N=2 Theories:
 S-duality, Instantons and All That

Alberto Lerda

Università del Piemonte Orientale and INFN
Torino, Italy

This talk is mainly based on:

- M. Billò, M. Frau, F. Fucito, A.L. and J.F. Morales, "S-duality and the prepotential in N=2*theories (I): the ADE algebras," JHEP 1511 (2015) 024, arXiv:1507.07709
- M. Billò, M. Frau, F. Fucito, A.L. and J.F. Morales, "S-duality and the prepotential in N=2*theories (II): the non-simply laced algebras," JHEP 1511 (2015) 026, arXiv:1507.08027
- M. Billò, M. Frau, F. Fucito, A.L. and J.F. Morales, `'Resumming instantons in N=2* theories, " XIV Marcel Grossmann Meeting, arXiv:1602.00273
and
- S.K. Ashok, M. Billò, E. Dell'Aquila, M. Frau, A.L. and M. Raman, "Modular anomaly equations and S-duality in N=2 conformal SQCD," JHEP 1510 (2015) 091, arXiv:1507.07476
- S.K. Ashok, E. Dell’Aquila, A.L. and M. Raman, `'S-duality, triangle groups and modular anomalies in N=2 SQCD," JHEP 1604 (2016) 118, arXiv: 1601.01827
but it builds on a very vast literature (relevant references will be given during the talk)

1. Introduction

2. $N=4 S Y M$
3. $N=2 *$ SYM
4. $N=2$ SQCD
5. Conclusions

Introduction

- Non-perturbative effects are important:
- in gauge theories: confinement, chiral symmetry breaking, AGT, ...
- in string theories: D-branes, duality, AdS/CFT, ...
- They are essential to complete the perturbative expansion and lead to results valid at all couplings
- In supersymmetric theories, tremendous progress has been possible thanks to the developement of localization techniques
(Nekrasov ‘02, Nekrasov-Okounkov ’03, Pestun ‘07, ..., Nekrasov-Pestun '13,)
- In superconformal theories these methods allowed us to compute exactly several quantities:
- Sphere partition function and free energy
- Wilson loops
- Correlation functions, amplitudes
- Cusp anomalous dimensions and bremsstrahlung function
- We will focus on SYM theories in $4 d$ with $N=2$ supersymmetry
- They are less constrained than the $N=4$ theories
- They are sufficiently constrained to be analyzed exactly
- Building on the Seiberg-Witten approach, there has been a quest for an exact quantum description of these theories and their duality pattern:
- Insights from M-theory embedding and 6d realizations
- 4d/2d relations (AGT)
- Resurgence
- Formulation on curved manifolds
- Large N limit, holography
- We will focus on SYM theories in $4 d$ with $N=2$ supersymmetry
- They are less constrained than the $N=4$ theories
- They are sufficiently constrained to be analyzed exactly
- Building on the Seiberg-Witten approach, there has been a quest for an exact quantum description of these theories and their duality pattern:
- Insights from M-theory embedding and $6 d$ realizations
- 4d/2d relations (AGT)
- Resurgence
- Formulation on curved manifolds
- Large N limit, holography
- We will be interested in studying how S-duality on the quantum effective couplings costrains the prepotential of $\mathrm{N}=2$ theories.
(earlier work by Minahan et al. '96, ‘97)
- We will make use of these constraints to obtain exact expressions valid at all couplings

N=4 SYM

$N=4$ SYM

- Consider $N=4$ SYM in $\mathrm{d}=4$
- This theory is maximally supersymmetric (16 SUSY charges)
- The field content is

$$
\begin{array}{lll}
A & & 1 \text { vector } \\
\lambda^{a} & (a=1, \cdots, 4) & 4 \text { Weyl spinors } \\
X^{i} \quad(i=1, \cdots, 6) & 6 \text { real scalars }
\end{array}
$$

- All fields are in the adjoint representation of the gauge group G.
- The β-function vanishes to all orders in perturbation theory.
- If $\left\langle X^{i}\right\rangle=0$, the theory is superconformal (i.e. invariant under $\operatorname{SU}(2,2 \mid 4)$) also at the quantum level.

$N=4 S Y M$

- The relevant ingredients of $N=4$ SYM are:
- The gauge group G (or the gauge algebra \mathfrak{g})
- The (complexified) coupling constant

$$
\tau=\frac{\theta}{2 \pi}+i \frac{4 \pi}{g^{2}} \in \mathbb{H}_{+}
$$

$N=4$ SYM

- The relevant ingredients of $N=4$ SYM are:
- The gauge group G (or the gauge algebra \mathfrak{g})
- The (complexified) coupling constant

$$
\tau=\frac{\theta}{2 \pi}+i \frac{4 \pi}{g^{2}} \in \mathbb{H}_{+}
$$

- Many exact results have been obtained using:
- Explicit expressions of scattering amplitudes
- Integrability
- AdS/CFT correspondence
- Duality

$N=4 \mathrm{SYM}$

- $N=4$ SYM is believed to possess an exact duality invariance which contains the electro-magnetic duality S
- If the gauge algebra \mathfrak{g} is simply laced (ADE)
- S maps the theory to itself but with electric and magnetic states exchanged
- It is a weak/strong duality, acting on the coupling by

$$
S(\tau)=-1 / \tau
$$

- Together with $T(\tau)=\tau+1(\theta \rightarrow \theta+2 \pi)$, it generates the modular group $\Gamma=\operatorname{SL}(2, \mathbb{Z})$:

$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) ; \quad S^{2}=-1, \quad(S T)^{3}=-1
$$

$N=4 S Y M$

- This can be extended to the non-simply laced algebras S-duality maps the algebra \mathfrak{g} to its GNO dual \mathfrak{g} 『
- in \mathfrak{g}^{\vee} the long and short roots are exchanged

- $A_{n}^{\vee}=A_{n}, \quad D_{n}^{\vee}=D_{n}, \quad E_{n}^{\vee}=E_{n}$,

$$
B_{n}^{\vee}=C_{n}, \quad C_{n}^{\vee}=B_{n}, \quad F_{4}^{\vee}=F_{4}^{\prime \vee}, \quad G_{2}^{\vee}=G_{2}^{\prime \vee}
$$

