From maximal to minimal supersymmetry in string loop amplitudes

Marcus Berg
Karlstad University, Sweden

M.B., Buchberger, Schlotterer 1603.05262
M.B., Buchberger, Schlotterer 16xx.xxxxx

Nordita

$$
n=6
$$

Open and unoriented worldsheets by identification

M.B., Haack, Kang, Sjörs '14

fixed line = boundary

Lift to covering torus

M.B., Haack, Kang, Sjörs '14

$$
\int_{\Sigma} d^{2} z\left(f(z)+f(I(z))=\int_{\mathcal{T}} d^{2} z f(z)\right.
$$

infrared regularization
Minahan '87

Motivations

- moduli stabilization needs quantum effective action Balasubramanian, Berglund, Conlon, Quevedo '05
(example: Large volume scenario)
... dynamics of light moduli lead to phenomenology, cosmology
- interplay string/field theory amplitudes (KLT, BCJ, ...)

$$
\begin{aligned}
& e_{\mu \nu}=e_{\mu} \tilde{e}_{\nu} \\
& 5^{2}=\frac{s_{5}}{505}
\end{aligned}
$$

Stieberger, Taylor '15

$N=4$ YANG-MILLS AND $N=8$ SUPERGRAVITY AS LIMITS OF STRING THEORIES ${ }^{\star}$

Michael B. GREEN ${ }^{1}$ and John H. SCHWARZ
California Institute of Technology, Pasadena, California 91125, USA
Lars BRINK
Institute of Theoretical Physics, Göteborg, Sweden, USA

Received 29 December 1981
The formulation of supersymmetric string theories in ten dimensions is generalized to incorporate compactified dimensions. Expressions for the one-loop four-particle S-matrix elements of $N=4$ Yang-Mills and $N=8$ supergravity in four dimensions are obtained by studying the string-theory loop amplitudes in the limit that the radii of the compactified dimensions and the Regge slope parameter simultaneously approach zero. If certain patterns that emerge should persist in the higher orders of perturbation theory, then $N=4$ Yang-Mills in four dimensions would be ultraviolet finite to all orders, whereas $N=8$ supergravity in four dimensions would have ultraviolet divergences starting at three loops.

1. Introduction

A light-cone-gauge action for supersymmetric strings in ten-dimensional spacetime was recently formulated [1]. Depending on the choice of boundary conditions,

Nuclear Physics B198 (1982) 474-492
(C) North-Holland Publishing Company

$N=4$ YANG-MILLS AND $\boldsymbol{N}=8$ SUPERGRAVITY AS LIMITS OF STRING THEORIES ${ }^{\star}$

Michael B. GREEN ${ }^{1}$ and John H. SCHWARZ

Lars BRINK

"In order to decide whether theory I or theory II is the more promising candidate for phenomenology, some further theoretical developments may be necessary. For example, it is clearly important to incorporate symmetry breaking..."

persist in the higher orders of perturbation theory, then $N=4$ Yang-Mills in four dimensions
would be ultraviolet finite to all orders, whereas $N=8$ supergravity in four dimensions would have ultraviolet divergences starting at three loops.

1. Introduction

A light-cone-gauge action for supersymmetric strings in ten-dimensional spacetime was recently formulated [1]. Depending on the choice of boundary conditions,

Simple models for extra dimensions

moduli: S, T, U, ϕ

 Calabi-Yau manifold.

Simple models for extra dimensions

Orbifold: Identify under discrete spatial rotation

makes cone

$$
\begin{aligned}
& \Theta Z^{1}=e^{2 \pi i v_{1}} Z^{1}, \text { here } v_{1}=\frac{1}{3} \\
& \left(Z^{1}=X^{4}+\bar{U} X^{5}\right)
\end{aligned}
$$

Simple models for extra dimensions

sample $\mathcal{N}=1$ orbifold: $\mathbb{T}^{6} / \mathbb{Z}_{6}^{\prime}$

$$
\left(Z^{1}=X^{4}+\bar{U} X^{5}\right)
$$

$\Theta Z^{2}=e^{2 \pi i v_{2}} Z^{2}$
$\Theta Z^{3}=e^{2 \pi i v_{3}} Z^{3}$

$$
\mathbb{Z}_{6}^{\prime}:\left(v_{1}, v_{2}, v_{3}\right)=\left(\frac{1}{6},-\frac{1}{2}, \frac{1}{3}\right)
$$

Simple models for extra dimensions

sample $\mathcal{N}=1$ orbifold: $\mathbb{T}^{6} / \mathbb{Z}_{6}^{\prime}$
$\left(Z^{1}=X^{4}+\bar{U} X^{5}\right)$
$\Theta Z^{1}=e^{2 \pi i v_{1}} Z^{1}$
$\Theta Z^{2}=e^{2 \pi i v_{2}} Z^{2}$
$\Theta Z^{3}=e^{2 \pi i v_{3}} Z^{3}$

