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Beyond amplitudes

e |ong-term goal: extend success of on-shell methods to
“partially or fully off-shell” quantities

e Partially off-shell: form factors (main focus today)

— MHV diagrams, BCFWV, generalised unitarity, computation of remainder

functions using symbols. .. (AB, Penante, Spence, Travaglini, Wen, Yang, Young; Bork,
Kazakov,Vartanov; Loebbert, Nandan, Sieg, Wilhelm, Yang; Gehrmann, Henn...)

° FU”)’ off-shell: correlation functions (Engelund-Roiban; AB, Penante, Travaglini, Young)

<O| 0(561)@(332) |O> ™~ ((371 - ZCi)Z)A0+7

e Anomalous dimensions 7 = eigenvalues of hamiltonian H* 5
(dilatation operator) of an integrable spin-chain!

e Connect Yangian (<=> integrability) of H with Yangian
symmetry of amplitudes (on-shell)



Form Factors in N=4

® more general objects than correlation functions, Wilson
loops, amplitudes: e.g. Wilson loops with operator
insertions, correlators of Wilson loops ...

® Form Factors:interpolate between correlators and
amplitudes, partially off-shell
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® Simplest example in QCD:

® Sudakov FF (n=2): exponentiation of IR divergences
In N=4 2-loop Sudakov FF first studied by Van Neerven



Appears in many interesting contexts

® Three-loop correction to electron g—2
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72 diagrams /@\ (Cvitanovic & Kinoshita '74)
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® wild oscillations between individual diagram

— (1.181241456...) (e, /7)°
(Laporta & Remiddi '96)

® resultis O(1l) => mysterious cancellations

® ¢" ¢ — hadrons (LEP):
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all orders in Kstrong, first order in Xem.
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Effective Lagrangians

® Higgs + multi-gluon amplitudes

e atlow My,

* coupling to gluons through a

proportional to the mass of the quark = top quark dominates < &

* for My <2m; integrate out top quark

® Effective Lagrangian description: Leg ~ HTrF?
e coupling oS , v = 246GeV  independent of m;
127v O O
* and Lo, ~ —5 HtrF? + —2 HtrDFDF + . ..

VM VM



Higgs + many gluon amplitudes

® carly applications of on-shell techniques to tree-level and

One-IOOP amplitUdeS (Badger, Dixon, Glover, Khoze; Badger, Glover, Risager,
Mastrolia, Williams)

Ftreeg(l_ 2~ 3+) — <12>3 Ftree2(1—|— 2+ 3—|—) — q4 q2 _ m2
trk e (23)(31) 7 "uF e [12][23][31] ° H

(Anastasiou, Melnikov; Harlander, Kilgore; Anastasiou, Duhr, Buehler, Herzog, Dulat,
Furlan, Mistlberger)

(Glover, Gehrmann,Jaquier & Koukoutsakis)

, finite top-mass corrections have been studied as
well (e.g. Neill; Dawson, Lewis, Zeng....)



Also integrating out the top-quarks or stringy effects can

. . . 3 3
induce new interaction terms such as:  tr(F”) or R
(Dixon, Shadmi; Dixon, Glover, Khoze; Broedel, Dixon; Neill)

® related to form factors via g = 0O limit

In N=4 SYM these operators sit in multiplets of operators
and hence form factors of different operators can be
related by supersymmetric Ward identities

(Chiral) stress tensor multiplet (protected, 1/2-BPS):

4
tr(X2) = tr(¢2y) 2> Lonshe ~ tr(F2s) + ...

® J-loop n=3 Higgs amplitude in N=4 captures maximally™ -
transcendental part of full QCD amplitude (g travagin, Yang)_( > o

Non-protected: tr(F3) , tr(DFDF) ,...

® Related to Konishi operator, K ~ tr(XX +YY + ZZ7)
Question: are there similarities between QCD & N=4?



Dilatation operator and Yangian

(At least) two ways to find anomalous dimensions ~

_ 1
2-point functions: (0| O(z1)O(x3)|0) ~ (21 = 23) )0

Form factors: (12...n]0(0)|0)

Under renormalisation 0L, =705 .

Find Z by demanding 1.) or 2.) are UV-finite!