$N=4$ SYM

- We can treat all algebras $\mathfrak{g} \in\left\{A_{n}, B_{n}, C_{n}, D_{n}, E_{6,7,8}, F_{4}, G_{2}\right\}$ at the same time, introducing

$$
n_{\mathfrak{g}}=\frac{\alpha_{L} \cdot \alpha_{L}}{\alpha_{S} \cdot \alpha_{S}}
$$

with α_{L} and α_{S} being the long and short roots of \mathfrak{g}

- One has

$$
\begin{aligned}
& n_{\mathfrak{g}}=1 \text { for } \mathfrak{g}=A_{n}, D_{n}, E_{6,7,8} \\
& n_{\mathfrak{g}}=2 \text { for } \mathfrak{g}=B_{n}, C_{n}, F_{4} \\
& n_{\mathfrak{g}}=3 \text { for } \mathfrak{g}=G_{2}
\end{aligned}
$$

$$
n_{\mathfrak{g}}=n_{\mathfrak{g} \vee}
$$

$N=4 S Y M$

- For $\mathfrak{g} \in\left\{A_{n}, B_{n}, C_{n}, D_{n}, E_{6,7,8}, F_{4}, G_{2}\right\}$, the duality group is generated by

$$
S(\tau)=-\frac{1}{n_{\mathfrak{g}} \tau}, \quad T(\tau)=\tau+1
$$

- They generate the so-called Hecke group $\mathrm{H}\left(p_{\mathfrak{g}}\right) \subset \mathrm{SL}(2, \mathbb{R})$

$$
\begin{gathered}
S=\left(\begin{array}{cc}
0 & -1 / \sqrt{n_{\mathfrak{g}}} \\
\sqrt{n_{\mathfrak{g}}} & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) ; \\
S^{2}=-1, \quad(S T)^{p_{\mathfrak{g}}}=-1
\end{gathered}
$$

where $n_{\mathfrak{g}}=4 \cos ^{2}\left(\frac{\pi}{p_{\mathfrak{g}}}\right)$.

$n_{\mathfrak{g}}$	1	$\mathbf{2}$	3
$p_{\mathfrak{g}}$	3	$\mathbf{4}$	$\mathbf{6}$

$N=4$ SYM

- The fundamental domain \mathcal{F} of the Hecke group $\mathrm{H}\left(p_{\mathfrak{g}}\right)$

- (STS) and T generate a subgroup $\Gamma_{0}\left(n_{\mathfrak{g}}\right) \subset \mathrm{SL}(2, \mathbb{Z})$

$N=4$ SYM as a $N=2$ theory

Let us decompose the $N=4$ multiplet into

- one $N=2$ vector multiplet

- one $N=2$ hypermultiplet

2 Weyl fermions

2 complex scalars

By introducing the v.e.v.

$$
\langle\phi\rangle=a=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)
$$

- we break the gauge group $G \rightarrow U(1)^{n}$
- we spontaneously break conformal invariance
- we can describe the dynamics in terms of a holomorphic prepotential $F(a)$, as in $N=2$ theories.

$N=4$ SYM as a $N=2$ theory

- The prepotential of the $N=4$ theory is simply

$$
F^{\mathfrak{g}}=n_{\mathfrak{g}} i \pi \tau a^{2}
$$

- S-duality acts as

$$
\tau \rightarrow-\frac{1}{n_{\mathfrak{g}} \tau}, \quad \mathfrak{g} \rightarrow \mathfrak{g}^{\vee}
$$

- S-duality also relates the electric variable a of the \mathfrak{g} theory to the magnetic variable a_{D} of the \mathfrak{g}^{\vee} theory:

$$
S\binom{a_{D}}{a}=\left(\begin{array}{cc}
0 & -1 / \sqrt{n_{\mathfrak{g}}} \\
\sqrt{n_{\mathfrak{g}}} & 0
\end{array}\right)\binom{a_{D}}{a}=\binom{-a / \sqrt{n_{\mathfrak{g}}}}{\sqrt{n_{\mathfrak{g}}} a_{D}}
$$

- The dual variables are defined as

$$
a_{D} \equiv \frac{1}{2 \pi i n_{\mathfrak{g}}} \frac{\partial F^{\mathfrak{g}}}{\partial a}=\tau a
$$

$N=4$ SYM as a $N=2$ theory

- Let's find the S-dual prepotential:

$$
S\left(F^{\mathfrak{g}}\right)=n_{\mathfrak{g}} i \pi\left(-\frac{1}{n_{\mathfrak{g}} \tau}\right)\left(\sqrt{n_{\mathfrak{g}}} a_{D}\right)^{2}=-n_{\mathfrak{g}} i \pi \frac{1}{\tau} a_{D}^{2}
$$

- S-duality exchanges the description based on a with its Legendre-transform, based on a_{D} :

$$
\begin{aligned}
\mathcal{L}\left(F^{\mathfrak{g}^{\vee}}\right) & =F^{\mathfrak{g}^{\vee}}-a \frac{\partial F^{\mathfrak{g}^{\vee}}}{\partial a}=n_{\mathfrak{g}} i \pi \tau a^{2}-2 \pi i n_{\mathfrak{g}} a a_{D} \\
& =-n_{\mathfrak{g}} i \pi \frac{1}{\tau} a_{D}^{2}
\end{aligned}
$$

$N=4$ SYM as a $N=2$ theory

- Let's find the S-dual prepotential:

$$
S\left(F^{\mathfrak{g}}\right)=n_{\mathfrak{g}} i \pi\left(-\frac{1}{n_{\mathfrak{g}} \tau}\right)\left(\sqrt{n_{\mathfrak{g}}} a_{D}\right)^{2}=-n_{\mathfrak{g}} i \pi \frac{1}{\tau} a_{D}^{2}
$$

- S-duality exchanges the description based on a with its Legendre-transform, based on a_{D} :

$$
\begin{aligned}
\mathcal{L}\left(F^{\mathfrak{g}^{\vee}}\right) & =F^{\mathfrak{g}^{\vee}}-a \frac{\partial F^{\mathfrak{g}^{\vee}}}{\partial a}=n_{\mathfrak{g}} i \pi \tau a^{2}-2 \pi i n_{\mathfrak{g}} a a_{D} \\
& =-n_{\mathfrak{g}} i \pi \frac{1}{\tau} a_{D}^{2}
\end{aligned}
$$

- Thus

$$
S\left(F^{\mathfrak{g}}\right)=\mathcal{L}\left(F^{\mathfrak{g}^{\mathfrak{v}}}\right)
$$

$N=2$ theories

- We want to show that this structure is present also in $N=2$ theories and investigate its consequences on their strong coupling dynamics.
- We consider two cases:

1. $N=2^{*}$ theories
2. $N=2$ SQCD theories with $N_{f}=2 N_{c}$

N=2* SYM

The N=2* set-up

- Field content:
- one $N=2$ vector multiplet for the algebra \mathfrak{g}
- one $N=2$ hypermultiplet in the adjoint rep. of \mathfrak{g} with mass m
- Half of the supercharges are broken, and we have $N=2$ SUSY
- The β-function still vanishes, but the superconformal invariance is explicitly broken by the mass m