D7 wraps

D7 wraps

D7 pointlike

$$
\mathbb{Z}_{6}^{\prime}:\left(v_{1}, v_{2}, v_{3}\right)=\left(\frac{1}{6},-\frac{1}{2}, \frac{1}{3}\right)
$$

Θ
" $\mathrm{N}=1$ sector"

"completely twisted"

$\left(Z^{1}=X^{4}+\bar{U} X^{5}\right)$
$\Theta Z^{1}=e^{2 \pi i v_{1}} Z^{1}$
$\Theta Z^{2}=e^{2 \pi i v_{2}}$
$\Theta Z^{3}=e^{2 \pi i v_{3}} Z^{3}$

D7 wraps

D7 wraps

$$
\mathbb{Z}_{6}^{\prime}:\left(v_{1}, v_{2}, v_{3}\right)=\left(\frac{1}{6},-\frac{1}{2}, \frac{1}{3}\right)
$$

Simple models for extra dimensions

moduli: S, T, U, ϕ

 Calabi-Yau manifold.

String perturbation theory: two expansions

Curvature 1-loop corrections

review in
M.B., Buchberger, Schlotterer '16

$D=10$					$D=6$		$D=4$		
1-loop term	IIA	IIB	Het	IIA/K3	IIB/K3	Het/K3	IIA/CY	IIB/CY	Het/CY
R	\times	\times	\times						
R^{2}	\times	\times	\times	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark
R^{3}	\times								
R^{4}	\checkmark								

"input"

Curvature 1-Ioop corrections

review in
M.B., Buchberger, Schlotterer '16

	$D=10$			$D=6$			$D=4$		
1-loop term	IIA	IIB	Het	IIA/K3	IIB/K3	Het/K3	IIA/CY	IIB/CY	Het/CY
R	\times	\times	\times	\times	\times	\times	\checkmark	\checkmark	\times
R^{2}	\times	\times	\times	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark
R^{3}	\times								
R^{4}	\checkmark								
"input" (in principle known, but more work needed)									

Matching to gravity

$$
\begin{aligned}
R_{m n p q} & =\left(\frac{1}{2} h_{m q, n p}+\frac{1}{8}\left(h_{m q, r} h_{n p}^{, r}+\left(h_{r m, q}+h_{r q, m}-2 h_{m q, r}\right)\left(h_{n, p}^{r}+h_{p, n}^{r}\right)\right)\right) \\
& -(m \leftrightarrow n)-(p \leftrightarrow q)+((m, n) \leftrightarrow(p, q)))
\end{aligned}
$$

cross term in $R_{m n p q} R^{m n p q}$

Known facts about $\mathbf{R}^{\mathbf{2}}$ loop corrections

consider half-maximal ($N=4$ in $D=4$)
Harvey, Moore '96

- even-even $\left(k_{1} e_{2} k_{3}\right)\left(k_{2} e_{1} e_{3} k_{2}\right)+5$ perm.
- odd-odd $\quad e_{1} e_{2} e_{3} k_{1} k_{2} \epsilon k_{1} k_{2} \epsilon \eta$
contracts to same invariant as even-even, times constant c

$$
(c \pm c) R_{m n p q} R^{m n p q} \quad \text { cancel in IIB }
$$

consistent with duality: there should be R^{2} in IIA from heterotic tree-level R^{2}

Known facts about $\mathbf{R}^{\mathbf{3}}$ loop corrections

Grisaru '77
Bergshoeff, de Roo '89

- naively vanish at any order "by supersymmetry" (no cubic superinvariant)

- can be nonzero in non-flat background

Maldacena, Pimentel '11

$$
\alpha^{\prime} H^{2} R^{3}
$$

Generating function of \mathbf{z} dependence

$$
\begin{aligned}
& \Omega(z, \alpha) \equiv \exp \left(2 \pi i \alpha \frac{\operatorname{Im} z}{\operatorname{Im} \tau}\right) \frac{\vartheta_{1}^{\prime}(0) \vartheta_{1}(z+\alpha)}{\vartheta_{1}(z) \vartheta_{1}(\alpha)} \equiv \sum_{n=0}^{\infty} \alpha^{n-1} f^{(n)}(z), \\
& f^{(0)}(z) \equiv 1, \quad f^{(1)}(z)=\partial \ln \vartheta_{1}(z)+2 \pi i \frac{\operatorname{Im} z}{\operatorname{Im} \tau} \\
& f^{(2)}(z) \equiv \frac{1}{2}\left\{\left(\partial \ln \vartheta_{1}(z)+2 \pi i \frac{\operatorname{Im} z}{\operatorname{Im} \tau}\right)^{2}+\partial^{2} \ln \vartheta_{1}(z)-\frac{\vartheta_{1}^{\prime \prime \prime}(0)}{3 \vartheta_{1}^{\prime}(0)}\right\}
\end{aligned}
$$