® FF linear in Z, but has IR-divergences

Dilatation operator H5 = —uRdlodguiAB note log Z ~ % while Z&) ~ eiL

Next:
® derive 1.) and 2.) using on-shell methods (one-loop)

e ConnectYangian symmetry of H with that of amplitudes



2-point function vs. FF at one loop

2-P0int function in 50(6) and SU(2|3) SECTLOrS (AB, Penante Travaglini,

Young) tI’(. . (I)Az- (I)Bz'—l—l . )

= ZHMH

tI‘(. (I)Afb (I)B’

T )
Planar — only adjacent legs
L—-Ly L+ Ls

double-2-particle cuts, only divergence from i—@—i

. , 1 L Ly
in momentum space 2-loop integral = pole

. 1 L

in x-space, after FT: = -pole // renormalisation const. Z

¢
Reproduce known dilatation operators Z H; i1

(Minahan, Zarembo; Beisert)



® Alternatively calculate “minimal” Form Factors at one loop
(M.Wilhelm)

® simple 2-particle cuts
tr(. .. (I)Ai (I)Bv;+1 .. )

on-shell state — CID(pZ-)A; (I)(Z?z'Jrl)BgJrl

® Result: bubbles (UV divergent) and triangles (IR divergent)
® (Coefficients of bubbles give dilatation operator: Z H; i+q

® Gives physical interpretation of Zwiebel’s form of dilatation
operator; more on that in a moment...



Amplitude Yangian = Dilatation Operator Yangian

(AB, Heslop, Travaglini, Young)

® N=4 super Yang-Mills thought to be integrable

® Two different manifestations of Yangian symmetry on
e amplitudes

e dilatation operator

® Goal: derive the action of the Yangian on the one-loop
dilatation operator from the Yangian of amplitudes



Amplitude Yangian

® Fact 1: Tree-level super-amplitudes in N=4 SYM are
Ya.ngian invariant (Drummond, Henn, Plefka)

level-zero charges J* = E JiA —> superconformal algebra

level-one generators Q* = ZQ;@-
A A 1B 1C <y . L
- Qi = f&pJi”J; are non-local densities acting on particles i and j

level-one generators — dual superconformal algebra

dual superconformal symmetry of amplitudes (orummond, Henn,
Korchemsky, Sokatchev; AB, Heslop, Travaglini)



Dilatation operator Yangian

Fact 2: The complete one-loop dilatation operator is Yangian
nvariant up to boundary terms (Dolan, Nappi,Witten)

Q4 , H] ~ Ji* — Ji

o Equivalent to showing [Q%,, His] ~ J{* — J&
L
- H= ) Hi1, where Hi acts on sites | and 2
1=1

e When acting on spin chains with periodic boundary
conditions the boundary term vanishes

Next: derive Fact 2 from Fact 1



® Main tool: form of one-loop dilatation operator by
Zwiebel

® Building blocks of this formula:
* tree-level four-point superamplitude (Yangian invariant)

« tree-level minimal form factors (®...®[tr(P1...D1)(0)]0)

* represent the states on which the dilatation operator acts

® |dea: use known action of Yangian generators on amplitudes to
derive action on the dilatation operator



® States & single-trace operators
e A%state” corresponds to a single-trace operator Tr(®;--- @ )(z)

o Theletters &, : Fof yoABC glAB] jeA  pab
(and symmetrised covariant derivatives D acting on them)

e representation in terms of spinor helicity variables via the

map _ .
F o~ A
o~
¢~
Yo~ A
Foo~ A
D ~ A



® States in spinor-helicity language:
e combine A%:= (A\* \¥ n?)
e astate is a polynomial P(A1,...,Az)in theA’s

® Examples:

e half-BPS 22 o (nin?) (ndng) :F:Zir:i:netry
o Konishi ---eapcpd™o“" - < eapen(nin’)(nyny)

® P(Ai,....AL) = tree-level minimal form factor of the
corresponding operator (wikeim)



® One-loop form factor phase space integral...

[H121,2> - /dAgdA4A(1,2,3,4) [P(—4, _3) — (2;3)213(1,2)}]

o phase-space measure dA; := d*X\;d*\;d*n;

54 ( > >\i5\i)5(8) ( D i )‘m’i)
(12)(23) (34> <41>

e superamplitude A(1,2,3,4) =

e P(12) represents the operator/state |-

° P : 1
B -
:3 2

® .. gives Zwiebel’s dilatation operator

1 2 = | “integrated
[H12|1,2> — —;/ do / do 622¢P(1/,2/) — P(1,2)] form”
0

o N =Xicosh — ePhysind, N, = A\sinf + e®Aycosb (similarly for\.n ")

e one-loop phase space is a two-sphere! 0 , ¢



® Summarising:

e Unintegrated form:
[H12|1,2> _ / dAsdAg A(1,2,3,4) [P(—4, _3) — (22)213(1,2@

e integrated form (Zwiebel):