The $N=2^{*}$ set-up

$$
\mathcal{T} \underset{\sim}{\text { N }}=4 \mathrm{SYM}
$$

- The $N=2$ * theory is a mass deformation of the $N=4$ SYM
- By decoupling the massive hypermultiplet with

$$
m \rightarrow \infty \quad \text { and } \quad \Lambda^{2 h^{\vee}} \equiv q m^{2 h^{\vee}} \quad \text { fixed }
$$

one recovers the pure $N=2$ SYM theory where

- h^{\vee} is the dual Coxeter number for \mathfrak{g}
- $q=e^{2 \pi i \tau}$ is the instanton counting parameter
- $2 h^{\vee}$ is the β-function coefficient of the pure $\mathrm{N}=2$ SYM

Structure of the $N=2^{*}$ prepotential

- The $N=2^{*}$ prepotential contains classical, 1-loop and nonperturbative terms

$$
F^{\mathfrak{g}}=n_{\mathfrak{g}} i \pi \tau a^{2}+f^{\mathfrak{g}} \quad \text { with } \quad f^{\mathfrak{g}}=f_{1-\text { loop }}^{\mathfrak{g}}+f_{\text {non-pert }}^{\mathfrak{g}}
$$

- The 1-loop term reads

$$
\frac{1}{4} \sum_{\alpha \in \Psi_{\mathfrak{g}}}\left[-(\alpha \cdot a)^{2} \log \left(\frac{\alpha \cdot a}{\Lambda}\right)^{2}+(\alpha \cdot a+m)^{2} \log \left(\frac{\alpha \cdot a+m}{\Lambda}\right)^{2}\right]
$$

- $\Psi_{\mathfrak{g}}$ is the set of the roots α of the algebra \mathfrak{g}
- $\alpha \cdot a$ is the mass of the W-boson associated to the root α
- The non-perturbative contributions come from all instanton sectors and are proportional to q^{k} and can be explicitly computed using localization for all classical algebras
(Nekrasov ‘02, Nekrasov-Okounkov ‘03, ..., Billò et al 15, ...)

S-duality and the prepotential

- Take $n_{\mathfrak{g}}=1$ for simplicity (i.e. ADE algebras $\mathfrak{g}=\mathfrak{g}^{\vee}$)
- The dual variables are defined as

$$
a_{D} \equiv \frac{1}{2 \pi i} \frac{\partial F^{\mathfrak{g}}}{\partial a}=\tau\left(a+\frac{1}{2 \pi i \tau} \frac{\partial f^{\mathfrak{g}}}{\partial a}\right)
$$

- Applying S-duality we get

$$
S\left(F^{\mathfrak{g}}\right)=i \pi\left(-\frac{1}{\tau}\right) a_{D}^{2}+f^{\mathfrak{g}}\left(-\frac{1}{\tau}, a_{D}\right)
$$

- Computing the Legendre transform we get

$$
\begin{aligned}
\mathcal{L}\left(F^{\mathfrak{g}}\right) & =F^{\mathfrak{g}}-2 i \pi a \cdot a_{D} \\
& =i \pi\left(-\frac{1}{\tau}\right) a_{D}^{2}+f^{\mathfrak{g}}(\tau, a)+\frac{1}{4 i \pi \tau}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2}
\end{aligned}
$$

S-duality and the prepotential

- Take $n_{\mathfrak{g}}=1$ for simplicity (i.e. ADE algebras $\mathfrak{g}=\mathfrak{g}^{\vee}$)
- The dual variables are defined as

$$
a_{D} \equiv \frac{1}{2 \pi i} \frac{\partial F^{\mathfrak{g}}}{\partial a}=\tau\left(a+\frac{1}{2 \pi i \tau} \frac{\partial f^{\mathfrak{g}}}{\partial a}\right)
$$

- Applying S-duality we get

$$
\begin{aligned}
& \left.S\left(F^{\mathfrak{g}}\right)=i \pi\left(-\frac{1}{\tau}\right) a_{D}^{2}+f^{\mathfrak{g}}\left(-\frac{1}{\tau}, a_{D}\right)\right) \\
& \text { ig the Legendre transform we get }
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}\left(F^{\mathfrak{g}}\right) & =F^{\mathfrak{g}}-2 i \pi a \cdot a_{D} \\
& =i \pi\left(-\frac{1}{\tau}\right) a_{D}^{2}+f^{\mathfrak{g}}(\tau, a)+\frac{1}{4 i \pi \tau}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2}
\end{aligned}
$$

S-duality and the prepotential

- Requiring

$$
S\left(F^{\mathfrak{g}}\right)=\mathcal{L}\left(F^{\mathfrak{g}}\right)
$$

implies

- We now exploit this very powerful constraint and show its implications.

S-duality and the prepotential

- Requiring

$$
S\left(F^{\mathfrak{g}}\right)=\mathcal{L}\left(F^{\mathfrak{g}}\right)
$$

implies

- We now exploit this very powerful constraint and show its implications.
- For a generic algebra \mathfrak{g} we have:

$$
f^{\mathfrak{g}}\left(-\frac{1}{n_{\mathfrak{g}} \tau}, \sqrt{n_{\mathfrak{g}}} a_{D}\right)=f^{\mathfrak{g}^{\vee}}(\tau, a)+\frac{1}{4 i \pi n_{\mathfrak{g}} \tau}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2}
$$

S-duality and the prepotential

- Requiring

$$
S\left(F^{\mathfrak{g}}\right)=\mathcal{L}\left(F^{\mathfrak{g}}\right)
$$

implies

- We now exploit this very powerful constraint and show its implications.
- For $\mathrm{SU}(2)$ this is related to a recursion relation and a modular anomaly equation (also in the Omega-background)
(Minahan et al '98, Grimm et al '07, Huang et al 09, Mironov-Morozov '09,..., Billò et al ' 13 , ... Nemkov '13, Billò et al '15)

S-duality and the prepotential

- Requiring

$$
S\left(F^{\mathfrak{g}}\right)=\mathcal{L}\left(F^{\mathfrak{g}}\right)
$$

implies

- We now exploit this very powerful constraint and show its implications.
- The modular anomaly equation is related to the holomorphic anomaly equation of the local CY topological string description of the low-energy effective theory

Solving the modular anomaly eq.