Fay identity (like partial fraction decomposition):

$$
f_{12}^{(1)} f_{13}^{(1)}+f_{21}^{(1)} f_{23}^{(1)}+f_{31}^{(1)} f_{32}^{(1)}=f_{12}^{(2)}+f_{13}^{(2)}+f_{23}^{(2)},
$$

Basic definitions (open strings)

$$
\mathcal{A}_{1 / 2}(1,2, \ldots, n)=\int \mathrm{d} \mu_{12 \ldots n}^{D=6}\left\{\Gamma_{\mathcal{C}}^{(4)} \mathcal{I}_{n, \max }+\sum_{k=1}^{N-1} \hat{\chi}_{k} \mathcal{I}_{n, 1 / 2}\left(\vec{v}_{k}\right)\right\}
$$

measure:

$$
\int \mathrm{d} \mu_{12 \ldots n}^{D} \equiv \frac{V_{D}}{8 N} \int_{0}^{\infty} \frac{\mathrm{d} \tau_{2}}{\left(8 \pi^{2} \alpha^{\prime} \tau_{2}\right)^{D / 2}} \int_{0 \leq \operatorname{Im}\left(z_{1}\right) \leq \operatorname{Im}\left(z_{2}\right) \leq \ldots \leq \operatorname{Im}\left(z_{n}\right) \leq \tau_{2}} \mathrm{~d} z_{1} \mathrm{~d} z_{2} \ldots \mathrm{~d} z_{n} \delta\left(z_{1}\right) \Pi_{n}
$$

even+odd:

$$
\mathcal{I}_{n, 1 / 2}\left(\vec{v}_{k}\right) \equiv \mathcal{I}_{n, 1 / 2}^{e}\left(\vec{v}_{k}\right)+\mathcal{I}_{n, D=6}^{o}
$$

even:

$$
\mathcal{I}_{n, 1 / 2}^{e}\left(\vec{v}_{k}\right) \equiv \frac{1}{\Pi_{n}} \sum_{\nu=2}^{4}(-1)^{\nu}\left[\frac{\vartheta_{\nu}(0, \tau)}{\vartheta_{1}^{\vartheta_{1}}(0, \tau)}\right]^{2}\left[\frac{\vartheta_{\nu}(k v, \tau)}{\vartheta_{1}(k v, \tau)}\right]^{2}\left\langle V_{1}^{(0)}\left(z_{1}\right) V_{2}^{(0)}\left(z_{2}\right) \ldots V_{n}^{(0)}\left(z_{n}\right)\right\rangle_{\nu}
$$

Known spin sum

Maximal supersymmetry:
$\mathcal{G}_{N}\left(x_{1}, x_{2}, \ldots, x_{N}\right) \equiv \sum_{\nu=2,3,4}(-1)^{\nu-1}\left(\frac{\vartheta_{\nu}(0)}{\vartheta_{1}^{\prime}(0)}\right)^{4} S_{\nu}\left(x_{1}\right) S_{\nu}\left(x_{2}\right) \ldots S_{\nu}\left(x_{N}\right)$

Fermion Green's function (Szegö kernel)

$$
S_{\nu}(x) \equiv \frac{\vartheta_{1}^{\prime}(0) \vartheta_{\nu}(x)}{\vartheta_{\nu}(0) \vartheta_{1}(x)} .
$$

Known systematics for maximal

Tsuchiya '88
Stieberger, Taylor '02
Dolan, Goddard '07

$$
\begin{aligned}
\mathcal{G}_{N}\left(x_{1}, x_{2}, \ldots, x_{N}\right) & =0, \quad N \leq 3 \\
\mathcal{G}_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =1 \\
\mathcal{G}_{5}\left(x_{1}, x_{2}, \ldots, x_{5}\right) & =\sum_{j=1}^{5} f_{j}^{(1)}
\end{aligned}
$$

$$
\mathcal{G}_{6}\left(x_{1}, x_{2}, \ldots, x_{6}\right)=\sum_{j=1}^{6} f_{j}^{(2)}+\sum_{1 \leq j<k}^{6} f_{j}^{(1)} f_{k}^{(1)}
$$

$$
\mathcal{G}_{7}\left(x_{1}, x_{2}, \ldots, x_{7}\right)=\sum_{j=1}^{7} f_{j}^{(3)}+\sum_{1 \leq j<k}^{7}\left(f_{j}^{(2)} f_{k}^{(1)}+f_{j}^{(1)} f_{k}^{(2)}\right)+\sum_{1 \leq j<k<l}^{7} f_{j}^{(1)} f_{k}^{(1)} f_{l}^{(1)}
$$

$$
\underbrace{s}_{5-3-5}+\sum_{1 \leq j<k<l}^{8}\left(f_{j}^{(2)} f_{k}^{(1)} f_{l}^{(1)}+f_{j}^{(1)} f_{k}^{(2)} f_{l}^{(1)}+f_{j}^{(1)} f_{k}^{(1)} f_{l}^{(2)}\right)+3 G_{4}
$$

