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• moduli stabilization needs quantum effective action
     
(example: Large volume scenario)

      ... dynamics of light moduli lead to 
          phenomenology, cosmology

• interplay string/field theory amplitudes 
                        (KLT, BCJ, ...)

Motivations

Finally: Models with moduli stabilization
Moduli stabilization = minimize effective potential 
(not necessarily globally) to give masses to 
geometric moduli and generate mass scales (yoke)
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The formulation of supersymmetric string theories in ten dimensions is generalized to incorpor- 
ate compactified dimensions. Expressions for the one-loop four-particle S-matrix elements of 
N = 4 Yang-Mills and N = 8 supergravity in four dimensions are obtained by studying the 
string-theory loop amplitudes in the limit that the radii of the compactified dimensions and the 
Regge slope parameter simultaneously approach zero. If certain patterns that emerge should 
persist in the higher orders of perturbation theory, then N = 4 Yang-Mills in four dimensions 
would be ultraviolet finite to all orders, whereas N = 8 supergravity in four dimensions would 
have ultraviolet divergences starting at three loops. 

1. Introduction 

A l ight -cone-gauge act ion for  supersymmetr ic  strings in ten-d imensional  space- 
t ime was recently fo rmula ted  [1]. Depend ing  on the choice of bounda ry  conditions,  
this act ion may  be used to formula te  ei ther  an interacting theory  of open  and closed 
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“In order to decide whether theory I or theory II is the more 
promising candidate for phenomenology, some further 
theoretical developments may be necessary. For example, 
it is clearly important to incorporate symmetry breaking...”



local orbifold 
singularity

•
the orbifold/orientifold limit is a
special case of a smooth
Calabi-Yau manifold.

moduli: S, T, U,�

Simple models for extra dimensions



Orbifold: Identify under discrete spatial rotation

Simple models for extra dimensions

••

•

Z3

• •
makes
cone

⇥Z1 = e2⇡iv1Z1 , here v1 =
1

3
(Z1 = X4 + ŪX5)
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String perturbation theory:
two expansions

+gs +g2
s + . . .hV4i =

V

hV4i =

V

quantum
z }| {

(semi-)classical
z }| {

E2↵0 ! 0



2.3 One-loop: review

Now the 1-loop e↵ective action. First let us note the obvious point that if a coupling is prevented by

supersymmetry in the sense that a superspace lift of the coupling does not exist, it will be prevented

equally well at tree level and loop level. For IIB on K3, which has 16 supercharges like in the heterotic

1-loop term IIA IIB Het IIA/K3 IIB/K3 Het/K3 IIA/CY IIB/CY Het/CY

R ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ X X ⇥
R2 ⇥ ⇥ ⇥ X ⇥ X X X X
R3 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
R4 X X X X X X X X X

Table 1: One-loop curvature corrections. The double vertical lines delineate D = 10, 6, 4.

string in D = 10 (or on T 4), one would expect that supersymmetry would allow R2. The details are

interesting: it turns that the 1-loop correction to R2 vanishes in IIB on K3 but does not vanish in IIA

on K3. See for example [42, 19] and especially [48] as well as section 6.3 for a review of this string

amplitude computation. From the supergravity point of view, [19] explains the vanishing of 1-loop R2

corrections in the D = 6 IIB string theory on K3 from reduction of the ten-dimensional 1-loop term

(t
8

t
8

± ✏
10

✏
10

)R4, where the relative sign gives cancellation in IIB but not IIA. There is also a duality

argument: for IIA on K3 there should be a 1-loop R2 correction but no tree-level R2, because in heterotic

on T 4 there is a tree-level R2 (as discussed above) and no 1-loop R2, and they should be exchanged by

heterotic-IIA duality [19].5 These three arguments illustrate the variety of techniques that have been

developed for half-maximal supersymmetry.

The previous discussion concerned D = 6. Compactification of type II on K3 ⇥ T 2 to D = 4 is

discussed in [52, 48, 19], where the authors calculate moduli-dependent couplings like

Z

d4x
p�g�(U)R2 (IIB) ,

Z

d4x
p�g�(T )R2 (IIA) , (2.6)

where U is the complex structure and T is the Kähler modulus of the 2-torus, and they are exchanged

by T-duality. Note that despite having the same amount of supersymmetry as in IIB on K3 above,

compactification to D = 4 on this 2-torus allows an R2 term in IIB. The authors of [48] argue that

in the decompactification limit of the 2-torus, the coe�cient would need to contain some power of the

Kähler modulus T of the 2-torus to survive the large-torus limit, and �(U) does not. This recovers the

vanishing of the R2 term in D = 6 for IIB and the non-vanishing for IIA.

5For an impressive example of this type of argument in heterotic-type I duality, see [50, 51].

10
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Curvature 1-loop corrections
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Matching to gravity

cross term in 

Rmnpq =

✓
1

2
hmq,np +

1

8
(hmq,rhnp

,r + (hrm,q + hrq,m � 2hmq,r) (h
r
n,p + hr

p,n))

◆

� (m $ n)� (p $ q) + ((m,n) $ (p, q)))

RmnpqR
mnpq



Known facts about R2 loop corrections

• even-even

...

Harvey, Moore ’96
Gregori, Kiritsis, ... ’96

(k1e2k3)(k2e1e3k2) + 5 perm.

e1e2e3 k1k2✏ k1k2✏ ⌘
contracts to same 
invariant as even-even,
times constant c

• odd-odd

cancel in IIB

consistent with duality:
there should be R2 in IIA from heterotic tree-level R2

consider half-maximal (N = 4 in D = 4)

(c± c)RmnpqR
mnpq



Known facts about R3 loop corrections

• naively vanish at any order “by supersymmetry” 
   (no cubic superinvariant)

Bergshoeff, de Roo  ’89
...

• can be nonzero in non-flat background
...

Maldacena, Pimentel ’11
...

Liu, Minasian ’15
...

↵0H2R3

R3

Grisaru ’77
...
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IIB. The D-branes on which open strings can end are added to cancel the negative D-brane charge of

the orientifold plane. In noncompact models, one can get away without orientifolding, but in compact

models, there is some additional work to compute the Möbius strip and Klein bottle amplitudes that

might be needed for specific consistent string models, which we postpone to future work. We will only

consider annulus and torus amplitudes in this paper, but the key simplifications of the integrands should

carry over straightforwardly to the remaining topologies. (We note that for closed strings, our torus

amplitudes will be consistent by themselves, but for model-building one might want to orientifold also

for closed strings, to allow moduli stabilization in minimal supergravity.)

T 4/Z
N

⇥ T 2

Z
2

1

2

(1,�1, 0)

Z
3

1

3

(1,�1, 0)

Z
6

1

6

(1,�1, 0)

T 6/Z
N

Z
3

1

3

(1, 1,�2)

Z
4

1

4

(1, 1,�2)

Z0
6

1

6

(1, 2,�3)

Table 2: Examples of (v
1

, v
2

, v
3

) for supersymmetric orbifolds/orientifolds, see e.g. [72].

3.2 Open-string prescriptions

One-loop scattering amplitudes among open-string states receive contributions from cylinder and Möbius-

strip diagrams. In this work, we will discuss the planar cylinder (annulus) with modular parameter ⌧
2

as

a representative diagram where all external states are inserted on the same boundary component, and

the corresponding color factor is a single-trace of gauge-group generators. In a parametrization of the

non-empty cylinder boundary via purely imaginary coordinates z
i

with 0  Im (z
i

)  ⌧
2

, the universal

n-point open-string integration measure will be denoted by

Z

dµD

12...n

⌘ V
D

8N

Z 1

0

d⌧
2

(8⇡2↵0⌧
2

)D/2

Z

0Im (z1)Im (z2)...Im (zn)⌧2

dz
1

dz
2

. . . dz
n

�(z
1

)⇧
n

. (3.2)

We have incorporated the regularized external volume V
D

, the order N of the orbifold Z
N

as well as

the ubiquitous Koba–Nielsen factor ⇧
n

of eq. (4.5) below, which arises from the plane-wave factors of

vertex operators, see section 4.1. The measure (3.2) with modular parameter ⌧
2

can straightforwardly

be adjusted to the remaining worldsheet topologies, and the delta-function �(z
1

) fixes the translation

invariance of genus-one surfaces, by fixing one puncture to the origin. The number D of uncompactified

spacetime dimensions is denoted as a superscript of dµD

12...n

, and the subscript 12 . . . n refers to the cyclic

ordering of the open-string states along the boundary as well as the trace-ordering of the accompanying

color factor.
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3.2.1 Half-maximal supersymmetry