- We organize the quantum prepotential $f^{\mathfrak{g}}$ in a mass expansion

$$
f^{\mathfrak{g}}(\tau, a)=\sum_{n=1} f_{n}^{\mathfrak{g}}(\tau, a) \quad \text { with } \quad f_{n}^{\mathfrak{g}} \propto m^{2 n}
$$

- From explicit calculations, one sees that:
- $f_{1}^{\mathfrak{g}}$ is only 1 -loop and thus τ-independent

$$
f_{1}^{\mathfrak{g}}(a)=\frac{m^{2}}{4} \sum_{\alpha \in \Psi_{\mathfrak{g}}} \log \left(\frac{\alpha \cdot a}{\Lambda}\right)^{2}
$$

- $f_{n}^{\mathfrak{g}}(n \geq 2)$ are both 1-loop and non-perturbative. They are homogeneous functions

$$
f_{n}^{\mathfrak{g}}(\tau, \lambda a)=\lambda^{2-2 n} f_{n}^{\mathfrak{g}}(\tau, a)
$$

(This is because the prepotential has mass dimension 2)

S-duality and the prepotential

- The modular anomaly equation

$$
f^{\mathfrak{g}}\left(-\frac{1}{\tau}, a_{D}\right)=f^{\mathfrak{g}}(\tau, a)+\frac{\delta}{24}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2} \quad, \quad \delta=\frac{6}{i \pi \tau}
$$

implies

$$
f_{n}^{\mathfrak{g}}\left(-\frac{1}{\tau}, a_{D}\right)=f_{n}^{\mathfrak{g}}(\tau, a)+\cdots
$$

S-duality and the prepotential

- The modular anomaly equation

$$
f^{\mathfrak{g}}\left(-\frac{1}{\tau}, a_{D}\right)=f^{\mathfrak{g}}(\tau, a)+\frac{\delta}{24}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2} \quad, \quad \delta=\frac{6}{i \pi \tau}
$$

implies

$$
f_{n}^{\mathfrak{g}}\left(-\frac{1}{\tau}, a_{D}\right)=f_{n}^{\mathfrak{g}}(\tau, a)+\cdots
$$

- $\mathrm{n}=1$
- Using $f_{1}^{\mathfrak{g}}(a)=\frac{m^{2}}{4} \sum_{\alpha \in \Psi_{g}} \log \left(\frac{\alpha \cdot a}{\Lambda}\right)^{2}$ and
requiring that under S-duality $\Lambda \rightarrow \tau \Lambda$, we have

$$
f_{1}^{\mathfrak{g}}\left(a_{D}\right)=f_{1}^{\mathfrak{g}}(\tau a+\cdots)=f_{1}^{\mathfrak{g}}(a)+\cdots
$$

S-duality and the prepotential

- $\mathrm{n}=2$
- Using the definition of the dual variable and the homogeneity property, we have

$$
f_{2}^{\mathfrak{g}}\left(-\frac{1}{\tau}, a_{D}\right)=f_{2}^{\mathfrak{g}}\left(-\frac{1}{\tau}, \tau(a+\cdots)\right)=\tau_{\pi}^{-2} f_{2}^{\mathfrak{g}}\left(-\frac{1}{\tau}, a+\cdots\right)
$$

- In order to solve the equation, we must require that

$$
f_{2}^{\mathfrak{g}}\left(-\frac{1}{\tau}, a+\cdots\right)=\tau^{2} f_{2}^{\mathfrak{g}}(\tau, a+\cdots)=\tau^{2} f_{2}^{\mathfrak{g}}(\tau, a)+\cdots
$$

- i.e. $\quad f_{2}^{\mathfrak{g}}(\tau, a)$ should have modular weight 2 under S-duality !
- The only quantity with this property is the second Eisenstein series E_{2} (quasi-modular)

S-duality and the prepotential

- Generic n
- The previous analysis can be easily generalized to arbitrary n.
- In order to be able to solve the equation, we must have

$$
f_{n}^{\mathfrak{g}}\left(-\frac{1}{\tau}, a+\cdots\right)=\tau^{2 n-2} f_{n}^{\mathfrak{g}}(\tau, a)+\cdots
$$

- Thus we must require that $f_{n}^{\mathfrak{g}}$ depends on τ through "modular" functions with weight $2 n-2$, i.e.

$$
f_{n}^{\mathfrak{g}}(\tau, a)=f_{n}^{\mathfrak{g}}\left(E_{2}(\tau), E_{4}(\tau), E_{6}(\tau), a\right)
$$

where $E_{2}(\tau), E_{4}(\tau), E_{6}(\tau)$ are the Eisenstein series

Eisenstein series

- The Eisenstein series are "modular" forms with a well-known Fourier expansion in $q=e^{2 i \pi \tau}$:

$$
\begin{aligned}
& E_{2}(\tau)=1-24 q-72 q^{2}-96 q^{3}-168 q^{4}+\cdots \\
& E_{4}(\tau)=1+240 q+2160 q^{2}+6720 q^{3}+17520 q^{4}+\cdots \\
& E_{6}(\tau)=1-504 q-16632 q^{2}-122976 q^{3}-532728 q^{4}+\cdots
\end{aligned}
$$

- E_{4} and E_{6} are truly modular forms of weight 4 and 6

$$
E_{4}\left(-\frac{1}{\tau}\right)=\tau^{4} E_{4}(\tau) \quad, \quad E_{6}\left(-\frac{1}{\tau}\right)=\tau^{6} E_{6}(\tau)
$$

- E_{2} is quasi-modular of weight 2

$$
E_{2}\left(-\frac{1}{\tau}\right)=\tau^{2}\left[E_{2}(\tau)+\delta\right] \quad, \quad \delta=\frac{6}{i \pi \tau}
$$

- Thus a modular form of weight w is mapped under S into a form of weight w times τ^{w}, up to shifts induced by E_{2}

S-duality and the prepotential

- S-duality

$$
\begin{aligned}
f^{\mathfrak{g}}\left(-\frac{1}{\tau}, a_{D}\right) & =f^{\mathfrak{g}}\left(E_{2}\left(-\frac{1}{\tau}\right), E_{4}\left(-\frac{1}{\tau}\right), E_{6}\left(-\frac{1}{\tau}\right), \tau\left(a+\frac{\delta}{12} \frac{\partial f^{\mathfrak{g}}}{\partial a}\right)\right) \\
& =f^{\mathfrak{g}}\left(E_{2}+\delta, E_{4}, E_{6},\left(a+\frac{\delta}{12} \frac{\partial f^{\mathfrak{g}}}{\partial a}\right)\right) \\
& =f^{\mathfrak{g}}(\tau, a)+\delta\left[\frac{\partial f^{\mathfrak{g}}}{\partial E_{2}}+\frac{1}{12}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2}\right]+\mathcal{O}\left(\delta^{2}\right)
\end{aligned}
$$

- Modular anomaly equation

$$
f^{\mathfrak{g}}\left(-\frac{1}{\tau}, a_{D}\right)=f^{\mathfrak{g}}(\tau, a)+\delta\left[\frac{1}{24}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2}\right]
$$