Reducing supersymmetry (orbifold)

Trick: orbifold partition function is like Green's function evaluated "at twist"

$$
\begin{aligned}
& F_{1 / 2}^{(0)}(\gamma) \equiv 1, \quad F_{1 / 2}^{(2)}(\gamma) \equiv 2 f^{(2)}(\gamma)-f^{(1)}(\gamma)^{2} \\
& F_{1 / 2}^{(4)}(\gamma) \equiv 2 f^{(4)}(\gamma)-2 f^{(3)}(\gamma) f^{(1)}(\gamma)+f^{(2)}(\gamma)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{I}_{n, 1 / 2}^{e}\left(\vec{v}_{k}\right)=\frac{1}{\Pi_{n}} \sum_{\nu=2}^{4}(-1)^{\nu-1}\left[\frac{\vartheta_{\nu}(0)}{\vartheta_{1}^{\prime}(0)}\right]^{4} S_{\nu}(k v) S_{\nu}(-k v)\left\langle V_{1}^{(0)}\left(z_{1}\right) V_{2}^{(0)}\left(z_{2}\right) \ldots V_{n}^{(0)}\left(z_{n}\right)\right\rangle_{\nu} \\
& \sum_{\nu=2}^{4}(-1)^{\nu-1}\left[\frac{\vartheta_{\nu}(0)}{\vartheta_{1}^{\prime}(0)}\right]^{4} S_{\nu}(\gamma) S_{\nu}(-\gamma) S_{\nu}\left(x_{1}\right) \ldots S_{\nu}\left(x_{n}\right)=\mathcal{G}_{n+2}\left(x_{1}, x_{2}, \ldots, x_{n}, \gamma,-\gamma\right)
\end{aligned}
$$

Reducing supersymmetry (orbifold)

$$
\begin{aligned}
& V_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv\left(\alpha^{n} \Omega\left(x_{1}, \alpha\right) \Omega\left(x_{2}, \alpha\right) \ldots \Omega\left(x_{n}, \alpha\right)\right) \\
& \mathcal{G}_{2+2}\left(\gamma,-\gamma, x_{1}, x_{2}\right)= 1 \\
& \mathcal{G}_{2+3}\left(\gamma,-\gamma, x_{1}, x_{2}, x_{3}\right)= V_{1}\left(x_{1}, x_{2}, x_{3}\right)=f^{(1)}\left(x_{1}\right)+f^{(1)}\left(x_{2}\right)+f^{(1)}\left(x_{3}\right) \\
& \mathcal{G}_{2+4}\left(\gamma,-\gamma, x_{1}, \ldots, x_{4}\right)= F_{1 / 2}^{(2)}(\gamma)+V_{2}\left(x_{1}, \ldots, x_{4}\right) \\
& \mathcal{G}_{2+5}\left(\gamma,-\gamma, x_{1}, \ldots, x_{5}\right)= F_{1 / 2}^{(2)}(\gamma) V_{1}\left(x_{1}, \ldots, x_{5}\right)+V_{3}\left(x_{1}, \ldots, x_{5}\right) \\
& \mathcal{G}_{2+6}\left(\gamma,-\gamma, x_{1}, \ldots, x_{6}\right)= F_{1 / 2}^{(4)}(\gamma)+3 G_{4}+F_{1 / 2}^{(2)}(\gamma) V_{2}\left(x_{1}, \ldots, x_{6}\right)+V_{4}\left(x_{1}, \ldots, x_{6}\right) \\
& \mathcal{G}_{2+7}\left(\gamma,-\gamma, x_{1}, \ldots, x_{7}\right)=\left(F_{1 / 2}^{(4)}(\gamma)+3 G_{4}\right) V_{1}\left(x_{1}, \ldots, x_{7}\right) \\
&+F_{1 / 2}^{(2)}(\gamma) V_{3}\left(x_{1}, \ldots, x_{7}\right)+V_{5}\left(x_{1}, \ldots, x_{7}\right) \\
& \mathcal{G}_{2+8}\left(\gamma,-\gamma, x_{1}, \ldots, x_{8}\right)= F_{1 / 2}^{(6)}(\gamma)+10 G_{6}+F_{1 / 2}^{(4)}(\gamma) V_{2}\left(x_{1}, \ldots, x_{8}\right)+F_{1 / 2}^{(2)}(\gamma) V_{4}\left(x_{1}, \ldots, x_{8}\right) \\
&+3 G_{4}\left(F_{1 / 2}^{(2)}(\gamma)+V_{2}\left(x_{1}, \ldots, x_{8}\right)\right)+V_{6}\left(x_{1}, \ldots, x_{8}\right),
\end{aligned}
$$

IR regularization of (2-pt), 3-pt, ...