If one of the twist vector entries vanishes but the other two are nonzero, say v
3

= 0 and therefore

v
1

= �v
2

as in table 2, the orbifold only breaks half of the supersymmetries. These orbifolds can be

characterized by a single rational real number v that enters the partition functions through the vector

~v
k

⌘ k(v,�v). For brevity we will mostly discuss half-maximally supersymmetric orbifolds in their

maximal spacetime dimension D = 6, i.e. arising from compactification from D = 10 on T 4/Z
N

, which

are special points in the moduli space of K3 manifolds. The one-loop amplitude of n gauge bosons in

this setting is given by (for textbook examples, see e.g. [72])

A
1/2

(1, 2, . . . , n) =

Z

dµD=6

12...n

(

�(4)

C I
n,max

+
N�1

X

k=1

�̂
k

I
n,1/2

(~v
k

)

)

, (3.3)

where �(n)

C denotes lattice sums over n-dimensional internal momenta, the subscript “1/2” means ”half-

maximal” and the generalities of the constants �̂
k

= �[sin(⇡kv)/⇡]2 are explained in appendix A.

The external-state information is encoded in the integrands I
...

whose dependence on the integration

variables ⌧
2

and z
i

of the measure (3.2) will usually be suppressed. The subscripts “max” or “1/2”

distinguish orbifold sectors that preserve all or half the supersymmetries, respectively. While the max-

imally supersymmetric integrand is parity-even9, the half-maximal integrand receives both parity-even

and parity-odd contributions labelled by superscripts e and o. We write

I
n,1/2

(~v
k

) ⌘ Ie

n,1/2

(~v
k

) + Io

n,D=6

, (3.4)

where ~v
k

highlights the dependence of the parity-even contribution on non-trivial orbifold sectors, i.e. on

the internal partition function. The dependence of parity-odd integrands on orbifold twists ~v
k

cancels

between the contributions to the partition function due to worldsheet bosons and worldsheet fermions

in the odd spin structure. Explicitly, we have

I
n,max

⌘ 1

⇧
n

4

X

⌫=2

(�1)⌫�1



#
⌫

(0, ⌧)

#0
1

(0, ⌧)

�

4

hV (0)

1

(z
1

)V (0)

2

(z
2

) . . . V (0)

n

(z
n

)i
⌫

(3.5)

Ie

n,1/2

(~v
k

) ⌘ 1

⇧
n

4

X

⌫=2

(�1)⌫


#
⌫

(0, ⌧)

#0
1

(0, ⌧)

�

2



#
⌫

(kv, ⌧)

#
1

(kv, ⌧)

�

2

hV (0)

1

(z
1

)V (0)

2

(z
2

) . . . V (0)

n

(z
n

)i
⌫

, (3.6)

where the second argument of the #-functions is the purely imaginary ⌧ = i⌧
2

for the planar cylinder

under consideration. The inverse of the Koba–Nielsen factor ⇧
n

in (4.5) compensates for its inclusion

in the measure (3.2) and facilitates bookkeeping in later sections. Here ⌫ = 2, 3, 4 are the even spin

9In general, for amplitudes of solely external states, like amplitudes of gauge bosons in D = 6, there is never a parity-

odd contribution to the maximally supersymmetric integrand. With only external excitation it is impossible to saturate

fermion zero modes along internal directions.
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k

⌘ k(v,�v). For brevity we will mostly discuss half-maximally supersymmetric orbifolds in their

maximal spacetime dimension D = 6, i.e. arising from compactification from D = 10 on T 4/Z
N

, which

are special points in the moduli space of K3 manifolds. The one-loop amplitude of n gauge bosons in

this setting is given by (for textbook examples, see e.g. [72])

A
1/2

(1, 2, . . . , n) =

Z

dµD=6

12...n

(

�(4)

C I
n,max

+
N�1

X

k=1

�̂
k

I
n,1/2

(~v
k

)

)

, (3.3)

where �(n)

C denotes lattice sums over n-dimensional internal momenta, the subscript “1/2” means ”half-

maximal” and the generalities of the constants �̂
k

= �[sin(⇡kv)/⇡]2 are explained in appendix A.

The external-state information is encoded in the integrands I
...

whose dependence on the integration

variables ⌧
2

and z
i

of the measure (3.2) will usually be suppressed. The subscripts “max” or “1/2”

distinguish orbifold sectors that preserve all or half the supersymmetries, respectively. While the max-

imally supersymmetric integrand is parity-even9, the half-maximal integrand receives both parity-even

and parity-odd contributions labelled by superscripts e and o. We write

I
n,1/2

(~v
k

) ⌘ Ie

n,1/2

(~v
k

) + Io

n,D=6

, (3.4)

where ~v
k

highlights the dependence of the parity-even contribution on non-trivial orbifold sectors, i.e. on

the internal partition function. The dependence of parity-odd integrands on orbifold twists ~v
k

cancels

between the contributions to the partition function due to worldsheet bosons and worldsheet fermions

in the odd spin structure. Explicitly, we have

I
n,max

⌘ 1

⇧
n

4

X

⌫=2

(�1)⌫�1



#
⌫

(0, ⌧)

#0
1

(0, ⌧)

�

4

hV (0)

1

(z
1

)V (0)

2

(z
2

) . . . V (0)

n

(z
n

)i
⌫

(3.5)

Ie

n,1/2

(~v
k

) ⌘ 1

⇧
n

4

X

⌫=2

(�1)⌫


#
⌫

(0, ⌧)

#0
1

(0, ⌧)

�

2



#
⌫

(kv, ⌧)

#
1

(kv, ⌧)

�

2

hV (0)

1

(z
1

)V (0)

2

(z
2

) . . . V (0)

n

(z
n

)i
⌫

, (3.6)

where the second argument of the #-functions is the purely imaginary ⌧ = i⌧
2

for the planar cylinder

under consideration. The inverse of the Koba–Nielsen factor ⇧
n

in (4.5) compensates for its inclusion

in the measure (3.2) and facilitates bookkeeping in later sections. Here ⌫ = 2, 3, 4 are the even spin

9In general, for amplitudes of solely external states, like amplitudes of gauge bosons in D = 6, there is never a parity-

odd contribution to the maximally supersymmetric integrand. With only external excitation it is impossible to saturate

fermion zero modes along internal directions.
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Basic definitions (open strings)

measure:

even+odd:

even:



GN (x1, x2, . . . , xN ) ⌘
X

⌫=2,3,4

(�1)⌫�1
⇣
#⌫(0)

#

0
1(0)

⌘4
S⌫(x1)S⌫(x2) . . . S⌫(xN )

S⌫(x) ⌘
#

0
1(0)#⌫(x)

#⌫(0)#1(x)
.

Known spin sum

Fermion Green’s function (Szegö kernel)

Maximal supersymmetry:

x



GN (x1, x2, . . . , xN ) = 0 , N  3

G4(x1, x2, x3, x4) = 1

G5(x1, x2, . . . , x5) =
5X

j=1

f

(1)
j

G6(x1, x2, . . . , x6) =
6X

j=1

f

(2)
j +

6X

1j<k

f

(1)
j f

(1)
k

G7(x1, x2, . . . , x7) =
7X

j=1

f

(3)
j +

7X

1j<k

(f (2)
j f

(1)
k + f

(1)
j f

(2)
k ) +

7X

1j<k<l

f

(1)
j f

(1)
k f

(1)
l

G8(x1, x2, . . . , x8) =
8X

j=1

f

(4)
j +

8X

1j<k

(f (3)
j f

(1)
k + f

(2)
j f

(2)
k + f

(1)
j f

(3)
k ) +

8X

1j<k<l<m

f

(1)
j f

(1)
k f

(1)
l f

(1)
m

+
8X

1j<k<l

(f (2)
j f

(1)
k f

(1)
l + f

(1)
j f

(2)
k f

(1)
l + f

(1)
j f

(1)
k f

(2)
l ) + 3G4 ,

Known systematics for maximal
Tsuchiya ’88

...
Stieberger, Taylor ’02

Dolan, Goddard ’07
...

Broedel, Mafra, Matthes Schlotterer ’14
...



