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• Scattering amplitudes 

‣ fully on-shell  

• Form factors

‣ partially on-shell  

• Correlation functions

‣ off-shell  

progressively 
 less on shell



• They share the beautiful simplicity of amplitudes

‣ calculation with textbook (i.e. Feynman diagrams)  methods cumbersome, 
however final results are often strikingly simple

• Important applications 

‣ phenomenology

‣ dilatation operator  

• Work in N=4 SYM, with en eye on QCD….

‣ we like models!

‣ QCD has non-zero beta function, is not superconformal, (anti)quarks in (anti)-
fundamental representation, no scalars

        Why form factors?



• Example:  amplitudes from super Yang-Mills to QCD  

‣ one-loop amplitudes in SYM are expressed as linear combinations of boxes, 
triangles and bubbles only (just boxes in N=4 SYM)  

‣ devise special techniques to compute the corresponding coefficients 
(quadruple cuts, triple cuts, MHV diagrams…)

‣ next, find methods to compute rational terms which are specific to       
non-supersymmetric amplitudes  

• Apply these ideas to form factors

‣ conceptual motivation: explore simplicity of off-shell quantities

‣ practical motivation: surprising connection to Higgs + multi-gluon amplitudes in 
QCD  (no supersymmetry!)



• Three form factor calculations, towards QCD

1. Half-BPS quadratic operators Tr (𝜙12)2  & connection to Higgs amplitudes

- Leading term in the effective action for Higgs+multi-gluon processes

2. Half-BPS operators of the form Tr (𝜙12)3   (more in general Tr (𝜙12)k )

3. Non-BPS operators, operators of the form Tr( X[Y , Z]) (SU(2|3) sector)

- subleading terms in 1/m2top in the Higgs + multi-gluon effective action ?  

• Long-term goal

‣ Understand better the connection to Higgs+multi-gluon amplitudes

‣ N=4 super Yang-Mills as a tool to compute Higgs amplitudes in QCD?

‣ Dilatation operator,  Yangian symmetry

Plan



• Less on-shell (i.e. partially off-shell) quantities

‣ momentum q  carried by the operator  is off shell

• Form factors appear in many important contexts:  

‣ electromagnetic form factor, or g−2

‣ deep inelastic scattering  (e− + p → e− + hadrons) 

‣ e+ e−   → hadrons (X)

            What are form factors  ?                     

a gauge-invariant operator in the theory ↴
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• e+ e−   → hadrons (X),  all orders in αstrong,  first order in αe.m.            

• electron g−2:             

‣   

‣ p2 = me2    on shell,   but q = p − pʹ off shell                                

hadronic electromagnetic current

Je.m.
µ =  ̄�µ 

= v̄(p2)�µu(p1)
⌘µ⌫

(p1 + p2)2
(�e)hX| Jh

⌫ (0) |0i

. .
.

.

.

.
.

.
.

X

e-  
(p
1
)

e+(p
2
)

γ
  J h

e-  
(p
1
) e-

(p
2
)

γ(q)

J e.m.

q2≠0 

q

he�(p0)|Je.m.
µ (0)|e�(p)i =



• one loop:                                                 (Schwinger 1952) 

‣                               fine structure constant                               

• Three loops: 

‣ numerical values of each diagram oscillate wildly…                                                    

‣ … but final result is O(1)

‣ an example of surprising simplicity outside amplitudes!

(Cvitanovic & Kinoshita ’74; 
Laporta & Remiddi ’96) 
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Simplicity of the g−2



• A side remark: from form factors to amplitudes

‣ at q ≠ 0: 

‣ at q = 0: 

‣ this is the same as the correction to the amplitude state | 0 due to 
the addition of a new coupling  to the action              
                      
 
  
to the first order in 

‣ a particular soft limit of the form factor…
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  One (more) reason SUSY is  
useful even if there is no SUSY… 



• Higgs production at the LHC 

‣ dominant process at low MH  is gluon fusion  

‣ coupling to gluons through a fermion loop   

- proportional to the mass of the quark ⇒ top quark dominates

• Effective Lagrangian description                                                               
(Wilczek ’77; Shifman, Vainshtein, Voloshin, Zakharov ’79; Dawson ’91; Djouadi, Graudenz, Spira, Zerwas ’95)

‣ for MH  < 2 mtop , integrate out the top quark (shrink loop to a point-like 
effective interaction)

‣ leading order:                              ,  coupling independent of mtop

‣   efficient MHV rules (Dixon, Glover, Khoze;  Badger, Glover & Risager; Boels, Schwinn)

‣   How do we compute a process with one Higgs + gluons with          ? 

g
H

g

g

Higgs amplitudes and form factors

L(0)
e↵ ⇠ H TrF 2

L(0)
e↵



• Higgs amplitudes are form factors of  Tr F2 !

‣ in N=4 super Yang-Mills,  the form factor of Tr FSD2  (SD = self-dual) is 
related to that of  Tr (ϕ12 )2     (simpler!)

- Tr ϕ212   and Tr FSD2  part of the same half-BPS supermultiplet

- supersymmetric form factor of the chiral part of the                        
stress tensor multiplet (Brandhuber, Gurdogan, Mooney, GT, Yang)

‣ Note: a priori no connection between QCD and N=4 SYM form 
factors, however comparing them will lead to a surprise…
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• In N=4 SYM:     2 scalars, one gluon (MHV)   

‣ A particularly simple form factor in N=4 super Yang-Mills

- operator is protected from quantum corrections (“1/2 BPS”)

‣ Loops: 

-          helicity-blind function, totally symmetric under legs exchange

- one loop:  IR divergences + sum of finite two-mass easy box

- two loops:  result encoded in finite remainder function

 Higgs → 3 gluons at 2 loops                                                                                            

F (L)
3 = F tree

3 G(L)
3 (1, 2, 3)

G(L)
3

F3(1, 2, 3) = h�12(p1)�12(p2)g
+(p3)|Tr(�12�12)(0) |0i

(Brandhuber, GT, Yang)