- relax momentum conservation

or
e.g. Gregori et al

K 3 and $\mathrm{K} 3 \times \mathrm{T}^{2}$

- complex momenta, as used in spinor helicity formalism

3-pt function

$$
Q_{i}^{m} \equiv \sum_{j \neq i} k_{j}^{m} f_{i j}^{(1)}
$$

left-movers:

$$
\begin{aligned}
\mathcal{I}_{3} & =\mathcal{G}_{2}\left(\gamma_{1}, \gamma_{2}\right)\left[\left(\partial f_{12}^{(1)}\left(e_{1} \cdot e_{2}\right)\left(e_{3} \cdot Q_{3}\right)+(3 \leftrightarrow 2,1)\right)-\left(e_{1} \cdot Q_{1}\right)\left(e_{2} \cdot Q_{2}\right)\left(e_{3} \cdot Q_{3}\right)\right] \\
& +\left[\mathcal{G}_{4}\left(\gamma_{1}, \gamma_{2}, z_{12}, z_{21}\right) t(1,2)\left(e_{3} \cdot Q_{3}\right)+(3 \leftrightarrow 2,1)\right]+\mathcal{G}_{5}\left(\gamma_{1}, \gamma_{2}, z_{12}, z_{23}, z_{31}\right) t(1,2,3)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{I}_{3} & =f_{12}^{(1)} K_{12 \mid 3}+(12 \leftrightarrow 13,23) \\
K_{12 \mid 3} & =t(1,2,3)+\left(e_{1} \cdot k_{2}\right) t(2,3)-\left(e_{2} \cdot k_{1}\right) t(1,3)=s_{12}\left(e_{1} \cdot e_{2}\right)\left(e_{3} \cdot k_{1}\right) .
\end{aligned}
$$

Lorentz traces of linearized field strength:

$$
\begin{aligned}
t(1,2) & \equiv\left(e_{1} \cdot k_{2}\right)\left(e_{2} \cdot k_{1}\right)-\left(e_{1} \cdot e_{2}\right)\left(k_{1} \cdot k_{2}\right) \\
t(1,2,3) & \equiv\left(e_{1} \cdot k_{2}\right)\left(e_{2} \cdot k_{3}\right)\left(e_{3} \cdot k_{1}\right)-\left(e_{1} \cdot k_{2}\right)\left(e_{2} \cdot e_{3}\right)\left(k_{3} \cdot k_{1}\right) \\
& -\left(e_{1} \cdot e_{2}\right)\left(k_{2} \cdot k_{3}\right)\left(e_{3} \cdot k_{1}\right)+\left(e_{1} \cdot e_{2}\right)\left(k_{2} \cdot e_{3}\right)\left(k_{3} \cdot k_{1}\right) \\
& -\left(k_{1} \cdot k_{2}\right)\left(e_{2} \cdot k_{3}\right)\left(e_{3} \cdot e_{1}\right)+\left(k_{1} \cdot k_{2}\right)\left(e_{2} \cdot e_{3}\right)\left(k_{3} \cdot e_{1}\right) \\
& +\left(k_{1} \cdot e_{2}\right)\left(k_{2} \cdot k_{3}\right)\left(e_{3} \cdot e_{1}\right)-\left(k_{1} \cdot e_{2}\right)\left(k_{2} \cdot e_{3}\right)\left(k_{3} \cdot e_{1}\right) \\
t(1,2, \ldots, n) & \equiv\left(e_{1} \cdot k_{2}\right)\left(e_{2} \cdot k_{3}\right)\left(e_{3} \cdot k_{4}\right) \ldots\left(e_{n-1} \cdot k_{n}\right)\left(e_{n} \cdot k_{1}\right)
\end{aligned}
$$

3-pt function

$$
Q_{i}^{m} \equiv \sum_{j \neq i} k_{j}^{m} f_{i j}^{(1)}
$$

left-movers:

$$
\begin{aligned}
\mathcal{I}_{3} & =\mathcal{G}_{2}\left(\gamma_{1}, \gamma_{2}\right)\left[\left(\partial f_{12}^{(1)}\left(e_{1} \cdot e_{2}\right)\left(e_{3} \cdot Q_{3}\right)+(3 \leftrightarrow 2,1)\right)-\left(e_{1} \cdot Q_{1}\right)\left(e_{2} \cdot Q_{2}\right)\left(e_{3} \cdot Q_{3}\right)\right] \\
& +\left[\mathcal{G}_{4}\left(\gamma_{1}, \gamma_{2}, z_{12}, z_{21}\right) t(1,2)\left(e_{3} \cdot Q_{3}\right)+(3 \leftrightarrow 2,1)\right]+\mathcal{G}_{5}\left(\gamma_{1}, \gamma_{2}, z_{12}, z_{23}, z_{31}\right) t(1,2,3)
\end{aligned}
$$

$$
\mathcal{I}_{3}=f_{12}^{(1)} K_{12 \mid 3}+(12 \leftrightarrow 13,23)
$$

$$
K_{12 \mid 3}=t(1,2,3)+\left(e_{1} \cdot k_{2}\right) t(2,3)-\left(e_{2} \cdot k_{1}\right) t(1,3)=s_{12}\left(e_{1} \cdot e_{2}\right)\left(e_{3} \cdot k_{1}\right) .
$$