Reducing supersymmetry (orbifold)

Trick: orbifold partition function is like
          Green’s function evaluated “at twist” •

[80]. The associated x
j

-dependence in G
N�9

can be cast into a convenient form through the notation

V
1

(x
1

, x
2

, . . . , x
n

) ⌘
n

X

j=1

f (1)

j

, V
2

(x
1

, x
2

, . . . , x
n

) ⌘
n

X

j=1

f (2)

j

+
n

X

1j<k

f (1)

j

f (1)

k

(3.25)

V
3

(x
1

, x
2

, . . . , x
n

) ⌘
n

X

j=1

f (3)

j

+
n

X

1j<k

(f (2)

j

f (1)

k

+ f (1)

j

f (2)

k

) +
n

X

1j<k<l

f (1)

j

f (1)

k

f (1)

l

(3.26)

V
4

(x
1

, x
2

, . . . , x
n

) ⌘
n

X

j=1

f (4)

j

+
n

X

1j<k

(f (3)

j

f (1)

k

+ f (2)

j

f (2)

k

+ f (1)

j

f (3)

k

) +
n

X

1j<k<l<m

f (1)

j

f (1)

k

f (1)

l

f (1)

m

+
n

X

1j<k<l

(f (2)

j

f (1)

k

f (1)

l

+ f (1)

j

f (2)

k

f (1)

l

+ f (1)

j

f (1)

k

f (2)

l

) . (3.27)

A general definition can be compactly given in terms of the generating series ⌦(z,↵) in (3.15),

V
w

(x
1

, x
2

, . . . , x
n

) ⌘ ↵n⌦(x
1

,↵)⌦(x
2

,↵) . . .⌦(x
n

,↵)
�

�

↵

w . (3.28)

The virtue of the functions V
w

to express G
n

at higher multiplicity is exemplified by [78]

G
n

(x
1

, x
2

, . . . , x
n

) = V
n�4

(x
1

, x
2

, . . . , x
n

) , 4  n  7 (3.29)

G
8

(x
1

, x
2

, . . . , x
8

) = V
4

(x
1

, x
2

, . . . , x
8

) + 3G
4

(3.30)

G
9

(x
1

, x
2

, . . . , x
9

) = V
5

(x
1

, x
2

, . . . , x
9

) + 3G
4

V
1

(x
1

, x
2

, . . . , x
9

) (3.31)

G
10

(x
1

, x
2

, . . . , x
10

) = V
6

(x
1

, x
2

, . . . , x
10

) + 3G
4

V
2

(x
1

, x
2

, . . . , x
10

) + 10G
6

. (3.32)

We see that without resorting to specific Riemann identities for large numbers of theta functions, these

results let us write relatively compact expressions for integrands up to at least 10 external states without

too much e↵ort, incorporating the cancellations mentioned above.

3.3.3 Reduced supersymmetry

The results in the maximally supersymmetric sector that we reviewed above will now be extended to the

most general spin sum in half-maximal and quarter-maximal amplitudes (3.3) and (3.11). The key idea

is to rewrite the orbifold-twisted partition functions (which reflect reduced supersymmetry) in terms of

fermion Green’s functions with the twist as an insertion (which “uses up” additional external states).

To this end, we rewrite (3.6) and (3.13) by pulling out a factor like that of the maximal case (3.18) by

hand:

Ie

n,1/2

(~v
k

) =
1

⇧
n

4

X

⌫=2

(�1)⌫�1



#
⌫

(0)

#0
1

(0)

�

4

S
⌫

(kv)S
⌫

(�kv) hV (0)

1

(z
1

)V (0)

2

(z
2

) . . . V (0)

n

(z
n

)i
⌫

(3.33)

Ie

n,1/4

(~v
k

) =
1

⇧
n

4

X

⌫=2

(�1)⌫�1



#
⌫

(0)

#0
1

(0)

�

4

"

3

Y

j=1

S
⌫

(kv
j

)

#

hV (0)

1

(z
1

)V (0)

2

(z
2

) . . . V (0)

n

(z
n

)i
⌫

, (3.34)
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using the definition (3.14) of the Szegö kernel. The correlators of V (0)

i

yield the same cycles of two-point

contractions S
⌫

(x
1

)S
⌫

(x
2

) . . . S
⌫

(x
n

) with
P

n

i=1

x
i

= 0 as seen in the maximal case. Hence, the most

general spin sum resulting from (3.33) and (3.34), respectively, is given by

4

X

⌫=2

(�1)⌫�1



#
⌫

(0)

#0
1

(0)

�

4

S
⌫

(�)S
⌫

(��)S
⌫

(x
1

) . . . S
⌫

(x
n

) = G
n+2

(x
1

, x
2

, . . . , x
n

, �,��) (3.35)

4

X

⌫=2

(�1)⌫�1



#
⌫

(0)

#0
1

(0)

�

4

"

3

Y

j=1

S
⌫

(�
j

)

#

S
⌫

(x
1

) . . . S
⌫

(x
n

) = G
n+3

(x
1

, . . . , x
n

, �
1

, �
2

, �
3

) . (3.36)

In order to avoid proliferation of factors k, we introduce the shorthands

� ⌘ kv , �
j

⌘ kv
j

, �
1

+ �
2

+ �
3

= 0 (3.37)

for the orbifold twists. The expressions can be identified with the prototype spin sum (3.18) from the

maximal case by viewing �,�� as x
n+1

, x
n+2

and �
1

, �
2

, �
3

as x
n+1

, x
n+2

, x
n+3

, respectively. They pre-

serve the requirement on the x
j

to sum to zero, and they additionally imply that subsets of the arguments

in the enlarged G
n+2

,G
n+3

add up to zero. As a convenient way to explore the resulting cancellations,

we rewrite the expressions in (3.35) and (3.36) such as to manifest the symmetries S
⌫

(�x) = �S
⌫

(x) of

Szegö kernels, and exploit f (n)(�x) = (�1)nf (n)(x):

G
n+2

(�,��, x
1

, x
2

, . . . , x
n

) =
1

4

⇥G
n+2

(�,��, x
1

, x
2

, . . . , x
n

) + G
n+2

(��, �, x
1

, x
2

, . . . , x
n

)

+ (�1)nG
n+2

(�,��,�x
1

,�x
2

, . . . ,�x
n

) + (�1)nG
n+2

(��, �,�x
1

,�x
2

, . . . ,�x
n

)
⇤

(3.38)

G
n+3

(�
1

, �
2

, �
3

, x
1

, . . . , x
n

) =
1

4

⇥G
n+3

(�
1

, �
2

, �
3

, x
1

, . . . , x
n

) � G
n+3

(��
1

,��
2

,��
3

, x
1

, . . . , x
n

)

+ (�1)nG
n+3

(�
1

, �
2

, �
3

,�x
1

, . . . ,�x
n

) � (�1)nG
n+3

(��
1

,��
2

,��
3

,�x
1

, . . . ,�x
n

)
⇤

. (3.39)

As a result, the �-dependence in the half-maximal (3.38) conspires to functions of even modular weight,

F (0)

1/2

(�) ⌘ 1 , F (2)

1/2

(�) ⌘ 2f (2)(�) � f (1)(�)2 (3.40)

F (4)

1/2

(�) ⌘ 2f (4)(�) � 2f (3)(�)f (1)(�) + f (2)(�)2 . (3.41)

Likewise, the manipulations in the quarter-maximal case (3.39) only admit odd modular weight for the

dependence on �
j

,

F (1)

1/4

(�
j

) ⌘ f (1)(�
1

) + f (1)(�
2

) + f (1)(�
3

) (3.42)

F (3)

1/4

(�
j

) ⌘ f (1)(�
1

)f (1)(�
2

)f (1)(�
3

) + f (3)(�
1

) + f (3)(�
2

) + f (3)(�
3

)

+
3

X

1i<j

(f (1)(�
i

)f (2)(�
j

) + f (2)(�
i

)f (1)(�
j

)) . (3.43)
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using the definition (3.14) of the Szegö kernel. The correlators of V (0)

i

yield the same cycles of two-point

contractions S
⌫

(x
1

)S
⌫

(x
2

) . . . S
⌫

(x
n

) with
P

n

i=1

x
i

= 0 as seen in the maximal case. Hence, the most

general spin sum resulting from (3.33) and (3.34), respectively, is given by

4

X

⌫=2

(�1)⌫�1



#
⌫

(0)

#0
1

(0)