• Construct  the  ABDK/BDS finite remainder,  R 

‣ introduced for amplitudes by Anastasiou, Bern Dixon & Kosower and  
Bern, Dixon & Smirnov                                    

‣ Ingredients:    

- two-loop form factor       , one-loop form factor        in dimensional 
regularisation (D = 4 − 2 𝜖)

-                                                  contains cusp and collinear anomalous 
dimensions (integrability!), 

‣ Key properties: 

1. finite: infrared divergences cancel (as in Bloch-Nordsiek)

2. trivial collinear limits                        (in particular:                )

   The form factor remainder
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Figure 6: The integral expansion of our final result for the three-point form factor G(2)
3 .

we constructed an MB representation of NBox directly from its Feynman parameter form.
The result is an eight-fold MB representation of the form

(−q2)−2ϵ

2(2πi)8Γ(−1− 3ϵ)

∫ 8∏

i=1

(dziΓ(−zi))u
z5+1vz678+1w−3−2ϵ−z12345678 ×

Γ(−ϵ− z34)Γ(−ϵ+ z4)Γ(1 + z13456)Γ(1 + z157)Γ(−1− ϵ+ z3 − z8)×
Γ(−2− 2ϵ− z1 − z568)Γ(−2 − 2ϵ− z134578)Γ(−2 − 2ϵ− z1234678)× (3.12)

Γ(−2ϵ− z3 + z8)Γ(1 + z168)Γ(1 + z278)Γ(3 + 2ϵ+ z12345678)

Γ(−2ϵ− z3)Γ(−1− 2ϵ− z3 − z48)Γ(−1− 2ϵ+ z34 − z8)Γ(−2ϵ− z34 + z8)
,

where we have introduced the shorthand notation zij...k = zi + zj + . . .+ zk, and

u =:
s12
q2

, v :=
s23
q2

, w :=
s31
q2

. (3.13)

Note that for sake of brevity we have dropped here the terms of the numerator which
are linear in loop momentum ℓ; they lead to a number of similar eight-fold MB integrals.
Furthermore, due to the Γ(−1 − 3ϵ) denominator the integral effectively becomes seven-
dimensional [21]. In this sense this integral is the most complicated and numerically the
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(DTrii + DBoxi) + TriPent + NBox + NTri + cyclic

• Result of a unitarity-based two-loop calculation: 

-   result expressed as rational coefficients X two-loop planar and non-planar integrals



• Some features of the result:

‣ sum of transcendental functions, typically quite complicated: 
Goncharov’s polylogarythms

‣ defined recursively                                                     

‣ compare to something simpler: classical polylogarithms

‣ key finding: our result is a sum of functions of homogeneous degree of  
“transcendentality”.  All terms have transcendentality 4 (this will change 
later…)

G(a1; z) :=

Z z

0

dt1
t1 � a1

, G(a1,~a; z) :=

Z z

0

dt1
t1 � a1

G(~a; t1)

Li1(z) = � log(1� z) , Lin(z) =

Z z

0

dt

t
Lin�1(t)



• Compute the symbol of the finite remainder

‣ either by taking the symbol of the known (but complicated answer)…

‣ or by computing it directly using symmetry properties & analyticity 

- finite, trivial/understood collinear limits

- analiticity

- need to know the possible letters

• “lift” it to a function

‣ result might be remarkably simple, and in particular much  simpler 
than the original expression!

‣ fix “beyond-the-symbol” terms

Strategy



• The unique symbol satisfying these requirements: 

‣ four-fold tensor product (2L-fold at L loops, transcendentality 2L)  

‣ kinematic variables: u1 = u = s12 / q2 ,   u2 = v = s23 / q2 ,  u3 = w = s31 / q2    

where sij  :=  (pi + pj)2  and u1 + u2 + u3 = 1

‣ Note: coefficients ±1, ±2 (well... -2)

following compact expression:

S(2) = −2u⊗ (1− u)⊗ (1− u)⊗ 1− u

u
+ u⊗ (1− u)⊗ u⊗ 1− u

u

−u⊗ (1− u)⊗ v ⊗ 1− v

v
− u⊗ (1− u)⊗ w ⊗ 1− w

w

−u⊗ v ⊗ (1− u)⊗ 1− v

v
− u⊗ v ⊗ (1− v)⊗ 1− u

u

+u⊗ v ⊗ w ⊗ 1− u

u
+ u⊗ v ⊗ w ⊗ 1− v

v

+u⊗ v ⊗ w ⊗ 1− w

w
− u⊗ w ⊗ (1− u)⊗ 1− w

w

+u⊗ w ⊗ v ⊗ 1− u

u
+ u⊗ w ⊗ v ⊗ 1− v

v

+u⊗ w ⊗ v ⊗ 1− w

w
− u⊗ w ⊗ (1− w)⊗ 1− u

u
+ cyclic permutations . (4.28)

The next challenge is twofold: firstly, we wish to determine the function whose symbol
is given by (4.28); and secondly, we wish to determine terms missed by the symbol,
e.g. terms of the form π2 × F2 where F2 is a sum of transcendentality-two functions with
rational coefficients.

In this respect, there is an additional piece of information about (4.28) that we would
like to mention. Our symbol S(2) defined in (4.28) satisfies an important symmetry
constraint [61] discussed in [23], namely

S(2)
abcd − S(2)

bacd − S(2)
abdc + S(2)

badc − (a ↔ c , b ↔ d) = 0 . (4.29)

According to a conjecture of Goncharov, symbols with this peculiar property can always
be obtained from a function involving logarithms and classical polylogarithms Lik’s with
k ≤ 4 only [61, 23]. The explicit solution we will present in the next section will confirm
this expectation beautifully. As we will show in the final part of this paper, there is an
alternative way to obtain an analytic result of the form factor remainder in terms of two-
dimensional harmonic polylogarithms [62]. This is due to a remarkable relation between
the N = 4 form factor and the planar, maximally transcendental part of the two-loop
QCD amplitude for H → ggg recently obtained in [12, 13].