S-duality and the prepotential

- S-duality

$$
f^{\mathfrak{g}}\left(-\frac{1}{\tau}, a_{D}\right)=f^{\mathfrak{g}}\left(E_{2}\left(-\frac{1}{\tau}\right), E_{4}\left(-\frac{1}{\tau}\right), E_{6}\left(-\frac{1}{\tau}\right), \tau\left(a+\frac{\delta}{12} \frac{\partial f^{\mathfrak{g}}}{\partial a}\right)\right)
$$

$$
=f^{\mathfrak{g}}\left(E_{2}+\delta, E_{4}, E_{6},\left(a+\frac{\delta}{12} \frac{\partial f^{\mathfrak{g}}}{\partial a}\right)\right)
$$

$$
=f^{\mathfrak{g}}(\tau, a)+\delta\left(\frac{\partial f^{\mathfrak{g}}}{\partial E_{2}}+\frac{1}{12}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2}\right]+\mathcal{O}\left(\delta^{2}\right)
$$

- Modular anomaly equation

$$
f^{\mathfrak{g}}\left(-\frac{1}{\tau}, a_{D}\right)=f^{\mathfrak{g}}(\tau, a)+\delta\left[\frac{1}{24}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2}\right]
$$

S-duality and the prepotential

- We thus obtain

$$
\frac{\partial f^{\mathfrak{g}}}{\partial E_{2}}+\frac{1}{24}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2}=0
$$

which implies the following recursion relation
(Minahan et al ‘97)

$$
\frac{\partial f_{n}^{\mathfrak{g}}}{\partial E_{2}}=-\frac{1}{24} \sum_{\ell=1}^{n-1} \frac{\partial f_{\ell}^{\mathfrak{g}}}{\partial a} \frac{\partial f_{n-\ell}^{\mathfrak{g}}}{\partial a}
$$

- This allows us to determine $f_{n}^{\mathfrak{g}}$ from the lower coefficients up to $\mathrm{E}_{2}-$ independent terms. These are fixed by comparison with the perturbative expressions (or the first instanton corrections).
- The modular anomaly equation is a symmetry requirement; it does not eliminate the need of a dynamical input
- Once this is done, the result is valid to all instanton orders.

Exploiting the recursion: first step

- Start from

$$
f_{1}^{\mathfrak{g}}=\frac{m^{2}}{4} \sum_{\alpha \in \Psi_{\mathfrak{g}}} \log \left(\frac{\alpha \cdot a}{\Lambda}\right)^{2}
$$

and get

$$
\frac{\partial f_{2}^{\mathfrak{g}}}{\partial E_{2}}=-\frac{1}{24}\left(\frac{\partial f_{1}^{\mathfrak{g}}}{\partial a}\right)^{2}=-\frac{m^{4}}{96} \sum_{\alpha, \beta \in \Psi_{\mathfrak{g}}} \frac{\alpha \cdot \beta}{(\alpha \cdot a)(\beta \cdot a)} \equiv-\frac{m^{4}}{24} C_{2}^{\mathfrak{g}}
$$

- Here we introduced the root lattice sums

$$
C_{n ; m_{1} \cdots m_{\ell}}^{\mathfrak{g}}=\sum_{\alpha \in \Psi_{\mathfrak{g}}} \sum_{\beta_{1} \neq \cdots \beta_{\ell} \in \Psi_{\mathfrak{g}}(\alpha)} \frac{1}{(\alpha \cdot a)^{n}\left(\beta_{1} \cdot a\right)^{m_{1}} \cdots\left(\beta_{\ell} \cdot a\right)^{m_{\ell}}}
$$

with $\Psi_{\mathfrak{g}}(\alpha)=\left\{\beta \in \Psi_{\mathfrak{g}}: \alpha^{\vee} \cdot \beta=1\right\}$

- Thus

$$
f_{2}^{\mathfrak{g}}=-\frac{m^{4}}{24} E_{2} C_{2}^{\mathrm{g}}
$$

Exploiting the recursion: first tep

- For example

$$
\begin{aligned}
C_{2}^{\mathrm{U}(2)} & =\frac{1}{\left(a_{1}-a_{2}\right)^{2}} \\
C_{2}^{\mathrm{U}(3)} & =\frac{1}{\left(a_{1}-a_{2}\right)^{2}}+\frac{1}{\left(a_{1}-a_{2}\right)^{2}}+\frac{1}{\left(a_{2}-a_{3}\right)^{2}}
\end{aligned}
$$

and thus

$$
\begin{aligned}
f_{2}^{\mathrm{U}(2)} & =-\frac{m^{4}}{24} E_{2}(\tau) C_{2}^{\mathrm{U}(2)} \\
f_{2}^{\mathrm{U}(3)} & =-\frac{m^{4}}{24} E_{2}(\tau) C_{2}^{\mathrm{U}(3)}
\end{aligned}
$$

- From the Fourier expansion of E_{2} we get the perturbative and all non-perturbative contributions to the prepotential at order m^{4} !
- There are no free parameters !

Exploiting the recursion: first tep

- More explicitly for $\mathrm{U}(2)$

$$
\begin{aligned}
f_{2}^{\mathrm{U}(2)} & =-\frac{m^{4}}{24} E_{2}(\tau) \frac{1}{\left(a_{1}-a_{2}\right)^{2}} \\
& =-\frac{m^{4}}{24}\left(1-24 q-72 q^{2}-96 q^{3}+\cdots\right) \frac{1}{\left(a_{1}-a_{2}\right)^{2}} \\
& =-\frac{m^{4}}{24\left(a_{1}-a_{2}\right)^{2}}+q \frac{m^{4}}{\left(a_{1}-a_{2}\right)^{2}}+q^{2} \frac{3 m^{4}}{\left(a_{1}-a_{2}\right)^{2}}+q^{3} \frac{4 m^{4}}{\left(a_{1}-a_{2}\right)^{2}} \cdots \\
\text { 1-loop } & \text { 1-instanton }{ }_{\text {2-instanton }}
\end{aligned}
$$

- One can check that these expressions exactly agree with the perturbative 1-loop calculations and the multi-instanton results from localization

Exploiting the recursion: second step

- Knowing $f_{1}^{\mathfrak{g}}$ and $f_{2}^{\mathfrak{g}}$, from the recursion relation we find

$$
\begin{aligned}
\frac{\partial f_{3}^{\mathfrak{g}}}{\partial E_{2}} & =-\frac{1}{12} \frac{\partial f_{1}^{\mathfrak{g}}}{\partial a} \cdot \frac{\partial f_{2}^{\mathfrak{g}}}{\partial a}=-\frac{m^{6}}{288} E_{2} \sum_{\alpha, \beta \in \Psi_{\mathfrak{g}}} \frac{\alpha \cdot \beta}{(\alpha \cdot a)^{3}(\beta \cdot a)} \\
& \equiv-\frac{m^{6}}{72} E_{2}\left(C_{2}^{\mathfrak{g}}+\frac{1}{4} C_{2 ; 1,1}^{\mathfrak{g}}\right)
\end{aligned}
$$

