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Part I: Background
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In last ten years, we have seen an extraordinary
development of on-shell technique for scattering amplitude
It is the renascence of old S-matrix program, where
analyticity has played a crucial role.
However, old S-matrix program treats amplitude as
functions of all complex external momenta, so the
analyticity of multiple complex variables is much more
difficult to be understood
A natural approach of avoiding above complexities is to
consider only constrained variations. This is the key of new
on-shell technique.
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Let us consider on-shell tree-level amplitudes:

They are rational functions of all external momenta.
However, we keep all other momenta invariant and choose
only a pair of momenta pi ,pj , doing following deformation

pi(z) = pi + zq, pj(z) = pj − zq

which satisfies momentum conservation automatically.
To keep on-shell conditions for all z values, we impose
conditions

q2 = q · pi = q · pj = 0
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What we have achieved under above deformation?

First, the tree amplitude A(z) becomes rational functions
of single complex variables z, for which we have many
powerful results provided by mathematicians.
Physically, by Feynman diagrams, only possible
singularities comes from putting propagators on-shell.
More explicitly, by (P + zq)2 = P2 + z(2P · q), i.e., poles
can only be single poles.
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Let us consider the contour integration I =
∮

dzA(z)/z.
One can evaluate by two ways:

Doing it along the point z =∞, we get the "boundary
contribution" which will denote as B.
Doing it for big cycle around z = 0, we have
I = A(0) +

∑
α Res(A(z)/z)|zα .

Combining above we have

A(z = 0) = B −
∑

poles zα

Res
(

A(z)

z

)
z=zα

[Britto, Cachazo, Feng , 2004] [Britto, Cachazo, Feng , Witten, 2004]
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Residue of finite pole zα:

Location: It can be found by solving P2 + zα(2P · q) = 0.
Residue: there is an important Factorization property:
when one propagator goes to on-shell, i.e., P2 −m2 → 0,
we have

Atree(1, ..,n) →
∑
λ

Am+1(1, ..,m,Pλ)
1

P2
1m −m2

An−m+1(−P−λ,m + 1, ...,n)

Using it we get(
A(z)

z

)
z=zα

=
∑
λ

AL
m+1(1, ..,m,Pλ(zα))

1
P2 AR

n−m+1(−P−λ(zα),m + 1, ...,n)
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How about the boundary contribution?

It is well known that when z →∞,
A(z)→

∑k
i=0 ciz i +O(1/z) with c0 6= 0, there is nonzero

boundary contribution
But how to determine if there is a boundary contribution for
a given theory ? A nice method is the background field
method. [Arkani-Hamed, Kaplan 2008]

Using above method, one can see that for many interesting
applications, we can choose deformation to avoid
boundary.
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Let us have a better look of the analytic structure of boundaries:

It could be a rational function. The key is that under the
chosen deformation of (pi ,pj), there are propagators not
depending on both pi ,pj , so they are z-independent. We
will call them undetectable under the given deformation!

It could be pure polynomial of external momenta. Since
our principle is to determine them using pole structure, it is
very natural that the method can not work for these terms.
Then what is the effective method?
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Based on above discussions, one can see following three
proposals:

Finding other deformations to avoid boundary contributions

Using new deformations to detect these undetectable poles

Using roots, which is very natural for polynomial structures
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Part II: Avoiding Boundary
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Key idea: taking more momenta to do deformation

The first application of the idea is to prove the MHV-
expansion by Risager, where anti-spinor parts of all
particles with negative helicities have been deformed as
|m] + zαm |η] so on-shell condition has been kept! [Risager,
2005]

Then all-line deformation has been discussed by Cohen,
Elvang, Kiermaier to discuss the on-shell constructibility for
general theories (where anti-spinor parts of all particles
have been deformed).

[Cohen, Elvang, Kiermaier, 2010]
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Above multiple line deformation still makes each
propagator as linear function of z, so does not improve the
convergence too much.
Cheung, Shen, and Trnka have considered more general
deformations, where all particles have been divided into
two groups. In one group spinor parts have been deformed
|i〉+ z |ηi〉 while in another group, anti-spinor parts have
been deformed |i] + z |η̃i ].

[Cheung, Shen, and Trnka, 2015]

The key of above deformation is that now in general
propagator will be quadratic of z, so it has increased the
z-power in denominator and improved the convergence a
lot.
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Remarks:

Although power of z in denominator has increased a lot, it
is not guaranteed to eliminate boundary!