4.5 The analytic remainder function

The remaining task now is to find a transcendentality-four function whose symbol is given
by (4.28). Recall that the symbol only takes entries from the list {u, v, w, 1−u, 1−v, 1−w}
and has the symmetry (4.29), which implies the result should be expressed purely in terms
of classical polylogarithms of degree up to four and logarithms [61,23]. This however does
not fix a priori the allowed arguments of these functions, but the arguments of individual
functions must be such that the symbol of that function has only entries from that list.
Taking these considerations into account, the most general ansatz will be built from the
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• How to “integrate” the symbol: 

‣       satisfies a particular relation of Goncharov:

‣ ⇒ can re-express as a linear combination of classical polylogarithms only

‣ we find the following arguments:

• Final answer is very compact

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi)

S(2)
abcd � S(2)

bacd � S(2)
abdc + S(2)

badc � (a $ c , b $ d) = 0

S(2)

✓
u, v, w, 1� u, 1� v, 1� w, 1� 1

u
, 1� 1

v
, 1� 1

w
,�uv

w
,�vw

u
,�wu

v

◆



• Final answer:  (Brandhuber, GT,  Yang)

‣ u1 = u = s12 / q2 ,   u2 = v = s23 / q2 ,  u3 = w = s31 / q2     kinematic 
invariants

‣  

‣ Block-Wigner-Ramakrishnan(-Zagier) polylogarithmic function

‣ Result is free of Goncharov polylogarithms

following set of functions:

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi) ,
(4.30)

where we found it sufficient to take the possible arguments xi from the list
{
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

}
. (4.31)

Imposing the constraint that the ansatz has the same symbol as (4.28) one can easily
find a solution. We have then applied various polylogarithm identities to simplify the raw
solution obtained in this way. The final result takes the remarkably simple and compact
form

R(2)
3 = −2

[
J4

(
−uv

w

)
+ J4

(
−vw

u

)
+ J4

(
−wu

v

)]
− 8

3∑

i=1

[
Li4

(
1− u−1

i

)
+

log4 ui

4!

]

−2

[
3∑

i=1

Li2(1− u−1
i )

]2

+
1

2

[
3∑

i=1

log2 ui

]2

− log4(uvw)

4!
− 23

2
ζ4 ,

(4.32)

where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [63] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these
ambiguities using constraints from permutation symmetry and collinear limits. In our case
it was sufficient to add the ζ4 term to get a symmetric function, that is smooth throughout
the Euclidean region defined as 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1 and u+ v + w = 1, and
vanishes in all collinear and soft limits.

Finally, we have collected in Table 2 results from our numerical evaluations in Section
3.1 and compared them with the exact result (4.32). This also serves as confirmation of
the overall normalisation of the remainder, which is not fixed by the symbol alone.

4.6 A surprising relation with QCD

In this final section we wish to discuss an intriguing connection of our result with the
recent work of [12]. In that paper, the two-loop helicity amplitudes for H → ggg and
H → qq̄g were computed in the large top mass limit. In this approximation the top quark
can be integrated out at one loop and produces a new effective vertex of the form Hgg.
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this expectation beautifully. As we will show in the final part of this paper, there is an
alternative way to obtain an analytic result of the form factor remainder in terms of two-
dimensional harmonic polylogarithms [62]. This is due to a remarkable relation between
the N = 4 form factor and the planar, maximally transcendental part of the two-loop
QCD amplitude for H → ggg recently obtained in [12, 13].

4.5 The analytic remainder function

The remaining task now is to find a transcendentality-four function whose symbol is given
by (4.28). Recall that the symbol only takes entries from the list {u, v, w, 1−u, 1−v, 1−w}
and has the symmetry (4.29), which implies the result should be expressed purely in terms
of classical polylogarithms of degree up to four and logarithms [61,23]. This however does
not fix a priori the allowed arguments of these functions, but the arguments of individual
functions must be such that the symbol of that function has only entries from that list.
Taking these considerations into account, the most general ansatz will be built from the
following set of functions:

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi) ,
(4.30)

where we found it sufficient to take the possible arguments xi from the list
{
u, v, w, 1− u, 1− v, 1− w, 1− 1
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Imposing the constraint that the ansatz has the same symbol as (4.28) one can easily
find a solution. We have then applied various polylogarithm identities to simplify the raw
solution obtained in this way. The final result takes the remarkably simple and compact
form
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where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [65] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these
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• Higgs + 3 partons  (Koukoutsakis 2003; Gehrmann, Glover, Jaquier & Koukoutsakis 2011)

‣ H g+ g− g−   MHV

‣ H g+ g+ g+   maximally non-MHV 

‣ H         g      fundamental quarks

• In N=4 SYM: 

‣ (H g+ g− g−)      and  (H g+ g+ g+)  both derived from super form factor

‣ from supersymmetric Ward identities:  (Brandhuber, GT, Yang)

q q̄

F (L)(g�1 , g
�
2 , g

+
3 )

F tree(g�1 , g
�
2 , g

+
3 )

=
F (L)(g+1 , g

+
2 , g

+
3 )

F tree(g+1 , g
+
2 , g

+
3 )

= G(L)(u, v, w)

q2 = M2
H

← what we computed

F tree(H, g+1 , g
+
2 , g

+
3 ) =

q4

[1 2] [2 3] [3 1]

F tree(H, g�1 , g
�
2 , g

+
3 ) =

h1 2i2

h2 3i h3 1i

Higgs amplitudes in QCD



• QCD answer from Gehrmann, Glover, Jaquier & Koukoutsakis 

‣ expressed in terms of several pages of Goncharov polylogarithms

‣ transcendentality 4, 3, 2, 1 and rational

‣ entirely expected because of expansion as ∑ (coefficient x integral) !

- each integral is separately quite complicated 

• Next, compare N=4 form factors to Higgs 
amplitudes: 

‣ take maximally transcendental piece of (H g+ g− g−)   and   (H g+ g+ g+) 



• We find a surprising connection...