[]—hzl,?) = —% /%dqb /%de {e2i¢P(1’,2’) _ P(l,Q)ﬂ

® |t is not at all obvious to see how the relation

[QfQ» H12] ™ J{4 - J§4

is realised when acting on the integrated form

Amplitudes to the rescue!
N\ _




® Act with level-one generator p) on un-integrated form:

e from DHP (dual K)

Qij = <m37a51 T m37d5’2¢ - dj5152)piw + Qjacqz% — (i< J)

4 )
[ng,H12]|1,2> = ng /dA3dA4 A(1,2,3,4) [P(—4, —3) — ’I“P(l,Q)}

— /dAgdA4 A(1,2,3,4)[Q—4,—3P(—4,-3) —r Q12P(1,2)]

- /




® |ngredients of the general proof (for arbitrary states):

e after integration by parts (IBP), combination of generators acting
on amplitude is

Q12+ Q34 = Z Qij — (Q13 + Q14 + Q23 + Q24)
i<j
e > Qi = dual conformal K, which annihilates amplitude!
i<j
o (OQ13+ Qi1a+ 023+ 024) A =0 since action of Yangian generators on
amplitudes is compatible with cyclicity of amplitudes!

o the left-over terms combine after phase space integration into

(@ Hzl[12) = 201 - p)I1.2)




® Comments:

1. can check other commutators: e.g. if QO is the level-one
generator associated to supersymmetry ¢:

EQ127H12]|1,2> — 2(Q1—Q2)|1,28

2. not obvious to see this result on the “integrated form” of
Zwiebel’s formula (without amplitudes)!

3. Direct link between Yangian symmetry of amplitudes and
Yangian (almost)-invariance of dilatation operator H !!



2-loop FF’s of unprotected operators

Interesting to calculate form factors of tr(F?), tr(DF DF),.. in
QCD

N=4 SYM captures e.g. tr(F?)

In N=4 such operators are related to simpler operators
without derivates e.g. tr(X?), tr(X[Y,Z]), tr([X,Y]?)

Goals:
® extract universal building blocks, identify regularities

® compare with QCD (currently only known at 1-loop)



Form factors in SU(2|3) sector

® |n N=4 SYM local operators built from the following letters
form the largest sector closed under renormalisation

X = ¢127 Y = ¢237 4 = ¢317 wOA — ¢123,a

® Dilatation operator known up to 3 loops, length changing
interactions XY Z ~ 11 from 2 loops on (Beisert

dynamic spin chain)
® Focus on operators of (classical) dimension = 3:
e protected Ogpps = tr(X{Y,Z}) sameFFas tr(X?)
e unprotected Op = tr(X|[Y, Z]) <= Op = %tr(@bo‘wa)

operator mixing



some comments on the operators

starting with chiral primary operator tr(X?)
N\
. tr(Xq)
O +90p = Str(b) + g(X[Y, Z]) «3°

part of (chiral) stress tensor multiplet
Konishi K ~tr(XX +YY + Z7)
} (@)

2
g°N . Konishi
gtr(X]Y, Z]) — 162 tr(1he)) sl Anomaly

in the process of renormalisation/diagonalisation we will
recover these combinations




Matrix of form factors

In the following we will consider form falctors of the bare
operators (O = tr(X|[Y, Z]) and Op = §t1‘(¢a%) with

external states: - -
(X(1)Y(2)Z(3) (W(1)1(2)
It is natural to package them into a matrix of form factors

(Y|OF|0) (XY Z|OF|0)
F =
(Y|0pl0) (XY Z|Op|0)

Find the renormalisation constants 2 and dilatation
operator H from:

d
ZF =F"" H=—ur——>10gZ
dpr



Computation of form factors

® Uses on-shell recursion relations to find non-minimal tree-
level form factors needed in cuts and generalised unitarity

® Some expressions are simplified using the symbol of
transcendental functions

® Form factors have IR and/or UV divergences
® degree of transcendentality ranges from 4...0

® Start with most complicated FF: (XY Z|0g]0)
o attreelevel (XY Z|0g|0)? =1



Minimal (XY Z|0g|0) at one loop
A useful decomposition
Opps = tr(X{Y, Z})