With more deformed momenta, recursion relation will
contains more terms. Also expression of each term
becomes more complicated with explicit square root in
general. Only after proper summing, we get rational
expression.
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Part III: Multiple deformations
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As we have remarked, for a given BCFW-deformation, only
a subset of poles can be detected
Thus to detect boundary, which contains undetected poles,
we should use new deformation
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Let us demonstrate above idea with the initial deformation
0 ≡ 〈i0|j0]:

Under the deformation, some physical propagators will
depend on deformed parameter z0 (which will be called
detectable propagators and denoted by D0), while some
physical propagators will NOT depend on deformed
parameter z0 (which will be called undetectable
propagators and denoted by U0)
Observation: Boundary could contain poles only from
undetectable propagators U0 as well as spurious poles
(denoted by S0)
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More explicitly, the expansion

−A0
n(z0) =

N(z0)∏
P2

t (z0)
= R0(z0) + B0(z0).

with recursive part as

R0(z0) =
∑

Pt∈D0

At ;L(ẑ0,t )At ;R(ẑ0,t )

P2
t (z0)

,

and the regular part as

B0(z0) = C0
0 +

∑
C0

i z i
0 .
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Key observation: the poles Pt ∈ D0 will appear once and
only once with power one in R0, i.e., they cannot be the
poles of coefficients B0

Pole structure of boundary: (I) It belongs to U0 or S0; (II)
The powers of spurious poles in B0 may be larger than one.
Fact: The part R0 is known by recursion relation, while
the part B0 is not known.
Natural idea: Consider a new deformation, which can
detect poles from the set U0 and S0, so we will determine
part of rational part of boundary!!
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Now we explain the strategy: Let us consider the second
deformation 1 ≡ 〈i1|j1]:

The full amplitude can be calculated by two ways:

The first way: Using the recursion relation

−A1
n(z1) = R1(z1) + B1(z1)

The second way: Using expression −A0
n(z0 = 0) to make

the deformation and the expansion

R0(z1) = RR0,1(z1) +RB0,1(z1)

B0(z1) = BR0,1(z1) + B01(z1),

Key observation: Identifying two ways,

R1(z1) = RR0,1(z1) + BR0,1(z1).
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Using two deformations, we can find part of unknown
boundary B01, which depends on poles Pt ∈ U0⋂D1.
It is easy to see our strategy: using enough deformations
to detect all possible poles of unknown boundary B01, thus
we can determine it up to polynomial part.

Bo Feng Boundary of On-shell Recursion Relation



Example: A(1+,2,3,4,5+) of the color ordered Yukawa Theory

Possible dependence of physical poles {〈1|2〉 , 〈4|5〉 , 〈5|1〉}
With 0 = 〈1|5]

−A0 = g3 〈2|4〉
〈2|1〉 〈5|4〉

+ B0

with sets D0 = {〈1|2〉}, U0 = {〈4|5〉 , 〈5|1〉}, S0 = ∅
With 1 = 〈5|4],

R1(z1) = gλ
1

〈1|5〉 − z1 〈1|4〉
,

so we get

BR0,1 = gλ
1
〈1|5〉

.
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After the deformation 1 we get

−A5 = g3 〈2|4〉
〈2|1〉 〈5|4〉

− gλ
1
〈5|1〉

+ B01,

with the corresponding sets

D01 = {〈1|2〉 , 〈5|1〉}, U01 = {〈4|5〉}, S01 = ∅.

To continue, we need to perform another deformation, e.g.,
2 = 〈5|1] to detect 〈4|5〉. However, it can be checked that
under 2 the pole part of B01 is zero. Since all physical
poles have been detected, we can conclude that B01 = 0,
and the correct answer is

−A5 = g3 〈2|4〉
〈2|1〉 〈5|4〉

− gλ
1
〈5|1〉

,
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Now let us give a more abstract description of our algorithm:

Let us define following two operators acting on rational
functions:

Pi [R] ≡ −
∑
finite

∮
dzi

zi
R(λai − ziλbi , λ̃bi + zi λ̃ai ),

Ci [R] ≡
∮
∞

dzi

zi
R(λai − ziλbi , λ̃bi + zi λ̃ai ),

They satisfy

Pi + Ci = I, C2
i = Ci , P2

i = Pi

Pi gives the recursive part, so we know its action
If we know the R, we know how to find action of Ci too.
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Now we do following iteration:

I = Pn + Cn = Pn + Cn(Pn−1 + Cn−1)

= Pn + CnPn−1 + CnCn−1(Pn−2 + Cn−2)

= Pn + CnPn−1 + . . .+ CnCn−1 · · ·C2P1

+CnCn−1 · · ·C2C1P0 + CnCn−1 · · ·C2C1C0

If with proper choice of Ci sequence, we can show that
CnCn−1 · · ·C2C1C0 = 0, then we have found the full
boundary part.
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Our algorithm is general, but there are two key issues we need
to address:

Workability: There is a sequence of deformations such
that CnCn−1 · · ·C2C1C0 = 0?
Efficiency: How to choose deformations in consequence
to make the calculation most efficient?
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Now we study the workability. First we need to have a better
understanding of pole structure of boundary terms:

Let us consider the deformation 〈1|n]. Under large z-limit,
we can expand

1

(PJ + p1 − zλnλ̃1)2
=

1
−z 〈n|PJ + p1|1]

∑
i=0

(
(PJ + p1)2

z 〈n|PJ + p1|1]

)i

Thus for general amplitudes,

A(z) =
f (z)∏
I⊂T P2

I

∏
J⊂T

[
1

−z 〈n|PJ + p1|1]

∑
i=0

(
(PJ + p1)2

z 〈n|PJ + p1|1]

)i]
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Thus, possible poles of boundary terms can only be

P2
I⊂T , 〈n|PJ⊂T |1]a

Using the observation, one can show that there is a
sequence of deformations, such that the remaining
boundary terms will be the form

(polynomial)

〈i1|i2〉m [i3|i4]m
× (remaining factor),

with arbitrary choices of i1, i2, i3, i4 and the remaining factor
is helicity neutral and dimensionless.
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Now consider the kinematic mass dimension of boundary:

At one side, it is given by D = 4− n −
∑

i(Dc)i where (Dc)i
are mass dimension of coupling constants.
At another side, using the schematic form of boundary
terms

1
〈12〉m[34]m

n∏
i=1

〈i |αi

n∏
i=1

[i |βi ,

we can write

D′ = −(m + m) + T ′1234 +
n∑

i=5

|hi |+
n∑

i=1

min(αi , βi) ≥ 0

where

T ′1234 ≡
∑

i=1,2

∣∣∣hi −
m
2

∣∣∣+
∑

i=3,4

∣∣∣∣hi +
m
2

∣∣∣∣ ≥ (m + m)

with proper choice of 1,2,3,4.
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Now by comparing D,D′ we can check if boundary is allowed
after a sequence of deformations

A first trivial implication is that when Dc ≥ 0, our method
can find all boundary terms for n ≥ 5.
For YM-theory and Einstein gravity, one can show that
An(±+ + + ..+) = 0 without using other arguments (like
supersymmetry)
Einstein Gravity has D = 2 and is solvable by our method.
Even with coupling with negative mass dimensions, we can
classify remaining freedom according to the value of
D ≥ 0. The classification does not depend on details of
effective theories.
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Efficiency: Although naively it seems one need to take a lot of
deformations to find all boundary terms, in fact, it can be very
simple.
Let us consider A(1−1,2+1,3−1,4+1,5−1,6+1) in
Einstein-Maxwell theory.

First factorization limits, mass dimension and helicities
together fix its schematic form to be

〈1|2[2|2〈3|2[4|2〈5|2[6|2 ×
∏32 |•〉[•|

P2
12P2

14P2
16P2

32P2
34P2

36P2
52P2

54P2
56

× 1
P2

132P2
134P2

136P2
152P2

154P2
156P2

352P2
354P2

356
,
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After first deformation 〈3|1], similar trick of pole
concentration gives its schematic form of boundary term

〈1|14[2|2[3|10[4|2〈5|2[6|2 ×
∏22 |•〉[•|

P2
52P2

54P2
56P2

132P2
134P2

136〈12〉2〈14〉2〈16〉2[32]2[34]2[36]2

1
〈1|5 + 2|3]2〈1|5 + 4|3]2〈1|5 + 6|3]2

,
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Under the second deformation, schematic form of
boundary term is

〈1|20[2|2[3|10[4|2[5|4[6|2 ×
∏18 |•〉[•|

〈12〉3〈14〉3〈16〉3[32]2[34]2[36]2[52][54][56]〈1|3 + 2|5]