‣ N=4 result is a particular part of the QCD result - in fact it is  
the “most complicated part” 

‣ all Goncharov polylogarithms in QCD results can be eliminated in favour 
of classical polylogarithms

• Nothing similar seems to hold for the                      
form factor                  (see also Duhr ’12)

‣ maximally transcendental part does not satisfy Goncharov et al criterion  

!R(2)
H g�g�g+

���
MAXTRANS

= R(2)
H g+g+g+

���
MAXTRANS

= R(2)
N=4SYM

(H, q, q̄, g)



• Typical presentation of the result of a calculation:

‣ result  =  ∑ (coefficient x integral)

‣ integrals are separately complicated, but final result is strikingly simple

‣ there must be better way to present the result than Σ(coefficient x integral)

• Supersymmetry is a very useful organisational principle!

‣ even if there is no supersymmetry…

Comments



• Obvious (but nontrivial) extensions:

‣ different operators, more legs (Penante,  Spence, GT,  Wen; Brandhuber, Penante, GT,  Wen)

‣ further potential connections to phenomenology, e.g. in Higgs + 4 gluons 

• Corrections due to the finiteness of the top mass 

‣ leading order term (infinite top mass limit) is the dimension-5 coupling 
studied earlier  

‣ next corrections from four dimension-7 operators, suppressed by powers 
of 1/m2top    (Buchmüller & Wyler; Neill;  Harlander & Neumann)

L(0)
e↵ ⇠ H TrF 2

What next?



• Look at this question with the N=4 SYM microscope…

‣ identify couplings which are present also in N=4 SYM.   Just two:  
 
  

‣ compute in N=4 SYM

‣ use Ward identities to connect to operators in the same multiplet but 
containing less derivatives / more scalars  

‣ compare to QCD

• Key questions & conjectures: 

‣ does the “maximal-transcendental connection” still holds?   

‣ any other interesting connection? 

L(1)
e↵ ⇠ H TrF 3 L(2)

e↵ ⇠ H Tr(DµF⇢�)(D
µF ⇢�)



• Perform simpler “toy” calculations 

‣ Form factors of operators containing three fields in N=4 SYM

‣ simpler than Tr F3 .  Operators with scalars!

‣ Naturally leads to the SU(2|3) sector studied by Beisert

‣ Several possibilities, two broad classes: unprotected and protected 
operators (with and without UV divergences)

‣ interesting, unexpected connections between the two classes!



• Protected

‣ Tr (𝜙12)3  half-BPS, form factors free of  UV divergences

‣ Generalisation:      Tr (𝜙12)k,  also half-BPS  ∀ k

• Non-protected

‣ Length 3:  OB := Tr (X [Y , Z])  where X = 𝜙12 ,  Y= 𝜙23,    Z= 𝜙31

- same one-loop anomalous dimension as Tr F3

‣ Carries along a few dimension-three friends via operator mixing…  

- OBPS := Tr (X {Y , Z}), which is BPS (symmetric traceless)

- OF := (1/2) Tr (𝜓𝜓), which mixes with OB          (and 𝜓:= 𝜓123)

‣ This is the SU(2|3) sector! The SU(2|3) “dynamic” spin chain (Beisert ’03)

‣ key features: 1. closed sector, 2. length changing  (𝜓𝜓 ⟷ XYZ)

The two classes of operators:



• Two distinguished combinations:  
(Bianchi, Kovacs, Rossi, Stanev; Eden; …)

1. an additional BPS operator O’BPS = (1/2) Tr (𝜓𝜓) + g Tr (X [Y , Z]) 

- can also be obtained by acting with 2 susy transformations on Tr (𝜙12)2

2.  A descendant of the Konishi operator 

• Four interesting calculations to carry out: 

‣ ＜X Y Z  Tr (X [Y , Z])   0 >						minimal                       	

‣ ＜X Y Z  Tr (𝜓𝜓)   0 >              non-minimal	

‣ ＜𝜓𝜓  Tr (X [Y , Z])   0 >									sub-minimal                	

‣ ＜𝜓𝜓  Tr (𝜓𝜓)   0 >															minimal (“Sudakov”)

easy

v. easy

♻

harder

OK = Tr(X[Y, Z])� gN

8⇡2
Tr(  )



Protected operators



‣ “minimal form factor”:   as many particles as fields

‣ Tree:                               

‣ One loop: sum of three “one-mass” triangles

  3-point form factor of  Tr𝜙3 at 2 loops                 
(Brandhuber, Penante, GT, Wen)                                                                            

F (0)
3 (1, 2, 3) = 1

Figure 8: The result for the (q � p1)2 cut of the one-loop Sudakov form factor of T3.

6.3 n-point MHV super form factors of T3
As stated earlier, we only need to compute the quadruple cut diagrams of the one-loop
MHV super form factor of T3. The final result will then be expressed as a sum of the
infrared-divergent expression (6.2) plus finite two-mass easy boxes, whose coe�cients we
are going to determine now using supersymmetric quadruple cuts [45].

The two-mass easy quadruple cuts we consider are shown in Figure 9, where for conve-
nience we label the massless legs 1 and r.

Figure 9: Quadruple cut of the super form factor FMHV(1)
T3,n .

The coe�cient of the corresponding box is given by

C(1, P, r, Q) =
1

2

X

S±

Z 4Y

i=1

d4⌘
i

FMHV
T3,r (2, . . . , r � 1, `3,�`2; q, �+)⇥AMHV(�`3, r, `4)

⇥AMHV(�`4, r + 1, . . . , n, `1)⇥AMHV(�`1, 1, `2) ,
(6.5)

where the sum is over the solutions to the cut equations. Since only one solution to the
cut contributes, one can drop the sum over S± in (6.5), and a factor of 1/2 is left over.
The form factor FMHV

T3,r is given in (3.2), and the MHV and MHV superamplitudes entering

this expression are given in (5.11) and (3.7), respectively. Because of the presence of MHV
three-particle amplitudes on the massless corners, we have

�
`3 / �

`4 / �
r

, �
`1 / �

`2 / �1 . (6.6)

Using the delta functions contained in the MHV and MHV amplitudes, together with the
conditions (6.6) one can quickly determine the fermionic variables associated to the internal
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+     2 cyclic perms

F3(1, 2, 3) := h�12(p1), �12(p2), �12(p3) |Tr [(�12)
3](0) |0i



• Result at two loops: 

F (2)
T3,3

=
3X

i=1

h
I1(i) + I2(i) + I3(i) + I4(i)� I5(i)

i

‣ Result expressed in terms of two-loop planar integrals

‣ All integrals known from work of Gehrmann & Remiddi except 1 (and 2),  
decompose remaining ones using FIRE/LiteRed  (Smirnov/Lee)

where the integrals I
k

are given by

. (5.26)

Explicit expressions for all integrals that appear in (5.2) can be found in [3], except for I1
and I2, which have the same topology. We focus on I2, i.e. the second integral in (3.26),
and employ the FIRE algorithm [11] in order to decompose it in terms of scalar two-loop
master integrals, with the result

(5.27)
The dashed lines in the integral on the left-hand side of (3.27) represent the numerator
s23s1`2 .