�

4

S
⌫

(�)S
⌫

(��)S
⌫

(x
1

) . . . S
⌫

(x
n

) = G
n+2

(x
1

, x
2

, . . . , x
n

, �,��) (3.35)

4

X

⌫=2

(�1)⌫�1



#
⌫

(0)

#0
1

(0)

�

4

"

3

Y

j=1

S
⌫

(�
j

)

#

S
⌫

(x
1

) . . . S
⌫

(x
n

) = G
n+3

(x
1

, . . . , x
n

, �
1

, �
2

, �
3

) . (3.36)

In order to avoid proliferation of factors k, we introduce the shorthands

� ⌘ kv , �
j

⌘ kv
j

, �
1

+ �
2

+ �
3

= 0 (3.37)

for the orbifold twists. The expressions can be identified with the prototype spin sum (3.18) from the

maximal case by viewing �,�� as x
n+1

, x
n+2

and �
1

, �
2

, �
3

as x
n+1

, x
n+2

, x
n+3

, respectively. They pre-

serve the requirement on the x
j

to sum to zero, and they additionally imply that subsets of the arguments

in the enlarged G
n+2

,G
n+3

add up to zero. As a convenient way to explore the resulting cancellations,

we rewrite the expressions in (3.35) and (3.36) such as to manifest the symmetries S
⌫

(�x) = �S
⌫

(x) of

Szegö kernels, and exploit f (n)(�x) = (�1)nf (n)(x):

G
n+2

(�,��, x
1

, x
2

, . . . , x
n

) =
1

4

⇥G
n+2

(�,��, x
1

, x
2

, . . . , x
n

) + G
n+2

(��, �, x
1

, x
2

, . . . , x
n

)

+ (�1)nG
n+2

(�,��,�x
1

,�x
2

, . . . ,�x
n

) + (�1)nG
n+2

(��, �,�x
1

,�x
2

, . . . ,�x
n

)
⇤

(3.38)

G
n+3

(�
1

, �
2

, �
3

, x
1

, . . . , x
n

) =
1

4

⇥G
n+3

(�
1

, �
2

, �
3

, x
1

, . . . , x
n

) � G
n+3

(��
1

,��
2

,��
3

, x
1

, . . . , x
n

)

+ (�1)nG
n+3

(�
1

, �
2

, �
3

,�x
1

, . . . ,�x
n

) � (�1)nG
n+3

(��
1

,��
2

,��
3

,�x
1

, . . . ,�x
n

)
⇤

. (3.39)

As a result, the �-dependence in the half-maximal (3.38) conspires to functions of even modular weight,

F (0)

1/2

(�) ⌘ 1 , F (2)

1/2

(�) ⌘ 2f (2)(�) � f (1)(�)2 (3.40)

F (4)

1/2

(�) ⌘ 2f (4)(�) � 2f (3)(�)f (1)(�) + f (2)(�)2 . (3.41)

Likewise, the manipulations in the quarter-maximal case (3.39) only admit odd modular weight for the

dependence on �
j

,

F (1)

1/4

(�
j

) ⌘ f (1)(�
1

) + f (1)(�
2

) + f (1)(�
3

) (3.42)

F (3)

1/4

(�
j

) ⌘ f (1)(�
1

)f (1)(�
2

)f (1)(�
3

) + f (3)(�
1

) + f (3)(�
2

) + f (3)(�
3

)

+
3

X

1i<j

(f (1)(�
i

)f (2)(�
j

) + f (2)(�
i

)f (1)(�
j

)) . (3.43)
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� = kv



Vm(x1, x2, . . . , xn) ⌘ (↵n⌦(x1,↵)⌦(x2,↵) . . .⌦(xn,↵))
���
↵m

Reducing supersymmetry (orbifold)
More generally, the �-dependence in the results (3.38) and (3.39) is organized in terms of V

n

(. . .) from

(3.28) above:

F (n)

1/2

(�) ⌘ V
n

(�,��) , F (n)

1/4

(�
j

) ⌘ V
n

(�
1

, �
2

, �
3

) (3.44)

with appropriate parity for n. With these definitions and the functions V
n

(x
1

, . . . , x
n

) of worldsheet

positions in (3.25) to (3.28), the spin sums for reduced supersymmetry can be evaluated as

G
2+2

(�,��, x
1

, x
2

) = 1 (3.45)

G
2+3

(�,��, x
1

, x
2

, x
3

) = V
1

(x
1

, x
2

, x
3

) = f (1)(x
1

) + f (1)(x
2

) + f (1)(x
3

) (3.46)

G
2+4

(�,��, x
1

, . . . , x
4

) = F (2)

1/2

(�) + V
2

(x
1

, . . . , x
4

) (3.47)

G
2+5

(�,��, x
1

, . . . , x
5

) = F (2)

1/2

(�)V
1

(x
1

, . . . , x
5

) + V
3

(x
1

, . . . , x
5

) (3.48)

G
2+6

(�,��, x
1

, . . . , x
6

) = F (4)

1/2

(�) + 3G
4

+ F (2)

1/2

(�)V
2

(x
1

, . . . , x
6

) + V
4

(x
1

, . . . , x
6

) (3.49)

G
2+7

(�,��, x
1

, . . . , x
7

) = (F (4)

1/2

(�) + 3G
4

)V
1

(x
1

, . . . , x
7

)

+ F (2)

1/2

(�)V
3

(x
1

, . . . , x
7

) + V
5

(x
1

, . . . , x
7

) (3.50)

G
2+8

(�,��, x
1

, . . . , x
8

) = F (6)

1/2

(�) + 10G
6

+ F (4)

1/2

(�)V
2

(x
1

, . . . , x
8

) + F (2)

1/2

(�)V
4

(x
1

, . . . , x
8

)

+ 3G
4

(F (2)

1/2

(�) + V
2

(x
1

, . . . , x
8

)) + V
6

(x
1

, . . . , x
8

) , (3.51)

which su�ces for eight-point amplitudes in half-maximal compactifications. Comparing to results de-

rived by standard methods, the first three are well-known: G
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comes from two fermion bilinears after
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are Mandelstam variables
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Factors of @Xm in the vertex operators can contract among themselves via @Xm(z)@Xn(0) ! �@f (1)(z),

see (4.4), or interact with the exponentials to yield
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They are convenient to track intermediate steps of the subsequent computations, but an alternative

system of kinematic building blocks will be introduced in section 5 to obtain simpler and more compact

representations of the correlators and to highlight parallels with maximally supersymmetric cases.

4.2 Infrared regularization by minahaning

Any 3-point function of any massless external states naively vanishes by “3-point special kinematics”.

This means that all 3-point would-be Mandelstam invariants (4.8) vanish identically12, as implied by

12We keep the kinematic identities covariant and dimension-agnostic in this work, i.e. factorization of s12 = 1
2 (k2

3 �
k2
2 � k2

1) = 0 into four-dimensional spinor brackets h12i and [12] (one of which is often taken to be non-zero for complex

momenta, see [34]) will not enter the discussion.
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left-movers:

3-pt function

full graviton:
R3

Subleading terms in the analytic low-energy expansions exhibit a gap at the mass dimension of R3

such that the first non-vanishing interaction beyond the low-energy limit occurs at the order of R4. This

follows from the low-energy behavior of torus integrals over z
j

in presence of f (1)f̄ (1) [90, 91] where any

tentative contribution at subleading order in ↵0 is found to integrate to zero. The results of [91] for 5-

and 6-point integrals in the maximally supersymmetric case directly carry over to the subsequent 3- and

4-point integrals in the half-maximal case.

6.3 Half-maximal 3-point amplitude

The treatment of left-right interactions outlined in section 6.1 is easily applied to the 3-point amplitude.

The calculation can be found in the literature (see [48] and references therein), and we recalculate it

using our methods and the notation of the previous sections to prepare for the 4-point generalization.

With the open-string kinematic factors in (4.19) and (4.44) as well as the chiral halves (6.10) and (6.11)

of left-right contractions, the half-maximal closed-string correlator is given by
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By comparison with the vector building block in (5.10), parity-even and parity-odd terms combine into
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At 3 points, any integral of the form X
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is accompanied by regular kinematic factors – double-
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, respectively, see (6.20). Hence, the

left-right factorizing part vanishes when we invoke momentum conservation of the 3-point function at

the end of the calculation which gives s
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: IIB

Mm

A|B,C

�

�

ei!ẽi
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They are convenient to track intermediate steps of the subsequent computations, but an alternative

system of kinematic building blocks will be introduced in section 5 to obtain simpler and more compact

representations of the correlators and to highlight parallels with maximally supersymmetric cases.