full graviton:

$$
\begin{gathered}
\mathcal{J}_{3,1 / 2} \equiv \mathcal{I}_{3,1 / 2} \tilde{\mathcal{I}}_{3,1 / 2}+\frac{\pi}{\operatorname{Im} \tau} \mathcal{I}_{3,1 / 2}^{m} \tilde{\mathcal{I}}_{3,1 / 2}^{m} \\
\mathcal{I}_{3,1 / 2}^{m}=M_{1 \mid 2,3}^{m}
\end{gathered}
$$

Berends-Giele building blocks

Berends, Giele '87
in supersymmetry \& string theory: Mafra, Schlotterer, Stieberger '11

$$
\begin{aligned}
\mathfrak{e}_{1}^{m} & \equiv e_{1}^{m} \\
\mathfrak{e}_{12}^{m} & \equiv \frac{1}{2 s_{12}}\left[\mathfrak{e}_{2}^{m}\left(k_{2} \cdot \mathfrak{e}_{1}\right)+\left(\mathfrak{e}_{2}\right)_{n} \mathfrak{f}_{1}^{m n}-(1 \leftrightarrow 2)\right] \\
\mathfrak{e}_{123}^{m} & \equiv \frac{1}{2 s_{123}}\left\{\left[\mathfrak{e}_{3}^{m}\left(k_{3} \cdot \mathfrak{e}_{12}\right)+\left(\mathfrak{e}_{3}\right)_{n} \mathfrak{f}_{12}^{m n}-(12 \leftrightarrow 3)\right]+\left[\mathfrak{e}_{23}^{m}\left(k_{23} \cdot \mathfrak{e}_{1}\right)+\left(\mathfrak{e}_{23}\right)_{n} f_{1}^{m n}-(1 \leftrightarrow 23)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
\mathfrak{f}_{1}^{m n} & \equiv 2 k_{1}^{[m} \mathfrak{e}_{1}^{n]} \\
\mathfrak{f}_{12}^{m n} & \equiv 2 k_{12}^{[m} \mathfrak{e}_{12}^{n]}-2 \mathfrak{e}_{1}^{[m} \mathfrak{e}_{2}^{n]} \\
\mathfrak{f}_{123}^{m n} & \equiv 2 k_{123}^{[m} \mathfrak{e}_{123}^{n]}-2\left(\mathfrak{e}_{12}^{[m} \mathfrak{e}_{3}^{n]}+\mathfrak{e}_{1}^{[m} \mathfrak{e}_{23}^{n]}\right)
\end{aligned}
$$

Berends-Giele building blocks

$$
\begin{aligned}
& M_{A, B} \equiv-\frac{1}{2} \mathfrak{f}_{A}^{m n} \mathfrak{f}_{B}^{m n}=M_{B, A} \\
& \mathcal{E}_{A \mid B, C}^{m} \equiv \frac{i}{4} \epsilon^{m}{ }_{n p q r s} s_{A}^{n} f_{B}^{p q} \mathfrak{f}_{C}^{r s}=\mathcal{E}_{A \mid C, B}^{m}
\end{aligned}
$$

building blocks

$$
M_{A \mid B, C}^{m} \equiv \mathfrak{e}_{A}^{m} M_{B, C}+\mathfrak{e}_{B}^{m} M_{A, C}+\mathfrak{e}_{C}^{m} M_{A, B}+\mathcal{E}_{A \mid B, C}^{m}=M_{A \mid C, B}^{m}
$$

4-pt function

$$
X_{23}=s_{23} f_{23}^{(1)}
$$

regular under integration
one side (which will be double-copied):

$$
\begin{aligned}
\mathcal{I}_{3,1 / 2}= & X_{23} C_{1 \mid 23} \\
\mathcal{I}_{4,1 / 2}= & -2 F_{1 / 2}^{(2)}(x) t_{8}(1,2,3,4)+X_{23,4} C_{1 \mid 234}+X_{24,3} C_{1 \mid 243} \\
& +\left[s_{12} f_{12}^{\prime(} \sum_{112 \mid 3,4}+(2 \leftrightarrow 3,4)\right]+\left[s_{23} f_{23}^{(2)} P_{1|(23)| 4}+(23 \leftrightarrow 24,34)\right]
\end{aligned}
$$