A few comments are in order here.

1. The first integral in (3.27) can naturally be combined with I5(1) in (3.25). This
is important as it ensures that the contribution to the final answer from this topology is
a linear combination of multiple polylogarithms with purely numerical, i.e. momentum-
independent coe�cients. The explicit expressions of the first and second integral in terms
of two-dimensional Goncharov polylogarithms can be found in [3], Eqns. (4.32)–(4.37) and
Eqns. (4.26)–(4.31), respectively. Also note that the ✏-dependent prefactor of the second
integral ensures that the expanded result has homogenous degree of transcendentality.
Finally, the third integral in (3.27) multiplied with its ✏-dependent coe�cient turns out be
�(1/2) I4(2) which follows from Eqn. (5.15) of [12] which also has homogenous degree of
transcendentality.

2. We also note that once the reduction (3.27) is substituted into (3.25) the final result
is expressed as a linear combination of transcendental functions with numerical coe�cients.
We refrain from writing explicitly the result at this stage because of its considerable length.
Instead in the next section we will identify the universal infrared divergences and construct
the finite remainder function. This remainder is a transcendental function of degree four
and, as we will show, can be brought to an extremely compact form that involves only
classical polylogarithms.

3. As noted in [10], the elements of the integral basis (3.26) can be obtained from dual
conformal integrals upon taking certain external region momenta to infinity. Consider for
instance the simpler one-loop form factor, which may be obtained by taking one of x

i

’s of
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‣ Compute the symbol and lift it to a function

‣ No sub-triangle and -bubble topologies on the amplitude side  
(no triangle theorem for N=4 SYM amplitudes) 



• The symbol of R3  is very simple!

‣ transcendentality four function    ➩  rank-four tensor

‣ entries:    (u, v, w, 1-u, 1-v, 1-w)

‣ first entry: (u, v, w)  for correct branch cuts  (Gaiotto, Maldacena, Sever, Vieira) 

-                                                          with  Pi, j := pi +  ... + pj

‣ unusual second entry condition

‣ last entry condition: ratios of simple ratios only

‣ satisfies Goncharov, Spradlin, Vergu & Volovich’s criterion, thus can be re-
expressed in terms of classical polylogarithms only

☞

S[R(2)] =
X

i,j

P 2
i,j ⌦ S[disci,jR(2)]

S(2)
3 (u, v, w) = � 3

2
u⌦ (1� u)⌦ v

w
⌦ v

w
+

1

2
u⌦ u⌦ v

w
⌦ v

w

+ u⌦ v ⌦
⇣ u

w
⌦ v

w
+

v

w
⌦ u

w

⌘
+ perms (u, v, w)

u :=
s12
q2

, v :=
s23
q2

, w :=
s31
q2

,



‣ Table of symmetry properties from Goncharov, Spradlin, Vergu &  
Volovich: 

‣ Two more stringent properties of our symbol:   AA[ S(2) ] = SA[ S(2) ] = 0

‣ Need:  Li4 (x),   Li3 (x) log(x),   log(x) log(y) log(z) log(w)  but   no Li2  !

‣ Entries:

• Final answer fits on a couple of lines… 

then the symbol of the two-loop remainder R(2)
T3,3 is given by

S(2)
3 (u, v, w) = u⌦ w ⌦ v ⌦ v

2

uw

+ u⌦ v ⌦ w ⌦ w

2

uv

+ 3u⌦ (1� u)⌦ v ⌦ w

v

+ 3u⌦ (u� 1)⌦ w ⌦ v

w

+ u⌦ u⌦ v ⌦ v

w

+ u⌦ u⌦ w ⌦ w

v

+ u⌦ v ⌦ u⌦ v

w

+ u⌦ v ⌦ v ⌦ u

w

+ u⌦ w ⌦ u⌦ w

v

+ u⌦ w ⌦ w ⌦ u

v

+ cyclic(u, v, w) .

(4.30)

The original expression (before taking the symbol) typically contains Goncharov polylog-
arithms, as well as classical polylogarithms. However, there is a relation proposed by
Goncharov [11, 12] that once satisfied by the symbol, then the function resulting from
its integration is guaranteed to be expressible in terms of only logarithms and classical
polylogarithms Lik with k  4. This relation is

S(2)
abcd � S(2)

bacd � S(2)
abdc + S(2)

badc � (a $ c , b $ d) = 0 , (4.31)

where the subscripts abcd stand for the four arguments of the symbol. Quite surprisingly,
our symbol (4.30) satisfies a refined version of (4.31), namely

S(2)
abcd � S(2)

bacd � S(2)
abdc + S(2)

badc = 0 . (4.32)

The symbol (4.30) also satisfies the integrability conditions, which guarantee that it can
be integrated to a local function. To integrate the symbol (4.30), we first investigate its
symmetry properties. We start by decomposing it into four parts,

S(2)(u, v, w) = A⌦ A+ S⌦ A+ A⌦ S + S⌦ S , (4.33)

where S⌦ A means symmetric in the exchange of the first two entries and antisymmetric
in the last two entries and so on. Then we compare with the symmetry properties of the
functions that may appear, shown in Table 1 [12].