- Hence

$$
f_{3}^{\mathfrak{g}}=-\frac{m^{6}}{144} E_{2}^{2}\left(C_{2}^{\mathfrak{g}}+\frac{1}{4} C_{2 ; 1,1}^{\mathfrak{g}}\right)+x E_{4}
$$

- The integration constant is fixed by comparing the m^{6} term with the perturbative 1-loop result, leading to

$$
f_{3}^{\mathfrak{g}}=-\frac{m^{6}}{720}\left(5 E_{2}^{2}+E_{4}\right) C_{2}^{\mathfrak{g}}-\frac{m^{6}}{576}\left(E_{2}^{2}-E_{4}\right) C_{2 ; 1,1}^{\mathfrak{g}}
$$

Exploiting the recursion

- The perturbative expression + the modular anomaly equation uniquely determine the exact result to all instantons !!
- This method can be generalized to all algebras, even the nonsimply laced ones ($n_{\mathfrak{g}}=2,3$)

> (Billò et al '15)

- In this case a few technical issues have to be addressed:
- the S-duality is

$$
\tau \rightarrow-\frac{1}{n_{\mathfrak{g}} \tau}
$$

- there is a modular form of weight 2

$$
H_{2}(\tau)=\left[\left(\frac{\eta^{n_{\mathfrak{g}}}(\tau)}{\eta\left(n_{\mathfrak{g}} \tau\right)}\right)^{\lambda_{\mathfrak{g}}}+\lambda_{\mathfrak{g}}^{n_{\mathfrak{g}}}\left(\frac{\eta^{n_{\mathfrak{g}}}\left(n_{\mathfrak{g}} \tau\right)}{\eta(\tau)}\right)^{\lambda_{\mathfrak{g}}}\right]^{1-\frac{1}{n_{\mathfrak{g}}}}
$$

where $\lambda_{\mathfrak{g}}=8,3$ for $n_{\mathfrak{g}}=2,3$

Exploiting the recursion

- The perturbative expression + the modular anomaly equation uniquely determine the exact result to all instantons !!
- This method can be generalized to all algebras, even the nonsimply laced ones ($n_{\mathfrak{g}}=2,3$)
- In this case a few technical issues have to be addressed:
- the S-duality transformations of $\left\{\mathrm{H}_{2}, \mathrm{E}_{2}, \mathrm{E}_{4}, \mathrm{E}_{6}\right\}$ are

$$
\begin{aligned}
& H_{2}\left(-\frac{1}{n_{\mathfrak{g}} \tau}\right)=-\left(\sqrt{n_{\mathfrak{g}}} \tau\right)^{2} H_{2}, \\
& E_{2}\left(-\frac{1}{n_{\mathfrak{g}} \tau}\right)=\left(\sqrt{n_{\mathfrak{g}}} \tau\right)^{2}\left[E_{2}+\left(n_{\mathfrak{g}}-1\right) H_{2}+\delta\right], \\
& E_{4}\left(-\frac{1}{n_{\mathfrak{g}} \tau}\right)=\left(\sqrt{n_{\mathfrak{g}}} \tau\right)^{4}\left[E_{4}+5\left(n_{\mathfrak{g}}-1\right) H_{2}^{2}+\left(n_{\mathfrak{g}}-1\right)\left(n_{\mathfrak{g}}-4\right) E_{4}\right], \\
& E_{6}\left(-\frac{1}{n_{\mathfrak{g}} \tau}\right)=\left(\sqrt{n_{\mathfrak{g}}} \tau\right)^{6}\left[E_{6}+\frac{7}{2}\left(n_{\mathfrak{g}}-1\right)\left(3 n_{\mathfrak{g}}-4\right) H_{2}^{3}\right. \\
&\left.\quad-\frac{1}{2}\left(n_{\mathfrak{g}}-1\right)\left(n_{\mathfrak{g}}-2\right)\left(7 E_{4} H_{2}+2 E_{6}\right)\right],
\end{aligned}
$$

Exploiting the recursion

- The perturbative expression + the modular anomaly equation uniquely determine the exact result to all instantons !!
- This method can be generalized to all algebras, even the nonsimply laced ones ($n_{\mathfrak{g}}=2,3$)
- In this case a few technical issues have to be addressed:
- the lattice sums over the roots are of two types, namely long sums and short sums:

$$
\begin{aligned}
& L_{n ; m_{1} \cdots m_{\ell}}^{\mathfrak{g}}=\sum_{\alpha \in \Psi_{\mathfrak{g}}^{\mathrm{L}}} \\
& \sum_{\beta_{1} \neq \cdots \beta_{\ell} \in \Psi_{\mathfrak{g}}(\alpha)} \frac{1}{(\alpha \cdot a)^{n}\left(\beta_{1} \cdot a\right)^{m_{1}} \cdots\left(\beta_{\ell} \cdot a\right)^{m_{\ell}}}, \\
& S_{n ; m_{1} \cdots m_{\ell}}^{\mathfrak{g}}=\sum_{\alpha \in \Psi_{\mathfrak{g}}^{\mathrm{S}}}
\end{aligned} \sum_{\beta_{1} \neq \cdots \beta_{\ell} \in \Psi_{\mathfrak{g}}^{\vee}(\alpha)} \frac{1}{(\alpha \cdot a)^{n}\left(\beta_{1}^{\vee} \cdot a\right)^{m_{1} \cdots\left(\beta_{\ell}^{\vee} \cdot a\right)^{m_{\ell}}},}
$$

