576

h
E2

2 � E4

i
Lg
2;11

� m6

720n2
g

h
5E2

2 + E4 + 10(ng � 1)E2H2

+ 5ng(ng � 1)H2
2 + (ng � 1)(ng � 4)E4

i
Sg
4

� m6

576n2
g

h
E2

2 � E4 + 2(ng � 1)E2H2

+ (ng � 1)(ng � 6)H2
2 � (ng � 1)(ng � 4)E4

i
Sg
2;11 .

fg
4 = . . .



	
§  For	the	classical	algebras	A,	B,	C	and	D	

•  the	ADHM	construcXon	of	the	k	instanton	moduli	spaces	is	avaliable	
•  the	integraXon	of	the	moduli	acXon	over	the	instanton	moduli	
spaces	can	be	performed	à	la	Nekrasov	using	localizaXon	techniques	

§  In	principle	straigh|orward;	in	pracXce	computaXonally	
rather	intense.	Not	many	explicit	results	for	the	N=2*	
theories	in	the	literature.	

§  We	worked	it	out:		
•  for	An	and	Dn	with	n<6,	up	to	5	instantons;	
•  for	Cn	with	n<6,	up	to	4	instantons;		
•  for	Bn	with	n<6,	up	to	2	instantons.	

§  The	results	match	the	q-expansion	of	those	obtained	above	
§  For	the	excepXonal	algebras	our	results	are	predicXons!	

	

Checks	on	the	results	



	
§  Consider	the	q-expansion	of	the	prepotenXal	coefficients						

obtained	from	the	recursion	relaXon	

§  At	order	q	only	the	sums	of	the	type														survive	and	we	
remain	with	
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§  Consider	the	q-expansion	of	the	prepotenXal	coefficients						

obtained	from	the	recursion	relaXon	
	

§  	This	can	be	given	a	closed	form	expression	which	is	exact	in	
m:	

§  In	the	decoupling	limit,	taking	into	account	that																											
we	retain	the	highest	power	of	m	

§  This	result	for	the	pure	N=2	SYM	has	been	derived	from	
completely	different	methods	(5d	realizaXons,	Hilbert	series,…)	
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§  Consider	the	q-expansion	of	the	prepotenXal	coefficients						

obtained	from	the	recursion	relaXon	
	

§  	This	can	be	given	a	closed	form	expression	which	is	exact	in	
m:	

§  In	the	decoupling	limit,	taking	into	account	that																											
we	retain	the	highest	power	of	m	

§  Our	result	generalizes	this	to	the	N=2*	theory,	even	for	the	
excepXonal	algebras	
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§  These	results	can	be	extended	to	non-flat	space-Xmes	by	

turning-on	the	so-called						background	

				which	actually	was	already	present	in	the	localizaXon				
				calculaXons	

§  For																					one	finds	that	the	generalized	prepotenXal		

					obeys	a	generalized	modular	anomaly	equaXon											
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§  In	the	ADE	case,	this	equaXon	can	be	used	to	prove	that	S-

duality	acts	on	the	prepotenXal	as	a	Fourier	transform	

	
	
§  This	is	consistent	with	viewing	

•  				and									as	canonically	conjugate	variables	
•  	S-duality	as	a	canonical	transformaXon		and	

								
				as	a	wave-funcXon	in	this	space	with											as	Planck’s		
				constant,	in	agreement	with	the	topological	string	
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N=2	SQCD	



	
§  Consider	N=2	SYM	with	Nf	fundamental	flavours	
§  If	Nf=2Nc	,the	β-funcXon	vanishes	(SCFT)		
§  One	can	repeat	the	previous	analysis	of	S-duality	by	turning	

on	masses	for	the	flavours		
§  Even	in	the	massless	case,	there	are	quantum	correcXons	to	

the	classical	prepotenXal	which	show	that	the	bare-coupling	
τ0	is	not	the	good	modular	parameter	for	the	duality	group	

§  The	effecXve	theory	is	described	by	a	matrix	of	couplings		

						
					which	are	funcXons	of	τ0	
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§  Consider	N=2	SYM	with	Nf	fundamental	flavours	
§  If	Nf=2Nc	,the	β-funcXon	vanishes	(SCFT)		
§  One	can	repeat	the	previous	analysis	of	S-duality	by	turning	

on	masses	for	the	flavours		
§  Even	in	the	massless	case,	there	are	quantum	correcXons	to	

the	classical	prepotenXal	which	show	that	the	bare-coupling	
τ0	is	not	the	good	modular	parameter	for	the	duality	group	