Function A⌦ A S⌦ A A⌦ S S⌦ S
Li4(x) ⇥ ⇥ X X

Li3(x) log(y) ⇥ ⇥ X X
Li2(x) Li2(y) X X X X

Li2(x) log(y) log(z) ⇥ X X X
log(x) log(y) log(z) log(w) ⇥ ⇥ ⇥ X

Table 1: Symmetry properties of the symbol of transcendentality four functions. S ⌦ A means

symmetric in the exchange of the first two entries and antisymmetric in the last two entries and

so on.

We find that the for the symbol (4.30) both A ⌦ A and S ⌦ A are zero. Thus, inspecting
Table 1, we see that only the following combinations

�

Li4(x), Li3(x) log(y), log(x) log(y) log(z) log(w)
 

(4.34)

are allowed in the answer. In other words, the integrated symbol will not contain any Li2.

8

n

u, v, w, 1� u, 1� v, 1� w,�u

v
,� u

w
,� v

u
,� v

w
,�w

u
,�w

v
,�uv

w
,�uw

v
,�vw

u

o



• Final answer (including beyond the symbol terms):  

‣ beyond the symbol terms: fixed using numerics (with GiNaC)

‣ no Goncharov polylogarithms, no Li2 ’s

R(2)
3,3 := � 3

2

Li4(u) +
3

4

Li4

⇣
�uv

w

⌘
� 3

2

log(w)Li3
⇣
�u

v

⌘
+

1

16

log

2
(u) log2(v)

+

log

2
(u)

32

h
log

2
(u)� 4 log(v) log(w)

i
+

⇣2
8

log(u)[5 log(u)� 2 log(v)]

+

⇣3
2

log(u) +
7

16

⇣4 + permutations (u, v, w)



Non-BPS operators



• Strategy: 

‣ compute the four form-factors in terms of two-loop integrals, using  
unitarity (two- and three-particle cuts)	

‣ compute the remainder functions

- remainders are free of IR divergences; UV divergences still present

‣ simplify the remainders using symbols, lift back to (simpler) functions  

‣ renormalise the operators, and resolve the mixing

- eigenvalues of the mixing matrix: anomalous dimensions

- eigenvectors: operators that diagonalise the dilatation operator

  Form factors in the SU(2|3) sector                 
(Brandhuber,  Kostacinska, Penante, GT,  Young)                                                                            



• The most interesting/complicated

‣ minimal form factor ＜X Y Z Tr (X [Y , Z]) (0) 0 >				

• Key observation (slightly embarassing…)  
 
Tr(X [Y , Z]) = Tr(X {Y , Z}) − 2 Tr(X Z Y) := OBPS +Ooffset

half-BPS  “one shuffling”,  
  hence simpler

compare

operator

state Z

vs

YX Z

YXZ

ZX Y

YX



• What does “simple” mean: 

‣ ＜X Y Z Tr (X {Y , Z}) 0 >	(half-BPS) is maximally transcendental	

‣ equal to ＜X X X Tr (X3) 0 >	(discussed earlier)	

‣ ＜X Y Z Tr (X Z Y) 0 >		has NO maximally transcendental piece

- transcendentality equal to 3, 2, 1 and 0 (rational terms) only  

• A cute observation in the SU(2) spin chain                  
(Loebbert, Nandan, Sieg, Wilhelm, Yang)

‣ highest transcendentality of a “term” is 4 − s where s = # of shufflings

‣ same happens here for ＜X Y Z Tr (X Z Y) 0 >

‣ one shuffling, hence transcendentality 3, 2, 1 and rational



• Result for the remainder in terms of integral functions:

‣ first line corresponds to the half-BPS form factor

‣ dotted lines correspond to numerators in the integral functions

‣ presence of sub-bubbles points at UV divergences

=
3✏� 2

2✏(s
i i+2 + s

i+1 i+2)

 
�

!

(4.27)

=
3✏� 2

2✏ s
i i+1

. (4.28)

The integral basis for the two-loop form factor is then given by:

"
+ + + �

#

+ 2⇥
"

+ + +

� � + +

+

#
+ 4⇥

"
+

#
+ cyclic(i, i+ 1, i+ 2) .

(4.29)

Note that the integrals on the first line correspond to the BPS case, shown in Eq. (3.25)
of [1].

18



• Remainder can be decomposed as 
 
         R(2)X[Y, Z]  = R(2)BPS  +R(2)non-BPS          where 

‣ recall that OBPS :=   Tr (X{Y , Z}) ,      Ooffset :=   −2 Tr (X Z Y)

‣ BDS remainder free of IR but not UV divergences

‣  R(2)BPS  computed earlier, transcendentality-4 function 

R(2)

BPS

= F (2)

O
BPS

(✏) � 1

2

�
F (1)

O
BPS

(✏)
�
2 � f (2)(✏) F (1)

O
BPS

(2✏)� C(2) ,

R(2)

non-BPS

= F (2)

O
offset

(✏) � F (1)

O
offset

⇣1
2
F (1)

O
offset

+ F (1)

BPS

⌘
(✏)� f (2)(✏) F (1)

O
offset

(2✏)

R(2)
BPS =

3

2

Li4(u)�
3

4

Li4

⇣
�uv

w

⌘
+

3

2

log(w) Li3
⇣
�u

v

⌘
� 1

16

log

2
(u) log2(v)

� log

2
(u)

32

h
log

2
(u)� 4 log(v) log(w)

i
� ⇣2

8

log(u)[5 log(u)� 2 log(v)]

� ⇣3
2

log(u)� 7

16

⇣4 + perms (u, v, w)



• Focus now on the new part, i.e. R(2)non-BPS

‣ c = 18 − π2      this is the UV pole, π2    “spurious”

‣ “18” will enter the mixing matrix

‣ transcendentality < 4, hence only classical polylogarithms

R(2)

non-BPS

=
c

✏
+

3X

i=0

R(2)

non-BPS;3�i

R(2)

non-BPS;3

= 2

h
Li

3

(u) + Li

3

(1� u)
i
� 1

2

log

2

(u) log
vw

(1� u)2
+

2

3

log(u) log(v) log(w)

+

2

3

⇣
3

+ perms (u, v, w)