C's built from Berends-Giele M's

gauge invariance from
"particle 1 + gauge invariant completion"

$$
C_{1 \mid 23} \equiv M_{1,23}+M_{12,3}-M_{13,2}
$$

$$
C_{1 \mid 234} \equiv M_{1,234}+M_{123,4}+M_{412,3}+M_{341,2}+M_{12,34}+M_{41,23}
$$

$$
\begin{aligned}
C_{1 \mid 2,3}^{m} & \equiv M_{1 \mid 2,3}^{m}+k_{2}^{m} M_{12,3}+k_{3}^{m} M_{13,2} \\
C_{1 \mid 23,4}^{m} & \equiv M_{1 \mid 23,4}^{m}+M_{12 \mid 3,4}^{m}-M_{13 \mid 2,4}^{m}-k_{2}^{m} M_{132,4}+k_{3}^{m} M_{123,4}-k_{4}^{m}\left(M_{41,23}+M_{412,3}-M_{413,2}\right) \\
C_{1 \mid 2,3,4}^{m n} & \equiv M_{1 \mid 2,3,4}^{m n}+2\left[k_{2}^{(m} M_{12 \mid 3,4}^{n)}+(2 \leftrightarrow 3,4)\right]-2\left[k_{2}^{(m} k_{3}^{n)} M_{213,4}+(23 \leftrightarrow 24,34)\right]
\end{aligned}
$$

Finally: closed string 4-pt function

$$
\begin{aligned}
\mathcal{J}_{4,1 / 2} \equiv \mid & X_{23,4} C_{1 \mid 234}+X_{24,3} C_{1 \mid 243}+\left[s_{12} f_{12}^{(2)} P_{1|2| 3,4}+(2 \leftrightarrow 3,4)\right] \\
& \quad+\left[s_{23} f_{23}^{(2)} P_{1 \mid(23| | 4}+(23 \leftrightarrow 24,34)\right]-\left.2 F_{1 / 2}^{(2)}(\gamma) t_{8}(1,2,3,4)\right|^{2} \\
& +\frac{\pi}{\operatorname{Im} \tau}\left(X_{23} C_{1 \mid 23,4}^{m}+X_{24} C_{1 \mid 24,3}^{m}+X_{34} C_{1 \mid 34,2}^{m}\right)\left(\bar{X}_{23} \tilde{C}_{1 \mid 23,4}^{m}+\bar{X}_{24} \tilde{C}_{1 \mid 24,3}^{m}+\bar{X}_{34} \tilde{C}_{1 \mid 34,2}^{m}\right) \\
+ & \left(\frac{\pi}{\operatorname{Im} \tau}\right)^{2}\left(\frac{1}{2} C_{1 \mid 2,3,4}^{m n} \tilde{C}_{1|2|, 3,4}^{m n}-P_{1|2| 3,4} \tilde{P}_{1|2| 3,4}-P_{1|3| 2,4} \tilde{P}_{1| | \mid 2,4}-P_{1|4| 2,3} \tilde{P}_{1|4| 2,3}\right) .
\end{aligned}
$$

[see 1603.04790 for closely related 6-pt max. SUSY]

Finally: closed string 4-pt function

$$
\begin{aligned}
\mathcal{J}_{4,1 / 2} \equiv \mid X_{23,4} & C_{1 \mid 234}+X_{24,3} C_{1 \mid 243}+\left[s_{12} f_{12}^{(2)} P_{1|2| 3,4}+(2 \leftrightarrow 3,4)\right] \\
& +\left[s_{23} f_{23}^{(2)} P_{1 \mid(23| | 4}+(23 \leftrightarrow 24,34)\right]-\left.2 F_{1 / 2}^{(2)}(\gamma) t_{8}(1,2,3,4)\right|^{2} \\
+ & \frac{\pi}{\operatorname{Im} \tau}\left(X_{23} C_{1 \mid 23,4}^{m}+X_{24} C_{1 \mid 24,3}^{m}+X_{34} C_{1 \mid 34,2}^{m}\right)\left(\bar{X}_{23} \tilde{C}_{1 \mid 23,4}^{m}+\bar{X}_{24} \tilde{C}_{1 \mid 24,3}^{m}+\bar{X}_{34} \tilde{C}_{1 \mid 34,2}^{m}\right) \\
& +\left(\frac{\pi}{\operatorname{Im} \tau}\right)^{2}\left(\frac{1}{2} C_{1 \mid 2,3,4}^{m n} \tilde{C}_{1 \mid 2,3,4}^{m n}-P_{1|2| 3,4} \tilde{P}_{1|2| 3,4}-P_{1|3| 2,4} \tilde{P}_{1|3| 2,4}-P_{1|4| 2,3} \tilde{P}_{1|4| 2,3}\right)
\end{aligned} .
$$

apparent obstruction to double copy
(cf. Mafra-Schlotterer 1410.0668: obstruction in 6-point, related to chiral anomaly in hexagon, but: Green-Schwarz!)