Oofiset = —2tr(XZY)
contribution from BPS is known to 2 loops

OB — OBPS + Ooffset

offset contribution particularly simple: contains UV
divergences and terms of strictly less than maximal degree
of transcendentality ¢

|-loop cut

q |1

gives 5 (1°7, 2% 39" q) = 2§ X

+ 1 823 X ’A+cyclic(l,2,3)
e 1 X
UV divergent —Y b

=
a
o | )



One-loop anomalous dimension of Op

. . (1) o §) . o g2Ne_€7E " —2e¢
UV divergence is 7, v T —=alur) with a(un) = e ( MR)
Hence we find the 1-loop counterterm z{) = C a(un)
€
with this we find
VOB :_,URilOg(l—l—Zg) + ) = 12a
aluR B e—0

This is

® at this order inclusion of tr(11)-term not needed



Minimal (XY Z|0g|0) at two loops

® Use (iterated) 2-particle and 3-particle cuts

® 2-loop form factor of Oppg = tr(X{Y, Z}) is equal to
known FF of tr(X*) which is given by (AB, Penante, Travaglini, Wen)

142 ] 2 7
a9 i q :
5 ' maximal
F® = _ q 49 + + . o degree of
Oprs 'z_; o o g [— k ‘k transcen-
i+2 i+l i42i41 i dentality
i+ 1 i i+2 SN TS i
® Use (iterated) 2- and 3-particle cuts for Oggeer = —2tr(X ZY)
12 23 H12 | ;23
19 ¢ 2 .49 1¢ | 90

31 24 12 4 ) -
1 e ) (5.~
(1 23 14 30;;1 - 4 : ' 2d3) q

3 14
()



the combined result in terms of integral functions

q t+2 1+ 2

i+2i+1 3

i+ 1 L | f t+ 1

' i+l 1+1

vo"'l:
i+2

. it+2 1+2
+ : +4x é E é E l+cvchc(a i+ 1,i+2)

i+ 1

BPS form factor given by first line

numerators indicated by dotted lines
remaining integrals: UV divergent, transcendentality < 4

all integrals known (Gehrmann-Remiddi)



BDS-style remainder: Rgi{y s = R](;ZS + Rg?f)set

1
2

2 2) m (1m0 (1) (1)
Rgﬂ?set - F((Qoffset (6) o FOoffset (§F((90ffset _|_ FOBPS) (E) o f(2) (6) FOoffset (26)

Mixed UV/IR divergences cncel!

2 2
Rips = Fo) _(€)

Onps

(F(l) (6))2 — @) Fc(oléps(%) )

Ogps

All IR divergences have cancelled

Left over: (log of) 2-loop UV divergences: — - —
® only first term enters Z, second term is “spurious”

BPS contribution, transcendentality=4,

3 3 3 1
R](321g8 =3 Liy(u) — 1 Liy (—l;—v> ) log(w) Lig (—%) — Elogz(u) log”(v)

log*(u ¢

_ g32( ) {1og2(u) — 4log(v) log(w)} — §2 log(u)[5log(u) — 2log(v)]
(3 7

— =log(u) — — (4 + perms (u, v, w)
: 16 u:%vvzs%awzsi;,u‘i‘v‘i‘w:l

q q q



18 —
® Novel Part: RE?H-’)SGJC — ™ ZRoffset i

® where we have ordered terms by transcendentality:

1 VW 2

R(()?f)set;g = 2 [Lig(u) + Liz(1 — u)] ~ 3 log?(u) log 1= ) + 3 log(u) log(v) log(w)

2
+3 (3 + 2¢2log(—¢%) + perms (u, v, w)
R = —12 [L12(1 — ) + Lis(1 — v) + Lis(1 — w)} — 2log?(uvw) + 36(s
Rf)?f)set 1 —12 log(uvw) — 36 lOg( )

Rg?f)set;o =126

® Since transcendentality < 4 only classical polylogs

® Next: Intriguing relation to FF densities in SU(2) sector




Unexpected relation with SU(2) sector

2-loop form factor remainders of tr(XXXYX....YXY) are
sums of 3 independent remainder densities (Loebbert, Nandan, Sieg,

Wilhelm, Yang) R(Q) XXX R(Q) XY X R(Q) YXX
(B ) xxxr (B ) xxyr (Bi7)xxy
“zero shuffle”, “single shuffle”, “double shuffle”,
transcendentality transcendentality transcendentality
=4, BPS upto 3 up to 2

each depends on 3 adjacent momenta

Sii+1 Si+1i42 Sii+2
U = U = Wi =
Sii+1i+2 Sii+1i+2 Sii+1i+2

intriguing relation between transcendentality and “shuffling”