Solving the recursion

$$
\begin{aligned}
f_{1}^{\mathfrak{g}}= & \frac{m^{2}}{4} \sum_{\alpha \in \Psi_{\mathfrak{g}}} \log \left(\frac{\alpha \cdot a}{\Lambda}\right)^{2}, \\
f_{2}^{\mathfrak{g}}= & -\frac{m^{4}}{24} E_{2} L_{2}^{\mathfrak{g}}-\frac{m^{4}}{24 n_{\mathfrak{g}}}\left[E_{2}+\left(n_{\mathfrak{g}}-1\right) H_{2}\right] S_{2}^{\mathfrak{g}} \\
f_{3}^{\mathfrak{g}}= & -\frac{m^{6}}{720}\left[5 E_{2}^{2}+E_{4}\right] L_{4}^{\mathfrak{g}}-\frac{m^{4}}{576}\left[E_{2}^{2}-E_{4}\right] L_{2 ; 11}^{\mathfrak{g}} \\
& -\frac{m^{6}}{720 n_{\mathfrak{g}}^{2}}\left[5 E_{2}^{2}+E_{4}+10\left(n_{\mathfrak{g}}-1\right) E_{2} H_{2}\right. \\
& \left.\quad+5 n_{\mathfrak{g}}\left(n_{\mathfrak{g}}-1\right) H_{2}^{2}+\left(n_{\mathfrak{g}}-1\right)\left(n_{\mathfrak{g}}-4\right) E_{4}\right] S_{4}^{\mathfrak{g}} \\
& -\frac{m^{6}}{576 n_{\mathfrak{g}}^{2}}\left[E_{2}^{2}-E_{4}+2\left(n_{\mathfrak{g}}-1\right) E_{2} H_{2}\right. \\
& \left.\quad+\left(n_{\mathfrak{g}}-1\right)\left(n_{\mathfrak{g}}-6\right) H_{2}^{2}-\left(n_{\mathfrak{g}}-1\right)\left(n_{\mathfrak{g}}-4\right) E_{4}\right] S_{2 ; 11}^{\mathfrak{g}}
\end{aligned}
$$

$$
f_{4}^{\mathfrak{g}}=\ldots
$$

Checks on the results

- For the classical algebras A, B, C and D
- the ADHM construction of the k instanton moduli spaces is avaliable
- the integration of the moduli action over the instanton moduli spaces can be performed à la Nekrasov using localization techniques
- In principle straightforward; in practice computationally rather intense. Not many explicit results for the $N=2^{*}$ theories in the literature.
- We worked it out:
- for A_{n} and D_{n} with $n<6$, up to 5 instantons;
- for C_{n} with $n<6$, up to 4 instantons;
- for B_{n} with $n<6$, up to 2 instantons.
- The results match the q-expansion of those obtained above
- For the exceptional algebras our results are predictions!

One instanton terms

- Consider the q-expansion of the prepotential coefficients $f_{n}^{\mathfrak{g}}$ obtained from the recursion relation
- At order q only the sums of the type $L_{2 ; 1 \cdots 1}^{\mathfrak{q}}$ survive and we remain with

$$
F_{k=1}^{\mathfrak{g}}=m^{4} \sum_{\ell \geq 0} \frac{m^{2 \ell}}{\ell!} L_{2 ; \underbrace{\mathfrak{G}}_{\ell} \ldots 1}
$$

One instanton terms

- Consider the q-expansion of the prepotential coefficients $f_{n}^{\mathfrak{g}}$ obtained from the recursion relation
- This can be given a closed form expression which is exact in m :

$$
F_{k=1}^{\mathfrak{g}}=\sum_{\alpha \in \Psi_{\mathfrak{g}}^{\mathrm{L}}} \frac{m^{4}}{(\alpha \cdot a)^{2}} \prod_{\beta \in \Psi_{\mathfrak{g}}(\alpha)}\left(1+\frac{m}{\beta \cdot a}\right)
$$

- In the decoupling limit, taking into account that $\left|\Psi_{\mathfrak{g}}^{\mathrm{L}}\right|=2 h_{\mathfrak{g}}^{\vee}-4$ we retain the highest power of m

$$
\Lambda^{2 h_{\mathfrak{g}}^{\vee}} \sum_{\alpha \in \Psi_{\mathfrak{g}}^{L}} \frac{1}{(\alpha \cdot a)^{2}} \prod_{\beta \in \Psi_{\mathfrak{g}}(\alpha)} \frac{1}{\beta \cdot a}
$$

- This result for the pure $N=2$ SYM has been derived from completely different methods (5d realizations, Hilbert series,...)

One instanton terms

- Consider the q-expansion of the prepotential coefficients $f_{n}^{\mathfrak{g}}$ obtained from the recursion relation
- This can be given a closed form expression which is exact in m:

$$
F_{k=1}^{\mathfrak{g}}=\sum_{\alpha \in \Psi_{\mathfrak{g}}^{\mathrm{L}}} \frac{m^{4}}{(\alpha \cdot a)^{2}} \prod_{\beta \in \Psi_{\mathfrak{g}}(\alpha)}\left(1+\frac{m}{\beta \cdot a}\right)
$$

- In the decoupling limit, taking into account that $\left|\Psi_{\mathfrak{g}}^{\mathrm{L}}\right|=2 h_{\mathfrak{g}}^{\vee}-4$ we retain the highest power of m

$$
\Lambda^{2 h_{\mathfrak{g}}^{\vee}} \sum_{\alpha \in \Psi_{\mathfrak{g}}^{L}} \frac{1}{(\alpha \cdot a)^{2}} \prod_{\beta \in \Psi_{\mathfrak{g}}(\alpha)} \frac{1}{\beta \cdot a}
$$

- Our result generalizes this to the $N=2^{*}$ theory, even for the exceptional algebras

Generalizations

- These results can be extended to non-flat space-times by turning-on the so-called Ω background

$$
\left(\begin{array}{cccc}
0 & \epsilon_{1} & 0 & 0 \\
-\epsilon_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \epsilon_{2} \\
0 & 0 & -\epsilon_{2} & 0
\end{array}\right)
$$

which actually was already present in the localization calculations

- For $\epsilon_{1}, \epsilon_{2} \neq 0$ one finds that the generalized prepotential

$$
F^{\mathfrak{g}}=n_{\mathfrak{g}} i \pi \tau a^{2}+f^{\mathfrak{g}}(a, \epsilon)
$$

obeys a generalized modular anomaly equation

$$
\frac{\partial f^{\mathfrak{g}}}{\partial E_{2}}+\frac{1}{24}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2}+\frac{\epsilon_{1} \epsilon_{2}}{24} \frac{\partial^{2} f^{\mathfrak{g}}}{\partial a^{2}}=0
$$

Generalizations

- These results can be extended to non-flat space-times by turning-on the so-called Ω background

$$
\left(\begin{array}{cccc}
0 & \epsilon_{1} & 0 & 0 \\
-\epsilon_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \epsilon_{2} \\
0 & 0 & -\epsilon_{2} & 0
\end{array}\right)
$$

which actually was already present in the localization calculations

- For $\epsilon_{1}, \epsilon_{2} \neq 0$ one finds that the generalized prepotential

$$
F^{\mathfrak{g}}=n_{\mathfrak{g}} i \pi \tau a^{2}+f^{\mathfrak{g}}(a, \epsilon)
$$

obeys a generalized modular anomaly equation

$$
\frac{\partial f^{\mathfrak{g}}}{\partial E_{2}}+\frac{1}{24}\left(\frac{\partial f^{\mathfrak{g}}}{\partial a}\right)^{2}+\left(\frac{\epsilon_{1} \epsilon_{2}}{24} \frac{\partial^{2} f^{\mathfrak{g}}}{\partial a^{2}}=0\right.
$$