1
〈1|3 + 4|5]〈1|3 + 6|5]〈1|5 + 2|3]2〈1|5 + 4|3]2〈1|5 + 6|3]2

,

which can not exist since
∏18 |•〉 can never saturate 〈1|20

to form non-vanishing spinorial products.
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Part III-A: Recursion relation for boundary
contribution
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Having above general discussions, now we focus on a special
type of deformation 〈i |n] with i = 2, ...,n − 1

All spurious poles will be the form 〈n|PJ⊂T |i]. Furthermore,
they are invariant under deformations 〈i |n].
The most important thing is that we can establish
corresponding on-shell recursion relation for boundary
contribution
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Derivation:

First, the boundary is defined as

B1
0({λ1, λ̃1},p2, ...,pn−1, {λn, λ̃n})

=

∮
w=∞

dw
w

An({λ1 − wλn, λ̃1},p2, ...,pn−1, {λn, λ̃n + w λ̃1})

Now using the contour integration
∮
|z|=R→∞ dz B1

0(z)

z we
arrive

B1
0 = B12

0 −
∑
zI

Res

(
B1

0
z

)
z=zI

where the second deformation is 〈2|n] and zI = (p2+PI)2

〈n|PI |2]

and I
⋃
I = {3,4, ...,n − 1}.
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Evaluation of residue part is given by

Res

(
B1

0

z

)
z=zI

=

∮
z=zI

dz
z

B1
0({λ1, λ̃1}, {λ2 − zλn, λ̃2}, ...,pn−1, {λn, λ̃n + zλ̃2})

=

∮
zI

dz
z

∮
∞

dw
w

An({λ1 − wλn, λ̃1}, {λ2 − zλn, λ̃2},

p3, ...,pn−1, {λn, λ̃n + zλ̃2 + w λ̃1})

The key is then to use the Fubini-Tonelli theorem to
exchange the ordering of two integrations

Bo Feng Boundary of On-shell Recursion Relation



Now we have
∮

w=∞

dw

w

∮
z=zI

dz

z
An({λ1 − wλn, λ̃1}, {λ2 − zλn, λ̃2}, p3, ..., pn−1, {λn, λ̃n + zλ̃2 + wλ̃1})

=

∮
w=∞

dw

w

∑
h

AL(p̂2(zI ), I,−Ph(zI ))
−1

(p2 + PI )2
AR ({λ1 − wλn, λ̃1}, I, {λn, λ̃n + zI λ̃2 + wλ̃1}, P−h(zI ))

=
∑

h

AL(p̂2(zI ), I,−Ph(zI ))
−1

(p2 + PI )2∮
w=∞

dw

w
AR ({λ1 − wλn, λ̃1}, I, {λn, λ̃n + zI λ̃2 + wλ̃1}, P−h(zI ))

=
∑

h

AL(p̂2(zI ), I,−Ph(zI ))
−1

(p2 + PI )2
B1

0 (p1, p̂n(zI ), I, P−h(zI ))
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Remarks:

In the derivation, the commutativity of two integrations is
crucial. In general with arbitrary pair of deformations, it is
not true, but with our special choice of the type 〈i |n], it is
true.
For it to be useful, one should show by other ways that
after finite steps, there is no boundary left anymore. We
have shown for standard like model, i.e., similar matter
contents and similar interaction except all particles are
massless, at most four steps are enough for getting
complete answer.
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Example II: Six scalars in scalar-Yang-Mills theory

L = Tr
(
−1

4
FµνFµν − DµΦ̄DµΦ− g2

2
[Φ, Φ̄]2

)

Step 1: With deformation 0 = 〈1|6], the recursive part is
given by

R0
6 = − 〈16〉[35]2[4|1 + 6|2〉2

τ612〈12〉[34][45][5|1 + 6|2〉[3|1 + 2|6〉

+
[13]2〈46〉2[1|2 + 3|5〉2[2|1 + 3|6〉2

τ123[12][23]〈45〉〈56〉[1|2 + 3|4〉[3|1 + 2|6〉[1|2 + 3|6〉2

+
[16]〈24〉2[5|1 + 6|3〉2

τ234[56]〈23〉〈34〉[1|2 + 3|4〉[5|1 + 6|2〉
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Next under the deformation 1 = 〈2|6] and using

B0(g−(k7),4,5,6,1) =
[14]

(
−2[15][46] + [14][56]

)
[16][17][45][57]