4.2 Infrared regularization by minahaning

Any 3-point function of any massless external states naively vanishes by “3-point special kinematics”.

This means that all 3-point would-be Mandelstam invariants (4.8) vanish identically12, as implied by

12We keep the kinematic identities covariant and dimension-agnostic in this work, i.e. factorization of s12 = 1
2 (k2

3 �
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1) = 0 into four-dimensional spinor brackets h12i and [12] (one of which is often taken to be non-zero for complex

momenta, see [34]) will not enter the discussion.
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The cubic diagrams associated with the 2-particle and 3-particle currents em
12

, fmn

12

and em
123

, fmn

123

are

depicted in fig. 6. Appropriate choices of em
...

versus fmn

...

as for instance imposed by string theory

guarantee that quartic Feynman vertices of YM theories are absorbed into these cubic diagrams [97], in

lines with the BCJ duality between color and kinematics [103].

em
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123 . . .

Figure 6: Cubic-vertex subdiagrams with an o↵-shell · · · leg whose kinematic contribu-

tions are captured by Berends–Giele currents em
12

, fmn

12

and em
123

, fmn

123

, respectively.

These diagrammatic interpretations allow to derive the Berends–Giele symmetries
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� fmn

312

(5.3)

solely from the antisymmetry of kinematic factors upon flipping a cubic vertex.

5.2 Scalar building blocks for half-maximal loop amplitudes

In a multiparticle notation where A = 12 . . . p (and similarly B,C, . . .) can contain any number p of

on-shell legs, we define the fundamental scalar building block

M
A,B

⌘ �1

2
fmn

A

fmn
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= M
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(5.4)

such that for instanceM
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(e
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) = t(1, 2). Following the minahaning prescription

in section 4.2, one can straightforwardly check that
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K
12|3 (5.5)

M
123,4

= K
123|4 , M

12,34

= K
12|34 (5.6)

reproduce the kinematic dependence of the half- and quarter-maximal open-string correlators, see

(4.32) and (4.33) for the 4-point expressions. Note that (5.5) and (5.6) only hold in massless 3-

particle and 4-particle momentum phase space, respectively. It is striking to see the kinematic factors

K
12|3, K123|4, K12|34 decompose into two Berends–Giele currents once the the dust of their string-theory

origin (including the spin sums in section 3.3 and the integral manipulations (4.25) and (4.29)) has set-

tled. This shows the value of the integral processing in section 4.4: it incorporates field-theory insights

into the organization of string amplitudes.
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with the component currents from the 80’s in [96, 97] and exploited to compute and compactly represent

loop amplitudes of the pure spinor superstring in [75, 91, 2, 69, 11].

The Berends–Giele representation of maximally supersymmetric string amplitudes led to a variety of

insights on ten-dimensional SYM amplitudes in pure spinor superspace. In addition to the field-theory

limit ↵0 ! 0 of superstring amplitudes, ten-dimensional SYM amplitudes have been obtained from first

principles – locality and BRST invariance. Locality amounts to imposing the Feynman-diagram content

in the Berends–Giele constituents of the desired amplitude, and BRST invariance powerfully embodies

both maximal supersymmetry and gauge-invariance of bosonic components [3]. This program has been

successfully applied at tree level [98, 99], one loop [100, 101] and two loops [102].

It will now be demonstrated that the Berends–Giele approach to string amplitudes can be extended

to half- and quarter maximal supersymmetry. The structure of the above half-maximal 3- and 4-point

amplitudes will be clarified using the bosonic components of supersymmetric Berends–Giele currents

[93, 96, 97]. Apart from the conceptual benefit of extending the pure spinor methods, this will pave

the way for a compact and enlightening representation of the closed-string computations in section

6. Moreover, a first-principles approach to half-maximal SYM one-loop amplitudes obtained in the

field-theory limit will be discussed in a companion paper [47].

5.1 Definition of bosonic Berends–Giele currents

We will only define the minimal set of Berends–Giele currents which finds appearance in half-maximal

amplitudes with no more than four external legs16. Bosonic currents with a maximum of three on-shell
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The emergence of tree amplitudes Atree(. . .) in half-maximal open-string amplitudes yields a repre-

sentation in terms of the scalar building block (5.4),

Atree(1, 2, 3) = M
12,3

+M
23,1

+M
31,2

(5.7)

2Atree(1, 2, 3, 4) = M
123,4

+M
234,1

+M
341,2

+M
412,3

+M
12,34

+M
41,23

. (5.8)

Once the Berends–Giele currents fmn

A

are resummed to yield a solution Fmn of the non-linear YM field

equations, the expressions in (5.7) and (5.8) can be generated from the Lagrangian ⇠ FmnF
mn

, evaluated

on this perturbative solution [104, 96, 97]. Note that the scalar building block in (5.4) is reminiscient

of the maximally supersymmetric one-loop building blocks defined in section 5.2 of [95] (see [75] for

pioneering work) which were later identified as local box numerators in ten-dimensional SYM [101].

5.3 Vector & tensor building blocks for half-maximal loop amplitudes

While the scalar building block in (5.4) completely captures the kinematic coe�cient of f (1) in half-

maximal open-string amplitudes at multiplicity n  4, the f (2) terms as well as the closed string will

require various extensions. We will design vectorial and tensorial building blocks such that parity-

even and parity-odd contributions to half-maximal string integrands are unified. For this purpose, the

following basic building block for parity-odd kinematics is introduced,

Em
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npqrs
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frs
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= Em
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, (5.9)

where the vertical-bar notation A|B,C is a reminder of the special role of the first slot, Em

A|B,C

6= Em

B|A,C

,

and Em

1|2,3 = ✏m(e
1

, k
2

, e
2

, k
3

, e
3

) is recovered in the single-particle case. We define the following frequently

occurring composition of parity-even and parity-odd kinematics,

Mm

A|B,C

⌘ em
A

M
B,C

+ em
B

M
A,C

+ em
C

M
A,B

+ Em

A|B,C

= Mm

A|C,B

, (5.10)

where only the parity-even constituents are permutation invariant in A,B,C. This definition is remini-

scient of the maximally supersymmetric vector building blocks defined in section 5.4 of [95], see [91, 11]

and [101] for their role in closed-string amplitudes and pentagon numerators in SYM amplitudes, re-

spectively.

In the same way as the maximally supersymmetric vectors were recursively extended to tensors of

arbitrary rank [100], we define a two-tensor counterpart to the bosonic vector in (5.10):

Mmn

A|B,C,D

⌘ 2
⇥

e(m
A

en)
B

M
C,D

+ (AB $ AC,AD,BC,BD,CD)
⇤

+ 2
⇥

e(m
B

En)

A|C,D

+ (B $ C,D)
⇤

(5.11)

It will play an essential role for the closed-string 4-point function in section 6.4 and the loop-momentum

dependent part of Feynman-diagram numerators in the field-theory limit [47].
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The cubic diagrams associated with the 2-particle and 3-particle currents em
12

, fmn

12

and em
123

, fmn

123

are

depicted in fig. 6. Appropriate choices of em
...

versus fmn

...

as for instance imposed by string theory

guarantee that quartic Feynman vertices of YM theories are absorbed into these cubic diagrams [97], in

lines with the BCJ duality between color and kinematics [103].
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Figure 6: Cubic-vertex subdiagrams with an o↵-shell · · · leg whose kinematic contribu-

tions are captured by Berends–Giele currents em
12

, fmn

12

and em
123

, fmn

123

, respectively.

These diagrammatic interpretations allow to derive the Berends–Giele symmetries

em
12

= �em
21

, fmn

12

= �fmn

21

, em
123

= em
321

= �em
231

� em
312

, fmn

123

= fmn

321

= �fmn

231

� fmn

312

(5.3)

solely from the antisymmetry of kinematic factors upon flipping a cubic vertex.