Recreating low-energy results

$$
\begin{aligned}
& \left.\mathcal{M}^{R^{2}}(1,2,3)\right|_{\text {even }}=\left.M_{1 \mid 2,3}^{m} \tilde{M}_{1 \mid 2,3}^{m}\right|_{\text {even }}=\left\{\begin{array}{cc}
-2 \epsilon^{m}\left(e_{1}, k_{2}, e_{2}, k_{3}, e_{3}\right) \epsilon_{m}\left(\tilde{e}_{1}, k_{2}, \tilde{e}_{2}, k_{3}, \tilde{e}_{3}\right) & : \text { IIA } \\
0 & : \text { IIB }
\end{array}\right. \\
& =\begin{array}{r}
R^{2} \\
=R \wedge R \wedge R \\
0 \\
\left.\mathcal{M}^{R^{2}}(1,2,3)\right|_{\text {odd }}=\left.M_{1 \mid 2,3}^{m} \tilde{M}_{1 \mid 2,3}^{m}\right|_{\text {odd }} \\
i\left[e_{1}^{m}\left(e_{2} \cdot k_{3}\right)\left(e_{3} \cdot k_{2}\right)+\operatorname{cyc}(1,2,3)\right] \epsilon_{m}\left(\tilde{e}_{1}, k_{2}, \tilde{e}_{2}, k_{3}, \tilde{e}_{3}\right)+\left(e_{i} \leftrightarrow \tilde{e}_{i}\right): \text { IIB, two B-fields } \\
: \text { otherwise }
\end{array} \\
& H \wedge H \wedge R
\end{aligned}
$$

Half to quarter supersymmetry

$$
\mathcal{J}_{n, 1 / 4}^{e, e}=\left.\mathcal{J}_{n, 1 / 2}^{e, e}\right|_{F_{1 / 2}^{(k)}\left(\gamma_{k, k^{\prime}}\right) \rightarrow F_{1 / 4}^{(k+1)}\left(\gamma_{k, k^{j}}^{j}\right), \bar{F}_{1 / 2}^{(k)}\left(\tilde{\gamma}_{k, k^{\prime}}\right) \rightarrow \bar{F}_{1 / 4}^{(k+1)}\left(\mathcal{T}_{k, k^{\prime}}^{j}\right)}
$$

Factorization

Factorization

Factorization

snail

shy snail

Factorization

one-mass triangle

N=1,2 amplitude

$$
\left.\begin{array}{r}
A_{\mathcal{N}=1,2}^{1 \text {-loop }}(1,2,3,4)=c_{2}^{K 3}\left(\gamma_{i}\right) A_{\mathcal{N}=4}^{1-\text { loop }}(1,2,3,4)+\int \frac{\mathrm{d}^{D} \ell}{(2 \pi)^{D}} 2\{\overbrace{\frac{C_{1 \mid 234}}{2 \ell^{2} \ell_{234}^{2}}+\overbrace{\frac{\ell_{m} C_{1 \mid 23,4}^{m}}{\ell^{2} \ell_{234}^{2} \ell_{4}^{2}}+\frac{\ell_{m} C_{1 \mid 2,34}^{m}}{\ell^{2} \ell_{234}^{2} \ell_{34}^{2}}}^{\text {triangles }}}^{\underbrace{}_{\text {triangle } / \text { box }}} \begin{array}{r}
\ell_{234|4| 2,3}^{2} \ell_{34}^{2} \ell_{4}^{2}
\end{array} \\
\underbrace{\ell_{m} \ell_{n} C_{1,2,3,4}^{m n}+\ell_{m}\left(s_{23} C_{1 \mid 23,4}^{m}+s_{24} C_{1 \mid 24,3}^{m}+s_{34} C_{1 \mid 2,34}^{m}\right)-\frac{1}{6} s_{23} s_{34} C_{1 \mid 234}}_{\text {box }} \ell^{2} \ell_{234}^{2} \ell_{34}^{2} \ell_{4}^{2}
\end{array}\right\}
$$

interplay locality / gauge invariance
[see 1410.0668 for closely related 6-pt max. SUSY]

MHV calculation of 4-pt vector

- Can combine different kinematic factors, leads to very simple expression
$\left.\mathcal{A}_{4}^{1-\operatorname{lop}}\left[1^{-}, 2^{-}, 3^{+}, 4^{+}\right]=\frac{\alpha^{4} g_{8}^{4}}{8} F_{--++}^{4} \int_{0}^{\infty} \frac{d T}{T} \int d \mu^{4}\right)\left[4 \mathcal{F}_{\mathcal{N}}+\mathcal{E}_{\mathcal{N}}\left(\mathcal{1}_{12}+\mathcal{Y}_{34}-\mathcal{Y}_{13}-\mathcal{Y}_{24}-\mathcal{Y}_{14}-\mathcal{Y}_{23}\right)\right] \Pi$
no poles!
no factorization! believe 0/0 problem, but more work needed.
surprising in 4-pt function!
[see 1603.04790 for closely related 6-pt max. SUSY]

Outlook

- Scattering equations: relation?
- Field theory amplitudes: more on BCJ from string amplitudes
- Hybrid formalism in orbifold, AdS/plane wave loop corrections
- Approach from integrability: relation?

Hoare, Tseytlin, ...,

- Ambitwistor orbifolds?