§  For	SU(2)	the	single	effecXve	coupling	reads	

	

				which	can	be	inverted	to	give	
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§  Consider	N=2	SYM	with	Nf	fundamental	flavours	
§  If	Nf=2Nc	,the	β-funcXon	vanishes	(SCFT)		
§  One	can	repeat	the	previous	analysis	of	S-duality	by	turning	

on	masses	for	the	flavours		
§  Even	in	the	massless	case,	there	are	quantum	correcXons	to	

the	classical	prepotenXal	which	show	that	the	bare-coupling	
τ0	is	not	the	good	modular	parameter	for	the	duality	group	

§  For	SU(3)	in	a	“special	vacuum”	the	coupling	matrix	is	
proporXonal	to	the	Cartan	matrix																						with		
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§  Consider	N=2	SYM	with	Nf	fundamental	flavours	
§  If	Nf=2Nc	,the	β-funcXon	vanishes	(SCFT)		
§  One	can	repeat	the	previous	analysis	of	S-duality	by	turning	

on	masses	for	the	flavours		
§  Even	in	the	massless	case,	there	are	quantum	correcXons	to	

the	classical	prepotenXal	which	show	that	the	bare-coupling	
τ0	is	not	the	good	modular	parameter	for	the	duality	group	

§  These	results	can	be	generalized	to	SU(N)	in	terms	of	the	
absolute-invariants	(j-invariants)	of	the	modular	group(s),	at	
least	in	the	so-called	special	vacuum	
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(Ashoke	et	al.	’16)	



	
§  Using	Pestun’s	localizaXon	formula		

	

					and	our	modular	anomaly	equaXon,	one	can	easily	prove		
					that	the	parXXon	funcXon	on	the	sphere									is	modular		
					invariant	(a	result	that	was	expected	on	general	grounds)	

§  From									one	can	compute	(by	simply	doing	gaussian	
integraXons)	several	interesXng	observables		

•  Wilson	loops	
•  Zamolodchikov	metric		
•  CorrelaXon	funcXons		
•  …	
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§  Using	Pestun’s	localizaXon	formula		

	

					and	our	modular	anomaly	equaXon,	one	can	easily	prove		
					that	the	parXXon	funcXon	on	the	sphere									is	modular		
					invariant	(a	result	that	was	expected	on	general	grounds)	

§  From									one	can	compute	(by	simply	doing	gaussian	
integraXons)	several	interesXng	observables		

§  Our	S-duality	results	could	be	used	to	promote	these	
calculaXons	to	the	fully	non-perturbaXve	regime	
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Conclusions	



	

§  The	requirement	that	the	duality	group	acts	simply	as	in	the	
N=4	theories	also	in	the	mass-deformed	cases	leads	to	a	
modular	anomaly	equaXon		

§  This	allows	one	to	efficiently	reconstruct	the	mass-expansion	
of	the	prepotenXal	resumming	all	instanton	correcXons	into	
(quasi-)modular	forms	of	the	duality	group	

§  A	similar	paqern	(although	a	bit	more	intricate)	arises	in	N=2	
SQCD	theories	with	Nf=2Nc	fundamental	flavours	
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§  This	approach	can	be	profitably	used	in	other	contexts	to	
study	the	consequences	of	S-duality	on:	

•  theories	formulated	in	curved	spaces	(e.g.	S4)	
•  correlaXon	funcXons	of	chiral	and	anX-chiral	operators	
•  other	observables	(e.g.	Wilson	loops,	cusp	anomaly,	…	)	
•  more	general	extended	observables	(surface	operators,	...		
•  …	

						with	the	goal	of	studying	the	strong-coupling	regime	
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study	the	consequences	of	S-duality	on:	

•  theories	formulated	in	curved	spaces	(e.g.	S4)	
•  correlaXon	funcXons	of	chiral	and	anX-chiral	operators	
•  other	observables	(e.g.	Wilson	loops,	cusp	anomaly,	…	)	
•  more	general	extended	observables	(surface	operators,	...		
•  …	

						with	the	goal	of	studying	the	strong-coupling	regime.	
	

Thank	you	for	your	aqenXon		
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