5.2 Scalar building blocks for half-maximal loop amplitudes

In a multiparticle notation where A = 12 . . . p (and similarly B,C, . . .) can contain any number p of

on-shell legs, we define the fundamental scalar building block

M
A,B

⌘ �1

2
fmn

A

fmn

B

= M
B,A

(5.4)

such that for instanceM
1,2

= (k
1

·e
2

)(k
2

·e
1

)�s
12

(e
1

·e
2

) = t(1, 2). Following the minahaning prescription

in section 4.2, one can straightforwardly check that

M
12,3

= (e
1

· e
2

)(k
1

· e
3

) = s�1

12

K
12|3 (5.5)

M
123,4

= K
123|4 , M

12,34

= K
12|34 (5.6)

reproduce the kinematic dependence of the half- and quarter-maximal open-string correlators, see

(4.32) and (4.33) for the 4-point expressions. Note that (5.5) and (5.6) only hold in massless 3-

particle and 4-particle momentum phase space, respectively. It is striking to see the kinematic factors

K
12|3, K123|4, K12|34 decompose into two Berends–Giele currents once the the dust of their string-theory

origin (including the spin sums in section 3.3 and the integral manipulations (4.25) and (4.29)) has set-

tled. This shows the value of the integral processing in section 4.4: it incorporates field-theory insights

into the organization of string amplitudes.
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one side (which will be double-copied):

4-pt function

Following the terminology of [100], we will refer to quantities whose gauge variations can be exclusively

expressed in terms of ✏
mnpqrs

fmn

B

fpq
C

frs
D

as “pseudo-invariant”. Apart from the tensor (5.16), the following

scalar is pseudo-invariant,

P
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+(3 $ 4)
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12|3,4+ s
23

M
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+ s
24

M
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, (5.18)

i.e. invariant under em
i

! km

i

with i = 2, 3, 4, but subject to the following anomalous gauge variation:

P
1|2|3,4
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m
1 !k

m
1
= 2i✏(k
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, e
2

, k
3

, e
3

, k
4

, e
4

) . (5.19)

Again, the construction of the 4-point kinematic factors (5.16) and (5.18) is inspired by six-point counter-

parts in the maximally supersymmetric case. More specifically, the associated expressions for Cmn

1|2,3,4,5,6

and P
1|2|3,4,5,6 in pure spinor superspace are given in (3.14) and (5.22) of [100].

5.5 Rewriting the open-string correlator

In terms of the above pseudo-invariants, the parity-even and parity-odd parts of the 3- and 4-point

correlators (4.21), (4.40) and (4.48) can be combined to yield

I
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= X
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C
1|23 (5.20)

I
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1/2
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8
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C
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+
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12

P
1|2|3,4 + (2 $ 3, 4)

⇤

+
⇥

s
23

f (2)

23

P
1|(23)|4 + (23 $ 24, 34)

⇤

. (5.21)

The coe�cients of f (2)

23

, f (2)

24

and f (2)

34

in (5.21) are determined by the pseudo-invariant

P
1|(23)|4 =

1

2

⇥

(km

3
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2

)Cm

1|23,4 + s
34

C
1|234 + s

24

C
1|324 + P

1|3|2,4 + P
1|2|3,4
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(5.22)

with anomalous variation

P
1|(23)|4
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1 !k
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= 2i✏(k
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, e
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, k
3

, e
3

, k
4

, e
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) . (5.23)

The parity-even parts of the pseudo-invariants P
1|2|3,4 and P

1|(23)|4 in (5.18) and (5.22) reproduce the

gauge invariant quantities L
ij|pq defined in (4.34),

s
12

P
1|2|3,4

�

�

parity-even

= s
34

P
1|(34)|2

�

�

parity-even

= L
12|34 . (5.24)

Note that the structure of the half-maximal 4-point correlator (5.21) closely resembles the maximally

supersymmetric six-point correlator in section 3 of [11]. Moreover, the expansion of C
1|234, P1|2|3,4

and P
1|(23)|4 in terms of Berends–Giele building blocks mirrors their higher-multiplicity counterparts

C
1|234,5,6, P1|2|3,4,5,6 and P

1|(23)|4,5,6 in pure spinor superspace [11].

The virtue of organizing the kinematic factors of half-maximal string amplitudes in terms of the

building blocks M
A,B

and their tensorial generalizations will become particularly obvious from the

closed-string amplitudes discussed in the following section.
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Note that the combination of parity-even and parity-odd parts in (5.10) and (5.11) are tailor-made

for half-maximal supersymmetry in D = 6. By the universality result (4.43), the dimensional reduction

of M
A,B

,Mm

A|B,C

and Mmn

A|B,C,D

to D = 4 (suppressing parity-odd contributions ⇠ Em

A|B,C

) also appears in

quarter-maximal amplitudes. However, the parity-odd contributions in quarter-maximal settings follow

di↵erent patterns as compared to the half-maximal case, see the discussion in sections 4.7 and 4.8.

5.4 Gauge-(pseudo-)invariant kinematic factors

Gauge transformations of the above building blocks yield a rewarding web of relations involving lower-

multiplicity counterparts. These gauge variations resemble the BRST variations in pure spinor super-

space [97, 102] and will be thoroughly discussion in the companion paper [47]. For our present purposes,

we simply state the gauge invariant combinations of the scalar, vectorial and tensorial building blocks

(5.4), (5.10) and (5.11) which will find prominent appearance in half-maximal amplitudes of the open

and closed string.

Since any Berends–Giele current em
A

and fmn

A

(other than the single-particle fmn

1

) is a↵ected by lin-

earized gauge transformations em
i

! km

i

, gauge-invariant quantities usually require several building

blocks with di↵erent partitions of the external legs. One can check that the scalar combinations

C
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+M
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(5.12)
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(5.13)

and the vector combinations
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(5.14)
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� M
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) (5.15)

are invariant under linearized gauge transformation of any external leg in the appropriate momentum

phase space. Note that the expansions in terms of M
...

and Mm

...

closely resemble the maximally super-

symmetric BRST invariants C
1|23,4,5, C1|234,5,6, Cm

1|2,3,4,5 and Cm

1|23,4,5,6 defined in section 5 of [97].

The situation for tensors is slightly di↵erent since their trace carries the fingerprints of the gauge

anomaly noticed in section 4.8. The tensorial combination
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(5.16)

is gauge invariant under em
i

! km

i

with i = 2, 3, 4, but the transformation em
1

! km

1

on the first leg

yields
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are invariant under linearized gauge transformation of any external leg in the appropriate momentum
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Note that the combination of parity-even and parity-odd parts in (5.10) and (5.11) are tailor-made
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requires the representation (4.22) for the parity-even part Ie

4,1/2

and (D.5) for the parity-odd part

Io

4,D=6

. We reduce the integrals in (6.29) to a basis by eliminating any instance of the first leg in f (1)

1j

and f̄ (1)

1j

through the integration-by-parts rules of section 6.1.2 and appendix E. In this process, various

corrections ⇠ ⇡

Im ⌧

and
�

⇡

Im ⌧

�

2

to the square of the simplified open-string correlator in (5.21) arise. Also,

spurious dependences on z
0

as seen in (6.31) and the derivatives within (D.5) will cancel in this process.

It turns out that the vector invariant Cm

1|23,4 in (5.15) as well as the pseudo-invariants Cmn

1|2,3,4 and

P
1|2|3,4 in (5.16) and (5.18) are tailor-made to express the closed-string 4-point correlator in a mini-

mal form: They combine all the parity-even and parity-odd open-string constituents and capture the

kinematic factors along with the basis integrals:
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By the modular weight (n, 0) of the functions f (n) [78], every term in (6.32) exhibits uniform modular

weight (2, 2), where factors of F (2)

1/2

additionally mix di↵erent orbifold sectors k, k0 in (3.60). Together

with the six-dimensional closed-string measure in (3.59), the weights of d2⌧, ⌧�D/2 and
Q

4

j=2

d2z
j

are

compensated. Hence, (6.32) manifests modular invariance of the closed-string amplitude.

In the last line of (6.32), one can understand the presence of the “extra” P
1|2|3,4P̃1|2|3,4 + (2 $ 3, 4)

pieces as follows. They compensate for the anomalous gauge transformation of the tensor contraction
1
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1|2,3,4 as can be verified by combining the variations (5.17) and (5.19) with the trace identity
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Note that the bilinears in pseudo-invariants seen in (6.32) mimic the patterns in the maximally super-

symmetric 6-point amplitude at lower-multiplicity, see section 4.2 of [11].

The anomalous gauge variations along with factors of f (2)

ij

in the first two lines of (6.32) conspire

to total derivatives in ⌧ and the z
j

. This follows from the same arguments as given for the maximally

supersymmetric 6-point torus amplitude discussed in section 4.4 of [11].