Generalizations

- In the ADE case, this equation can be used to prove that Sduality acts on the prepotential as a Fourier transform

$$
\exp \left(-\frac{S[F]\left(a_{D}\right)}{\epsilon_{1} \epsilon_{2}}\right)=\left(\frac{i \tau}{\epsilon_{1} \epsilon_{2}}\right)^{n / 2} \int d^{n} x \exp \left(\frac{2 \pi i a_{D} \cdot x-F(x)}{\epsilon_{1} \epsilon_{2}}\right)
$$

- This is consistent with viewing
- a and a_{D} as canonically conjugate variables
- S-duality as a canonical transformation and

$$
\mathcal{Z}(a, \epsilon)=\exp \left(-\frac{F(a, \epsilon)}{\epsilon_{1} \epsilon_{2}}\right)
$$

as a wave-function in this space with $\epsilon_{1} \epsilon_{2}$ as Planck's constant, in agreement with the topological string

$N=2 S Q C D$

$N=2$ SQCD

- Consider $N=2$ SYM with N_{f} fundamental flavours
- If $N_{f=} 2 N_{c}$, the β-function vanishes (SCFT)
- One can repeat the previous analysis of S-duality by turning on masses for the flavours
- Even in the massless case, there are quantum corrections to the classical prepotential which show that the bare-coupling τ_{0} is not the good modular parameter for the duality group
- The effective theory is described by a matrix of couplings

$$
\tau_{i j} \sim \frac{\partial^{2} F}{\partial a_{i} \partial a_{j}}
$$

which are functions of τ_{0}

$N=2$ SQCD

- Consider $N=2$ SYM with N_{f} fundamental flavours
- If $N_{f=} 2 N_{c}$, the β-function vanishes (SCFT)
- One can repeat the previous analysis of S-duality by turning on masses for the flavours
- Even in the massless case, there are quantum corrections to the classical prepotential which show that the bare-coupling τ_{0} is not the good modular parameter for the duality group
- For SU(2) the single effective coupling reads

$$
2 \pi i \tau=2 \pi i \tau_{0}+i \pi-\log 16+\frac{1}{2} q_{0}+\frac{13}{64} q_{0}^{2}+\cdots
$$

which can be inverted to give

$$
q_{0}=e^{2 \pi i \tau_{0}}=-16\left(\frac{\eta(4 \tau)}{\eta(\tau)}\right)^{8}
$$

$N=2$ SQCD

- Consider $N=2$ SYM with N_{f} fundamental flavours
- If $N_{f=} 2 N_{c}$, the β-function vanishes (SCFT)
- One can repeat the previous analysis of S-duality by turning on masses for the flavours
- Even in the massless case, there are quantum corrections to the classical prepotential which show that the bare-coupling τ_{0} is not the good modular parameter for the duality group
- For SU(3) in a "special vacuum" the coupling matrix is proportional to the Cartan matrix $\tau_{i j}=\tau C_{i j}$ with

$$
2 \pi i \tau=2 \pi i \tau_{0}+i \pi-\log 27+\frac{4}{9} q_{0}+\frac{14}{81} q_{0}^{2}+\cdots
$$

which can be inverted to give

$$
q_{0}=e^{2 \pi i \tau_{0}}=-27\left(\frac{\eta(3 \tau)}{\eta(\tau)}\right)^{12}
$$

$N=2$ SQCD

- Consider $N=2$ SYM with N_{f} fundamental flavours
- If $N_{f=} 2 N_{c}$, the β-function vanishes (SCFT)
- One can repeat the previous analysis of S-duality by turning on masses for the flavours
- Even in the massless case, there are quantum corrections to the classical prepotential which show that the bare-coupling τ_{0} is not the good modular parameter for the duality group
- These results can be generalized to $\operatorname{SU}(N)$ in terms of the absolute-invariants (j-invariants) of the modular group(s), at least in the so-called special vacuum

Applications

- Using Pestun's localization formula

$$
Z_{S^{4}}=\left.\int d^{n} x\left|\exp \left(-\frac{F(a, \epsilon)}{\epsilon_{1} \epsilon_{2}}\right)\right|^{2}\right|_{a=i x ; \epsilon_{1}=\epsilon_{2}=\frac{1}{R}}
$$

and our modular anomaly equation, one can easily prove that the partition function on the sphere $Z_{S^{4}}$ is modular invariant (a result that was expected on general grounds)

- From $Z_{S^{4}}$ one can compute (by simply doing gaussian integrations) several interesting observables
- Wilson loops
- Zamolodchikov metric
- Correlation functions
- ...

```
(Pestun '07, ... ,
Baggio, Papadpdimas et al '14,
Fiol et al '15,
Gerchkovitz, Gomis, Komagordki et al '16)
```


Applications

- Using Pestun's localization formula

$$
Z_{S^{4}}=\left.\int d^{n} x\left|\exp \left(-\frac{F(a, \epsilon)}{\epsilon_{1} \epsilon_{2}}\right)\right|^{2}\right|_{a=i x ; \epsilon_{1}=\epsilon_{2}=\frac{1}{R}}
$$

and our modular anomaly equation, one can easily prove that the partition function on the sphere $Z_{S^{4}}$ is modular invariant (a result that was expected on general grounds)

- From $Z_{S^{4}}$ one can compute (by simply doing gaussian integrations) several interesting observables
- Our S-duality results could be used to promote these calculations to the fully non-perturbative regime

Conclusions

Conclusions

- The requirement that the duality group acts simply as in the $N=4$ theories also in the mass-deformed cases leads to a modular anomaly equation
- This allows one to efficiently reconstruct the mass-expansion of the prepotential resumming all instanton corrections into (quasi-)modular forms of the duality group
- A similar pattern (although a bit more intricate) arises in $N=2$ SQCD theories with $N_{f}=2 N_{c}$ fundamental flavours

Conclusions

- This approach can be profitably used in other contexts to study the consequences of S-duality on:
- theories formulated in curved spaces (e.g. S^{4})
- correlation functions of chiral and anti-chiral operators
- other observables (e.g. Wilson loops, cusp anomaly, ...)
- more general extended observables (surface operators, ...
with the goal of studying the strong-coupling regime

Conclusions

- This approach can be profitably used in other contexts to study the consequences of S-duality on:
- theories formulated in curved spaces (e.g. S^{4})
- correlation functions of chiral and anti-chiral operators
- other observables (e.g. Wilson loops, cusp anomaly, ...)
- more general extended observables (surface operators, ...
with the goal of studying the strong-coupling regime.

Thank you for your attention