R(2)

non-BPS;2

= �12

h
Li

2

(1� u) + Li

2

(1� v) + Li

2

(1� w)
i
� 2 log

2

(uvw) + 36 ⇣
2

R(2)

non-BPS;1

= �12 log(uvw) ,

R(2)

non-BPS;0

= 126

�f (2)(✏) F (1)
O

offset

(2✏)



• Summary so far:

‣ leading transcendental part of ＜X Y Z Tr (X  [Y, Z]) 0 >	same as for 
the  half-BPS case ＜X X X Tr (X3) 0 > 

• Goal for the future: compare to ＜g g g|	Tr F3 |0>

‣ conjecture: maximally transcendental part computed by the form factor 
of the half-BPS operator Tr (X3) ?  This would parallel the situation for  
Tr F2   in QCD vs  Tr (𝜙12)2  in N=4 SYM…

‣ if conjecture is true, then half-BPS operators in N=4 SYM have a 
prominent role in QCD! 

‣ Understand multiplet structure for Tr F3 

‣ Same one-loop anomalous dimension of Tr (X[Y , Z])  



• An intriguing  connection with the remainder densities  
in the SU(2) spin chain (Loebbert, Nandan, Sieg, Wilhelm, Yang)

• Contrast the two sectors:

‣ SU(2): two bosons, X and Y (scalars). Closed, no length change

‣ SU(2|3):  𝜙12=X, 𝜙23=Y, 𝜙31=Z  and 𝜓123;𝛼 , α=1, 2. Closed, length change 

• LNSWY computed the two-loop spin-chain Hamiltonian

- “open”, equivalent to removing the trace (form factor of a product of 
fields, without the trace)

- involves three sites at two loops

- finite parts expressed in terms of remainder densities

An SU(2)⇔SU(2|3) sector connection 
or are we missing a trivial Ward identity?



• Interaction range 2 and 3 processes: 

‣ Range 2:  1.  XX → XX,   2.  XY → XY,    3.  XY → YX

‣ Range 3:  1. XXX → XXX,   2. XXY → XXY,    3. XYX → XYX,          
                4. XXY → XYX,   5. XYX → XXY,    6. XXY → YXX

• Focus on range 3
- there are only 3 independent processes/remainder densities 

 
                               

- i denotes the site

- each remainder depends on

- no particular symmetry in the ui, vi and wi

ui =
sii+1

sii+1i+2
, vi =

si+1i+2

sii+1i+2
, wi =

sii+2

sii+1i+2

�
R(2)

i

�XXX

XXX
,

�
R(2)

i

�XYX

XXY
,

�
R(2)

i

�Y XX

XXY



• We find the following relations:

‣ (Ri)|m     indicates the transcendentality-m part

‣ S3 denotes sum over all six permutations of (u v, w)  

• Universality of form factors across different sectors?

‣ or is  there a trivial explanation for this result?

1

2
R(2)

non-BPS;3

= �
X

S3

�
R(2)

i

�XYX

XXY

���
3

+ 6 ⇣
3

,

1

2
R(2)

non-BPS;2

= �
X

S3

h�
R(2)

i

�XYX

XXY
�
�
R(2)

i

�Y XX

XXY

i���
2

+ 5⇡2 ,

1

2
R(2)

non-BPS;1

= �
X

S3

h�
R(2)

i

�XYX

XXY
�
�
R(2)

i

�Y XX

XXY

i���
1

,

1

2
R(2)

non-BPS;0

= �
X

S3

h�
R(2)

i

�XYX

XXY
�
�
R(2)

i

�Y XX

XXY

i���
0



• Resolve mixing

‣ OB := Tr (X [Y , Z])     and    OF := (1/2) Tr (𝜓𝜓)  

• Extract mixing matrix from requesting finiteness of the 
renormalised form factors 

‣ ＜X Y Z  Tr (X [Y , Z])   0 >						                      	

‣ ＜X Y Z  Tr (𝜓𝜓)   0 >                            (IR finite, starts at one loop)	

‣ ＜𝜓𝜓  Tr (X [Y , Z])   0 >									              (IR finite, starts at two loops)           	

‣ ＜𝜓𝜓  Tr (𝜓𝜓)   0 >														

• Dilatation operator   

0

@
Oren

F

Oren
B

1

A =

0

@
Z F

F Z B
F

Z F
B Z B

B

1

A

0

@
OF

OB

1

A

�D = �µR
@

@µR
logZ

SU(2|3) dilatation operator



Figure 9: The first two diagrams with fermions in the loop. In our conventions, the Yukawa
couplings are of the form, schematically, Tr(�AB

¯ A
¯ B) and Tr(�AB 

A B
), where �AB is related

to �AB via (1.3).

Figure 10: The remaining two diagrams with fermions in the loop.

For the cuts in Figure 10 we get

(iii) : i3 A(2�
23

, 3�
31

, 4�
14

, 5 
4

, 6 
2

)⇥ F

(0)
O

o↵set

(1�
12

, 6 ̄
134

, 5 ̄
123

, 4�
23

; q) = � 2

s56

, (3.25)

(iv) : i3 A(2�
23

, 3�
31

, 4�
14

, 5 
2

, 6 
4

)⇥ F

(0)
O

o↵set

(1�
12

, 6 ̄
123

, 5 ̄
134

, 4�
23

; q) =
2

s56

h25ih46i
h45ih62i .

(3.26)

Again, there are four more diagrams corresponding to FMHV⇥A

MHV which can be obtained
using parity conjugation as explained earlier.