The low-energy limit of (6.32) can be easily performed by means of the rules in section 6.2 and takes

a very compact form:
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We have discarded the scalar contribution

s
23

s
34

C
1|234C̃1|234 + cyc(2, 3, 4) = 0 (6.35)
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[see 1603.04790 for closely related 6-pt max. SUSY]
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The anomalous gauge variations along with factors of f (2)
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in the first two lines of (6.32) conspire

to total derivatives in ⌧ and the z
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. This follows from the same arguments as given for the maximally
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a very compact form:

J
4,1/2

! MR

2
(1, 2, 3, 4) ⌘ 1

2
Cmn

1|2,3,4C̃
mn

1|2,3,4 +
⇥

s
23

Cm

1|23,4C̃
m

1|23,4 � P
1|2|3,4P̃1|2|3,4 + cyc(2, 3, 4)

⇤

. (6.34)

We have discarded the scalar contribution

s
23

s
34

C
1|234C̃1|234 + cyc(2, 3, 4) = 0 (6.35)

47

Finally: closed string 4-pt function

apparent obstruction to double copy
   (cf. Mafra-Schlotterer 1410.0668: obstruction in 6-point,
    related to chiral anomaly in hexagon, but: Green-Schwarz!) 
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which vanishes by the BCJ relations s
12

C
1|234 = s

13

C
1|324 of C1|234 = 2Atree(1, 2, 3, 4) [103]. We also note

that the parity-odd/odd part of (6.34) can be simplified to yield
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12|3,4 + s
23

Em

1|23,4Ẽm
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with Em

A|B,C

in (5.9) and Emn

1|2,3,4 ⌘ 2e(m
2

En)

1|3,4+(2 $ 3, 4), see appendix B.2 for its factorization properties.

We pause to contrast the expression above with the half-maximal closed-string 4-point amplitude

discussed in [9, 10]. That discussion was specialized early on to the field-theory limit and spinor-helicity

expressions. After the manipulations performed here, we believe the present string amplitude clearly

exhibits several interesting features that were not manifest in [9, 10]. Apart from its applicability

to arbitrary dimensions D  6, one important aspect is the presence and limitations of double-copy

structure in this string amplitude. More precisely, the PP̃ structure in the last line of (6.32) obstructs

the naive expectation to find a pure tensor contraction K
mn

K̃mn along with ( ⇡

Im ⌧

)2. We expect this

to be the source of the tension between worldsheet correlators and double copies of gauge-theory BCJ

numerators observed in [10]. We hope to say more about the implications of (6.32) for the BCJ-duality

between color and kinematics.

6.5 The low-energy limit in type IIB and type IIA

This section is devoted to the type IIB and IIA components of the low-energy limits MR

2
(1, 2, . . . , n)

in (6.28) and (6.34). The 3-point case has already been investigated in [48] where the parity-even IIB

components were found to vanish for any combination of gravitons, B-fields and dilatons. The IIB

cancellation relies on the interplay between the even/even and odd/odd spin structures and does not

occur for type IIA because of the di↵erent GSO projections [48]:
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The contraction of ✏ tensors can be converted to the dot products seen in (6.10) via Gram determinants,
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Note that the parity-even type IIA result in (6.37) vanishes for an odd number of B-fields.

In the parity-odd sector, on the other hand, the GSO projections of type IIB and IIA yield [48]
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Note that the parity-even type IIA result in (6.37) vanishes for an odd number of B-fields.

In the parity-odd sector, on the other hand, the GSO projections of type IIB and IIA yield [48]
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signaling type IIA interactions of schematic form B ^ R ^ R and B ^ rH ^ rH, as well as a type IIB

coupling H ^ H ^ R [48].

6.5.1 Comparison with the heterotic string

Matrix elements of the R2 interaction also appear in tree-level amplitudes of the heterotic string [20]

and the bosonic string [24] upon expanding to the linear order in ↵0. This yields a KLT-like double copy

of YM amplitudes and F 3 matrix elements known from the (↵0)1-order of the bosonic open string [23],
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which also matches the bosonic-string result. The F 3-constituents are given by [40]
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where the right hand side of (6.43) manifests gauge-invariance at the expense of manifest locality. Note

that the structure of AF

3
(1, 2, 3, 4) = s

13

⇥ {totally symmetric quantity} guarantees that the BCJ-

relations of Atree(. . .) [103] are also obeyed by AF

3
(. . .) [23] and that (6.41) is permutation invariant.

This discussion connects to that about field redefinitions in section 2.2: inD = 4, any tensor structure

for the R2 interaction is on-shell equivalent to the Gauss-Bonnet combination, that is topological if there

is no moduli-dependent coe�cient, cf. (2.6). The on-shell vanishing of (6.40) and (6.41) in D = 4 can be

seen from the fact that there is no combination of graviton helicities where both Atree(. . .) and AF

3
(. . .)

are non-zero [23].

The 3-graviton component agrees between the type IIA 1-loop low-energy limit (6.37), (6.39) and

the heterotic tree-level coupling (6.40),
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B-fields and dilatons, however, give rise to di↵erent component amplitudes. This is expected since the

left-right contractions of the form (e
i

· ẽ
j

) are absent at tree-level.
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signaling type IIA interactions of schematic form B ^ R ^ R and B ^ rH ^ rH, as well as a type IIB

coupling H ^ H ^ R [48].

6.5.1 Comparison with the heterotic string

Matrix elements of the R2 interaction also appear in tree-level amplitudes of the heterotic string [20]

and the bosonic string [24] upon expanding to the linear order in ↵0. This yields a KLT-like double copy

of YM amplitudes and F 3 matrix elements known from the (↵0)1-order of the bosonic open string [23],
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Recreating low-energy results

R2



sector: Half-maximal and quarter-maximal cases only di↵er in the functions F (k)

1/2

(�
k,k

0) and F (k+1)

1/4

(�j

k,k

0)

of orbifold twists �
k,k

0 ⌘ (k+k0⌧)v and �j

k,k

0 ⌘ (k+k0⌧)v
j

. Hence, the parity-even/even parts of n-point

closed-string correlators are related by

J e,e

n,1/4

= J e,e

n,1/2

�

�

�

F

(k)
1/2(�k,k0 )!F

(k+1)
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. (6.53)

In presence of parity-odd admixtures from either left- or right-movers, the universality breaks down

by the discussion in section 4.8. From (4.51), for instance, parity-odd/odd contributions to quarter-

maximal 3-point amplitudes involve worldsheet functions of the type f (2)

ij

f̄ (2)

pq

, ⇡

Im ⌧

f (1)

ij

f̄ (1)

pq

and
�

⇡

Im ⌧

�

2

.

This departs from the factors of F (1)

1/4

(�
k,k

0)F̄ (1)

1/4

(�̄
k,k

0) ⇡

Im ⌧

in the parity-even quarter-maximal terms (6.53)

as well as their half-maximal counterparts ⇠ ⇡

Im ⌧

in (6.27).

These structural di↵erences in parity-odd contributions to half-maximal and quarter-maximal ampli-

tudes also a↵ect the low-energy behavior. For example, up to n�1 left-right contractions are compatible

with the four-dimensional version of the n-point parity-odd/odd prescription (3.65), leading to tensorial

3-point kinematic factor ⇠ e(m
2

✏n)(e
1

, k
3

, e
3

) + (2 $ 3). This ties in with the counting of loop momenta

in quarter-maximal SYM amplitudes [105].

We see that just as for half-maximal above, the parity-even sector of the low-energy limit of the closed-

string 4-point function on Calabi-Yau orbifolds has the mass dimension of R2, so it does not produce

a loop correction to the Einstein-Hilbert action, as expected from general arguments, see section 2.3.

Only the parity odd/odd part of Calabi-Yau amplitudes has the right mass dimension to produce a loop

correction to the Einstein-Hilbert action. However, this is delicate to see since it might require further

minahaning; in the calculations above, we used strict momentum conservation in the odd/odd sector.

7 Conclusions and outlook

We made progress on calculating one-loop string amplitudes with reduced supersymmetry through three

key methods:

• Modular functions f (n) that let us generalize spin sums from the maximally supersymmetric case

• the minahaning procedure of relaxing momentum conservation as infrared regularization

• building blocks of Berends–Giele type to capture gauge (pseudo-)invariant kinematic factors

A companion paper [47] on the field-theory limit will elaborate on the value of the Berends–Giele

organization of kinematic factors for 1-loop amplitudes of half-maximal SYM in six and lower dimensions.