B0(Φ̄(k7),5,6,1) =
−〈17〉〈56〉 − 2〈15〉〈67〉

〈16〉〈57〉

B0(g−(k7),6,1) =
〈17〉〈67〉
〈16〉

we find

BR01 = A(2̂,3,−p̂23)
1

p2
23
B0(p̂23,4,5, 6̂,1)

+A(2̂,3,4,−p̂234)
1

p2
234
B0(p̂234,5, 6̂,1)

+A(2̂,3,4,5, p̂16)
1

p2
16
B0(−p̂16, 6̂,1)
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At the third step, using the deformation 2 = 〈3|6] and

B01(g−(k7),5,6,1,2) = [25]
[27][57] , B01(Φ(k7),6,1,2) = −1

we find

BR012 = A(3̂,4,−p̂34)
1

p2
34
B01(p̂34,5, 6̂,1,2)

+A(3̂,4,5,−p̂345)
1

p2
345
B01(p̂345, 6̂,1,2)
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At the fourth step with deformation 3 = 〈4|6], using

B012(g−(k7),6,1,2,3) = [13]2[27]
[23][37][17]2

we find

BR0123 = A(4̂,5,−p̂45)
1

p2
45
B012(p̂45, 6̂,1,2,3)

Finally R0
6 + BR01 + BR012 + BR0123 is equal to the total

amplitude.
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Remarks:

Again, multiple deformation does not guarantee to get all
results up to polynomial part.
One good thing is that each term is rational by construction
There is relation between multiple deformation and
deformation with multiple particles, but the details have not
been spelled out

Bo Feng Boundary of On-shell Recursion Relation



Part IV: Using roots
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Recent years, there are many studies of soft theorem
[Cachazo, Strominger, 2014]

The vanishing at the soft limit gives, in fact, the information
of roots of amplitudes.
Using root, one can solve the boundary in principle as
shown by Benincasa and Conde

[Benincasa, Conde, 2011]
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Roots of amplitude

To see the details:

Mn(z) =
∑

k∈P(i,j)

ML(zk )MR(zk )

p2
k (z)

+ C0 +
v∑

l=1

Clz l

= c
∏

s(z − ws)ms∏Np
k=1 p2

k (z)

Split all roots into two groups I,J . For nI < Np

c
∏nI

s=1(z − ws)∏Np
k=1 p2

k (z)
=

∑
k∈P(i,j)

ck

p2
k (z)

Mn(z) =
∑

k∈P(i,j)

ck

p2
k (z)

nJ∏
t=1

(z − wt )
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Roots of amplitude

Perform a contour integration around the pole zk and
obtain

ML(zk )MR(zk )

(−2pk · q)
=

ck

(−2pk · q)

nJ∏
t=1

(zk − wt ),

so

ck =
ML(zk )MR(zk )∏nJ

t=1(zk − wt )

and finally

Mn(z) =
∑

k∈P(i,j)

ML(zk )MR(zk )

p2
k (z)

v+1∏
t=1

(z − wt )

zk − wt

by setting nI = Np − 1.
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Although root method is very general and useful for
theoretical discussions. However, it is very hard to find root
recursively, especially roots are in general not rational
function
However, soft theorem tells us the roots under the limit!
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Now we discuss how to use it
[Cheung, Kampf, Novotny, Shen, and Trnka, 2015]

First we need to find deformation detecting the soft limit:

pi → pi(1− zai)

with
∑

i aipi = 0 for momentum conservation. This
"rescaling shift" keeps on-shell conditions too.
Secondly, we identify the soft limit of amplitudes:

An(z) ∼ (1− zai)
σi , z → 1

ai
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Now we consider the contour integration∮
dz
z

An(z)

Fn(z)

with Fn(z) =
∏n

i=1(1− zai)
σi .

Since the soft limit, poles introduced by Fn(z) do not exist
eventually. Thus only physical poles exist and we can use
the factorization limit to find residues.
One key role of Fn(z) is to introduce z in denominator, thus
improve the convergence!
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Remarks:

Using roots information (even only under some limits) we
can improve the convergence. Thus it is imaginable that
there could be other interesting limits one can try.
Again, it is not guaranteed that it provides enough power of
z to avoid the boundary.
The pole is in general quadratic function of z, which gives
more complicated expressions.
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Part V: The boundary Lagrangian and Form
factors
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What is the physical meaning of boundary contributions?