® We found the following relations to the form factor in the
SU(2|3) sector

XY X
§R$1::))n-BPS;3 = z (Ra('2))xxY‘3 + 6Gs,

%Rg))n-BPSQ - Z ’(R(?))XYX o (RS2))YXX. + 5772 y

i JXXy XXY ||y
S3

12 [ 2\ XY X (2)\Y XX

§Rnon-BPS:l - _Z (Rz )XXY o (Rx )xxy. L

1 ] XY X YXX]
E'Rx(?o)n-BPS;O - Z _(Rz(z))xxy o (Rgz))xxy
Sy ’

® Sum over permutations of (u,v,w)
® Universality of form factors across different sectors!?

® No obvious explanation like Ward identities



Subminimal FF (¥¢|05[0) at two loops

Recall Op = tr(X|Y, Z])
“state shorter than operator”
Zero at tree-level & 1-loop; at 2 loops: IR finite / UV divergent

Induces “length changing interaction” in operator mixing

l{.l.'l

3-particle cut only!! , <75 l
P 4 Qo B
3 N -)\”‘
; 1 2(3¢ —2) 1
8, _
2750 = g e x"‘@<2

6 a’
UV-divergence: <21>E (5R)

JJI')S

Result F5(1




Non-minimal FF (XY Z|Or|0) at one loop

Recall Op = %tf(¢¢)

vanishes at tree level. At 1-loop IR finite/UV divergent

cuts
q
2 I ‘ . q i 39 1"
q
12 g2 gt i 9 2
result £5)(1#",2¢" 3%";¢) = 2[ —4 x >O< + 2(s13 + S23) X
1 3
3 21
q 1 q 1
— 2893 X A + 812823 X + (:y(:li(:(l,2,3)] .
3 2 3 2
o, (=s12)7E : :
=2 i-20 2Lio(1 —u) + logulogv| + (2 + cyclic(1,2,3)
e(1 — 2¢

UV-divergence: gga(uR)
€



Minimal FF  (4¢|Or[0) at two loops

o Write Op = Ctr(4) + gtx(X[V Z) — gix(X[Y. Z]) = Opps — 9O

® |R divergent at 1 & 2 loops/UV divergent at 2 loops

2 7123 7123 ) _— | . l
° F((,)B)PS/(W ,2¢ )= (21)x 4 s} <l + 1 Sa <<
i

® part of stress tensor multiplet (van Neerven)

5
) ] 3e — 1
() _gOB Contribution:(_g)x Fc()z)(lwm,me;q) _ 1 2(3e —2) w
? [12] 2¢ -1 ,
3

® clean separation between UV/IR divergences

® UV-divergence: —(21) §a2 (uR)
€



The two-loop dilatation operator
(<¢¢0FO> <XYZ(9FO>) (ZFF ZFB> (<¢¢0F|O> <XYZ|(9FO>>

(¥|0pl0) (XY Z|Op|0) (Y|Opl0) (XY Z|Og|0) .

z F

® demanding that the left-hand side is UV finite, and after
removing universal IR divergences we find

zgt zgpP

A\ /\

a®(ur) & —a(pr) g
log(2) = ( 2 ) +O(a(pr)’)
— 2 EE (5R)% a(ﬂR)% — @2(/“%)%

® from which we get the dilatation operator up to 2 loops

5 2a° —a g
H = lime_o [ — prm —log(2)] =12
HE —2 % a— 6a?



Eigenvalues of H (anomalous dimension) up to 2 loops are:

very =0 , vk = 12a — 48a* + O(a?)

the corresponding diagonal operators are

N
Opps' = Op +90p , Ok =0p — 5?0}7
in agreement with known results, where O is a
descendant of the Konishi operator (which has the same

anomalous dimension)
2-loop FF of (XY Z|Opps/|0) proportional to (X X g™ [tr(X?)|0)

2-loop remainders of Op and Of differ by terms with
transcendentally < 3



Conclusions

® C(Calculation of one- and two-loop dilatation operator in
N=4 SYM using on-shell methods

® ?2-point functions vs. form factors

® Relation between amplitude and dilatation operator
Yangians.What about higher loops?! Zwiebel at 2 loops!?

® ?-loop Form Factors in SU(2|3) sector

® transcendentally O...4, operator mixing, unexpected
similarities with SU(2) sector (universal building blocks?),
2-loop dilatation operator

® To do:longer operators, other operators like tr(F?)
comparison with QCD, ...