Another domain of application of the current results that we have not pursued in detail is the string

e↵ective action. To make this explicit we should perform integrals over the worldsheet modulus ⌧ . We
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Half to quarter supersymmetry
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N = 2

maximal

half-maximal
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Factorization



s12 ! 0

Factorization



•

Figure 2: The distinction between “delta function” and “delta function and propagator”.

lightlike: (k
1

+k
2

)2 6= 0. In field theory the right side is then called a 1-mass triangle, but we emphasize

that we have not taken a field-theory limit yet.

Analogously, we can ask whether there are any 1-mass bubbles, i.e. whether there is further factor-

ization of the subdiagram on the right of fig. 2 (3-point 1-loop torus). As indicated in fig. 3, we find that

there is always a Mandelstam variable in the numerator that o↵sets the propagator closest to the torus,

so this propagator always collapses to a point. This is important since an actual double factorization

I collapse!

•

Figure 3: Collapse of specific propagator avoids double factorization limit.

limit would have generated a 3-particle propagator (k
1

+ k
2

+ k
3

)�2 = (�k
4

)�2 which is in fact infrared

divergent in the 4-particle momentum phase space. The two spheres in the diagram on the right in fig.

3 each represent a delta function from a particular region in moduli space, so this leaves one integration

over a puncture, as appropriate for a torus 2-point function with one fixed vertex operator. In the

field-theory limit, this string amplitude will indeed generate a 1-mass bubble.

Factorization in the field-theory limit is an interesting topic in its own right, and will be discussed

in a companion paper [47].

The above discussion was quite detailed, so let us make one broader statement, that we will explain

in more detail in later sections. In maximal supersymmetry, it is well-known that the factorization of

the 4-point function as in fig. 1 does not occur (i.e. has zero residue). In fact, the number of successive

factorizations of an n-point function in maximal supersymmetry is n � 4. We will find that for half-

maximal supersymmetry as well as parity-even contributions to 1-loop amplitudes in quarter-maximal

supersymmetry, this number is n � 2, as we have illustrated in the figures in this section. Parity-odd

terms in quarter-maximal require a refined analysis, and preliminary arguments in later sections suggest

n � 3 successive factorizations for open strings and n � 2 for closed strings.

9
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interplay locality / gauge invariance

N=1,2 amplitude

[see 1410.0668 for closely related 6-pt max. SUSY]

Notes on Feynman diagram limit

1 Starting point

The 4-pt in the draft has the following massless Feynman integrals:

A

1-loop
N=1,2(1, 2, 3, 4) = c

K3
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34`
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4| {z }

box

)

[CHECK] Since the gauge variation of “box” is cancelled by “triangle/box”, I will interpret it as
“box” with an extra factor of `

2
/`

2.

1.1 Bubbles vanish, even in the 4-pt

Originally I thought it will be easier to do the actual 3-pt function first, but there are several (inter-
esting) questions about minahaning and IR regularization, that seem to point towards embedding
the 3-pt in the 4-pt, so also from this point of view it seems easier to understand the 4-pt first. So
here the bubbles and triangles are all 4-pt, meaning they do have at least one nonzero Mandelstam
invariant.

(What I don’t understand at the moment is the role of minahaning the 4-pt, s123 6= 0. JO seem
not to worry about that so for now I will set s123 = 0. In other papers they do keep s123.)

The shorthand is `1 = ` � k1, `12 = ` � k12 = ` � (k1 + k2). In particular

`234 = ` � (k2 + k3 + k4) = ` + k1 . (1)

The bubble part is a scalar bubble, that is there is no loop momentum in the numerator:

A(1, 2, 3, 4)
��
bubble

=

Z
d

D

`

(2⇡)D
Atree

`

2(` + k1)2
= AtreeI

D

2 (k2
1) (2)

where

I

D

2 (k2
1) =

Z
d

D

`

(2⇡)D
1

`

2(` + k1)2
= 0 . (3)

The Feynman parameterization is discussed in the appendix. As long as we a) don’t allow mina-
haning, so strictly k

2
1 = 0, and b) keep internal masses strictly zero, this is a scale-free integral. It

is well known, mentioned for example in Nohle [9] (following Smirnov [17]) that this integral van-
ishes in dimensional regularization, by cancellation between UV and collinear (IR) divergence.1 In
Bern-Morgan [7] the bubble integral is regulated by an internal mass, but we will avoid this here.

1This paper is explicit and mostly covariant, so would seem to be of great use for us, but the expressions are very
long (half a page for each numerator)! It is interesting that JO mention (footnote 9, p. 34) that one reason the triangle
is complicated is because they enforce that the bubble vanishes. I can’t say I understand this.

1



MHV calculation of 4-pt vector

• Can combine different kinematic factors, leads to
  very simple expression

Bianchi, Consoli ’15

Without changing variables and using the symmetry of the Chan-Paton factors, in the 2−2

non-planar case the measure can be rewritten as
∫

dµ(4)
12|34 =

1

4

(
iT

2

)4 ∫

[0,1]4
d4νδ(ν4) =

1

16

(
iT

2

)4 ∫

[0,1]4
d4ν

∑

i

δ(νi) (5.53)

The last identity following from the arbitrariness in the choice of the point that can be fixed at

the origin. In this form it is clearly invariant under all the permutations of the νi variables.

Symmetry properties of the measures can be used to simplify the computations. All world-sheet

integrals assume the schematic form
∫

dµ(4) I(zi)Π4(zi) (5.54)

The idea is to find the permutations that leave the Koba-Nielsen factor Π4(zi) invariant and use

them to act on the function I(zi) in order to simplify it. If we explicitly write Π4(zi) in the cases

4−0, 3−1 and 2−2 we find

Π4−0(zi) = e−α
′k1·k2(G12+G34)−α′k1·k3(G13+G24)−α′k1·k4(G14+G23) (5.55)

Π3−1(zi) = e−α
′k1·k2(G12+GT

34)−α
′k1·k3(G13+GT

24)−α
′k1·k4(GT

14+G23) (5.56)

Π2−2(zi) = e−α
′k1·k2(G12+G34)−α′k1·k3(GT

13+GT
24)−α

′k1·k4(GT
14+GT

23) (5.57)

where GT (z12) = G(z12 + 1/2). We note that 4−0 and 2−2 are invariant under permutations

gu = (1↔3
2↔4) gt = (1↔4

2↔3) gs = (1↔2
3↔4) (5.58)

The symmetry group is Z2 × Z2. This permutations are also symmetries of the 4−0 and 2−2

measures. In the 2−2 case that is evident. To see this in the 4−0 case, we express zi in terms of

the variables αi and the Koba-Nielsen factor becomes

Π4−0(αi) = e−α
′k1·k2(G(α1)+G(α3))−α′k1·k3(G(α1+α2)+G(α2+α3))−α′k1·k4(G(α2)+G(α4)) (5.59)

In terms of αi the permutations that leave the measure invariant are generated by

gs : α1 ↔ α3 , gu : α2 ↔ α4 , gt : α1 ↔ α3,α2 ↔ α4 (5.60)

In the 3−1 case there are no common permutations between the measure and Π3−1.

Recalling the result (5.46) for the four-point amplitude, using the permutation property for the

cases 4−0 (including the un-oriented case) and 2−2 we can identify some Y functions with one

another:

Y34 ∼ Y12 Y24 ∼ Y13 Y23 ∼ Y14 (5.61)

and find a simpler expression for (5.46)

A1-loop
4 [1−,2−,3+,4+]=

α′4g4s
8

F 4
−−++

∫ ∞

0

dT

T

∫
dµ(4)

[
4FN+EN (Y12+Y34−Y13−Y24−Y14−Y23)

]
Π

(5.62)

20no factorization! believe 0/0 problem,
but more work needed.

surprising in 4-pt function!

no poles!

[see 1603.04790 for closely related 6-pt max. SUSY]



Outlook

• Approach from integrability: relation? Hoare, Tseytlin, ...,

• Field theory amplitudes:
    more on BCJ from string amplitudes

e.g. Mafra, Schlotterer, Stieberger, Tsimpis ’10
Ochirov, Tourkine ’14

...

• Hybrid formalism in orbifold,
   AdS/plane wave loop corrections

• Scattering equations: relation?
Cachazo, He, Yuan,

...

• Ambitwistor orbifolds?