A key observation is that the boundary comes from the
large z-limit of deformation parameter. Thus two
momenta pi + zq,pj − zq become infinity, i.e., we have
two very heavy particles
The two heavy particles can be taken as classical
background, while other fields as soft (quantum)
fluctuation. Thus we can take the background field
method and use Wilson’s idea to integrate them out.
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Another point of view is to use OPE method to replace the
product of two quantum fields by a boundary operator,

OI(kL + zq)OJ(kR − zq) =
∑

K

CK
IJ (kL + zq)OK (kL + kR)

Expanding the coefficient around z =∞

CK
IJ (kL + zq) =

∑
i

CK
IJ,iz

i

we get the boundary operator

F =
∑

K

CK
IJ,0OK (k1 + kn)
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To track the large z behavior, we just need to focus on the hard
line connecting two deformed particles. Along the hard line,
there are two key facts:

Each vertex has two and only two hard fields;
Two hard particles can be contracted to become (hard)
inner propagator.
Using the observation, we can split Φ→ Φ + ΦΛ and
expand

S[Φ + ΦΛ] = S[Φ] + SΛ
1 [ΦΛ,Φ] + SΛ

2 [ΦΛ,Φ] + · · ·
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Now the correlation function can be evaluated as

A(z) =

∫
DΦDΦΛ exp

(
iS[Φ] + iSΛ

2 [ΦΛ,Φ]
)

ΦΛ
1 ΦΛ

n Φ2 · · ·Φn−1

=

∫
DΦ exp (iS[Φ])Z(z)Φ2 · · ·Φn−1

with Z(z) =
[∫

DΦΛ exp
(
iSΛ

2 [ΦΛ,Φ]
)

ΦΛ
1 ΦΛ

n
]
.

Writing the quadratic term as

LΛ
2 =

1
2

H†αDαβHβ,

where H for hard fields, we have Z(z) ∼ D−1.
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If we decompose Dαβ(Φ) = (D0)αβ + Vα
β(Φ), after the

LSZ reduction to amplitude, we will have

ε1α1
εnαn

[
Vα1αn − Vα1β1(D−1

0 )β1β2V β2α2 + · · ·
]α1αn

which has clear Feynman diagram picture.
For example, for L = −1

2(∂φ)2 + g
m!φ

m, it is

g
(m − 2)!

φm−2 − g
(m − 2)!

φm−2 1
∂2

g
(m − 2)!

φm−2 + · · ·

Using ∂µ → ∂µ − izqµ, ∂2 → ∂2 − 2iz∂ · q, so 1
∂2 → O( 1

z ),
we are left with g

(m−2)!φ
m−2 as boundary operator.
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Having boundary operator, we can write down boundary
Lagrangian

LB〈1|n] = −1
2

(∂φ)2 +
g

m!
φm + F 〈1|n] g

(m − 2)!
φm−2 −F 〈1|n]F 〈1|n]

where Field F 〈1|n] will be a Lagrangian multiplier.
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Good points for defining boundary Lagrangian:

Now the boundary terms can be calculated using Feynman
diagrams based on boundary Lagrangian
It is easier to calculate boundary of boundary. For
example, for the second deformation 〈2|n], the
path-integration of

∫
DφΛ

2 is

−1
2
φΛ

2

{
∂2 +

g
(m − 2)!

φm−2
}
φΛ

2

−F 〈1|n] g
(m − 3)!

φm−3φΛ
2 + JφΛ

2
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It is same integration as did for deformation 〈1|N] with
source shifted J̃ = J −F 〈1|n] g

(m−3)!φ
m−3.

After taking the δ2Z
δJαδF

|J,F→0 we get

1
2

(D−1)ασ
δO
δΦσ

+
1
2
δO
δΦσ

(D−1)σα

Doing LSZ reduction and simplify further, we will get

ε
(

1 + VD−1
0

)−1 δO
δΦ†ρ
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Applying to form factors:

The form factor is given by〈
0|Ô|1,2, ...,n

〉
As we have seen, the boundary part can be represented as〈

0|B̂|1,2, ...,n
〉

where B̂ is the boundary operator.
If we can find a theory and the deformation, such that
B̂ = Ô, the calculation of form factor becomes the
calculation of boundary!
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To calculate the boundary, we can take different
deformation which does not have boundary, thus it is easy
to get the full amplitude, and then easy to get the boundary
of the particular deformation
For this approach, the most tricky part is to find the right
theory!

Bo Feng Boundary of On-shell Recursion Relation



Thanks a lot for listening!!!
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