Combining the terms. We can now convert the integrands into traces and expand them.
In doing so, it is extremely useful to notice that the following combination is particularly
simple:

(3.20) + (3.23) + (3.24) +
1

2
(3.21) = +

s1`

s45s14

+
s13

s34s14

� 1

s45

� s23s26

s34s45s56

� 1

s14

, (3.27)

where ` = �p4 � p5 and note that p4, p5 and p6 are cut. The corresponding integrals are
shown in (3.28) below. In uplifting the cut expression, we have to pay particular attention
to the momentum flow: for example, in the expression above s14 = 2(p1 · p4) should be
uplifted to �(p1 � p4)2 since p1 and p4 flow in the same direction (see Figure 10). Keeping
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non-BPS remainder, namely

1

2
R(2)

non-BPS;3 = �
X

S
3

�

R

(2)
i

�XYX

XXY

�

�

�

3
+ 6 ⇣3 ,

1

2
R(2)

non-BPS;2 = �
X

S
3

h

�

R

(2)
i

�XYX

XXY
� �

R

(2)
i

�Y XX

XXY

i

�

�

�

2
+ 5⇡2

,

1

2
R(2)

non-BPS;1 = �
X

S
3

h

�

R

(2)
i

�XYX

XXY
� �

R

(2)
i

�Y XX

XXY

i

�

�

�

1
,

1

2
R(2)

non-BPS;0 = �
X

S
3

h

�

R

(2)
i

�XYX

XXY
� �
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�Y XX
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0
, (4.16)

where f |m denotes the transcendentality-m part of the function f , the remainder densities
are evaluated with the replacements (ui, vi, wi) ! (u, v, w), and S3 denotes permutations
of (u, v, w). It would be very interesting to explain this almost perfect coincidence of the
a priori unrelated quantities.

5 One-loop non-minimal form factor for O
F

! X̄Ȳ Z̄

In this section we compute one of the o↵-diagonal entries of the matrix of remainders,
namely F

(1)
OF

(1�
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, 2�
23

, 3�
31

; q), where OF is defined in (1.6). In order to do so we construct
the one-loop integrand by considering two-particle cuts in the q2 and s23 channels. We will
find that the result is IR finite as it should be since this form factor does not exist at tree
level. UV divergences are expected, reflecting the mixing between OB and OF . This will
be studied in detail in Section 7.

5.1 Two-particle cut in the q

2-channel

Figure 11: Two-particle cut of the non-minimal form factor F
(1)
OF

with external state | ¯X ¯Y ¯Zi.
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The corresponding topology is the box shown in Figure 12.
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6 Two-loop sub-minimal form factor for O
B

!  ̄ ̄

Here we consider the sub-minimal form factor h ̄ ̄|OB|0i with OB = Tr(X[Y, Z]) as usual,
and  ̄ denotes  ̄123;↵. As it is clear from Figure 16, this object exists only at two loops or
more, hence we only need to consider the two three-particle cuts presented here.

Figure 16: Triple cut of the two-loop sub-minimal form factor Tr(X[Y, Z]) !   . The second
set of identical diagrams, but with external legs 1 and 2 swapped has to be added, corresponding
to the fact that it leads to the same colour-odering of the full expression.

For the first diagram, the relevant amplitude (and hence the integrand, since the tree-
level form factor is just 1) is

(i) : A(1 ̄
123

, 2 ̄
123

, 3�
24

, 4�
14

, 5�
34

) = (�i)
[53]

[23] [51]
. (6.1)

For the second diagram, the relevant amplitude is

(ii) : A(1 ̄
123

, 2 ̄
123

, 3�
14

, 4�
24

, 5�
34

) = i

[53]

[23] [51]
, (6.2)

which is the opposite of (i). Taking into account the relative minus sign between the two
diagrams coming from the commutator and converting to momentum invariants we get

(i)� (ii) :
1

[12]
· s35s12 � s25s13 + s15s23

s23s15

, (6.3)

where we have taken into account the factor of i3 for each of the cut propagators. We note
that for the half-BPS case of Tr(X {Y, Z}) the two contributions would cancel out exactly,
which agrees with the fact that the operator does not mix.

We proceed to perform the integral reduction using the LiteRed package. The integral
topology we need to reduce, corresponding to the expression in (6.3), is given by

F
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, 2 ̄
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; q)
�

�

�

3,q2
=

1

[12]
(s35s12 � s25s13 + s15s23)⇥ . (6.4)

The result of the integral reduction performed is an ✏-dependent pre factor times a “sunset”
master topology,
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 ̄123

, 2 ̄
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2(3✏� 2)

2✏� 1
⇥ , (6.5)
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𝜓𝜓

1 loop + 

g2 × N   ∼  a 

Schematically:

(a ⇠ g2N)



• Result for log (Z):

‣ running ’t Hooft coupling:  

• two-loop dilatation operator:

‣ 					’t Hooft coupling	 

• Next: eigenvalues and eigenvector

a(µR) :=
g2Ne�✏�

(4⇡)2�✏

✓
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µ

◆�2✏
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g2N

(4⇡)2
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✏!0

h
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@

@µR
log(Z)
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· 6
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6

✏
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18
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• Eigenvalues: 

‣ 				γBPS’	= 0, 						γK’	= 12 a − 48 a2 + ….

‣ one further BPS combination, one descendent of the Konishi.  
Results in agreement with Beisert ’03  
 

• Eigenvectors: 

‣ recall that OB := Tr (X [Y , Z])     and    OF := (1/2) Tr (𝜓𝜓)

‣ X = 𝜙12 ,  Y= 𝜙23,    Z= 𝜙31      𝜓:= 𝜓123

‣ agrees with Bianchi et al, Eden

‣ BPS combination can also be obtained by explicitly acting with 
supersymmetry generators on Tr (𝜙12 𝜙12)   (Intriligator & Skiba)

{OBPS0 = OF + gOB

OK0 = OB � gN

8⇡2
OF



• Other research direction: derive the dilatation operator 
from amplitudes techniques (no time to discuss this!)

‣ complete two-loop dilatation operator still not known

‣ amplitudes symmetries (Yangian) could play an important role

‣ one-loop approach in Brandhuber, Heslop, GT, Young ‘15  



• Form factors in N=4 SYM appear in several 
interesting contexts

- connection to Higgs amplitudes in QCD                                    

- possibly true also for higher-dimensional operators describing the 
corrections to the infinite top-mass approximation 

- can be used to compute the dilatation operator of the theory 

• Can the connection between Higgs amplitudes in 
QCD and form factors in N=4 SYM be made (more) 
systematic? 

• Universality of form factors across different sectors?

          Summary


