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The many uses of form factors



• Long-term goal: extend success of on-shell methods to 
“partially or fully off-shell” quantities

• Partially off-shell: form factors (main focus today)

- MHV diagrams, BCFW, generalised unitarity, computation of remainder 
functions using symbols… (AB, Penante, Spence, Travaglini, Wen, Yang, Young; Bork, 
Kazakov, Vartanov; Loebbert, Nandan, Sieg, Wilhelm, Yang; Gehrmann, Henn…)

• Fully off-shell: correlation functions (Engelund-Roiban; AB, Penante, Travaglini,Young)

• Anomalous dimensions    = eigenvalues of hamiltonian         
(dilatation operator) of an integrable spin-chain! 

• Connect Yangian (<=> integrability) of H with Yangian 
symmetry of amplitudes (on-shell)

Beyond amplitudes
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• more general objects than correlation functions, Wilson 
loops, amplitudes: e.g. Wilson loops with operator 
insertions, correlators of Wilson loops ...

• Form Factors: interpolate between correlators and 
amplitudes, partially off-shell 

• Simplest example in QCD:

• Sudakov FF (n=2): exponentiation of IR divergences         
In N=4 2-loop Sudakov FF first studied by Van Neerven

Form Factors in N=4
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Appears in many interesting contexts

72 diagrams 
like = (1.181241456...) (�e.m./⇥)

3 (Cvitanovic & Kinoshita ’74)

(Laporta & Remiddi ’96) 

hadronic electromagnetic currente+ e− → hadrons (X)
all orders in αstrong,  first order in αe.m.
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•  Three-loop correction to electron g−2 

• wild oscillations between individual diagram

• result is O(1)  => mysterious cancellations

• e+ e−   → hadrons (LEP): 



• Higgs + multi-gluon amplitudes 

• at low MH , dominant Higgs production                                            
at the LHC through gluon fusion 

• coupling to gluons through a fermion loop   

• proportional to the mass of the quark ⇒ top quark dominates

• for MH  < 2 mt   integrate out top quark

• Effective Lagrangian description: leading

• coupling                                      independent of mt

• and subleading
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Effective Lagrangians 



Higgs + many gluon amplitudes

• Leading order

• early applications of on-shell techniques to tree-level and 
one-loop amplitudes (Badger, Dixon, Glover, Khoze; Badger, Glover, Risager, 
Mastrolia, Williams)

• This has been pushed in QCD to 2 & 3-loop order for 2 
gluons (Anastasiou, Melnikov; Harlander, Kilgore; Anastasiou, Duhr, Buehler, Herzog, Dulat, 

Furlan, Mistlberger),                                                               
and to 2 loops for 3 partons (Glover, Gehrmann,Jaquier & Koukoutsakis) 

• Subleading, finite top-mass corrections have been studied as 
well (e.g. Neill; Dawson, Lewis, Zeng….)

F tree
trF 2(1�, 2�, 3+) =

h12i3

h23ih31i , F tree
trF 2(1+, 2+, 3+) =

q4

[12][23][31]
, q2 = m2

H



• Also integrating out the top-quarks or stringy effects can 
induce new interaction terms such as:                            
(Dixon, Shadmi; Dixon, Glover, Khoze; Broedel, Dixon; Neill)

• related to form factors via q → 0 limit

• In N=4 SYM these operators sit in multiplets of operators 
and hence form factors of different operators can be 
related by supersymmetric Ward identities

• (Chiral) stress tensor multiplet (protected, 1/2-BPS): 

• 2-loop n=3 Higgs amplitude in N=4 captures maximally 
transcendental part of full QCD amplitude (AB, Travaglini, Yang)

• Non-protected:

• Related to Konishi operator,                                    
Question: are there similarities between QCD & N=4?

tr(F 3
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tr(F 3) , tr(DFDF ) , . . .
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Dilatation operator and Yangian

• (At least) two ways to find anomalous dimensions     

• 1.) 2-point functions:

• 2.) Form factors:

• Under renormalisation operators mix: 

• Find Z by demanding 1.) or 2.) are UV-finite!

• FF linear in Z, but has IR-divergences

• Dilatation operator

• Next: 

• derive 1.) and 2.) using on-shell methods (one-loop)

• Connect Yangian symmetry of H with that of amplitudes
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h0| O(x1)Ō(x2) |0i ⇠ 1

((x1 � x2)2)�0+�

h12 . . . n|O(0)|0i
OA

ren = ZA
BOB

bare

HA
B = �µR

d logZA
B

dµR
note logZ ⇠ 1

✏
while Z(L) ⇠ 1

✏L



2-point function vs. FF at one loop

• 2-point function in SO(6) and SU(2|3) sectors (AB, Penante Travaglini, 

Young) 

• Planar → only adjacent legs

• double-2-particle cuts, only divergence from

• in momentum space 2-loop integral        pole

• in x-space, after FT:      -pole // renormalisation const. Z

• Reproduce known dilatation operators                       
(Minahan, Zarembo; Beisert)
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�(x) := �⇡2�D
2

4⇡2
�
⇣D
2
� 1

⌘ 1

(�x2 + i")
D
2 �1

, (2.6)

is the scalar propagator in D dimensions. Note that I(x12) has UV divergences arising
from the regions z ! x1 and z ! x2.

Because the MHV diagram method is formulated in momentum space, it is useful to
recast I(x12) as an integral in momentum space. Doing so one finds that
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where L := L1 + L2. The integral over L1 and L3 is the product of two bubble integrals
with momenta as in Figure 2, which are separately UV divergent.

Figure 2: The double-bubble integral relevant for the computation of I(x12).

These divergences arise from the region L1, L3 ! 1. The leading UV divergence of (2.7)
is equal to

I(x12)|UV =
1

✏
· 1

8⇡2
· 1

(4⇡2x2
12)

2
. (2.8)

3 The one-loop dilatation operator from MHV rules

In this section we compute the UV-divergent part of the coe�cients A, B, C defined in
(2.2), representing the trace, permutation and identity flavour structures, respectively. In
order to compute these three coe�cients, it is su�cient to consider one representative
configuration for each one. We will choose the following helicity (or SU(4)) assignments:

ABCD A0B0C 0D0

Tr 1234 2413
P 1213 3424
1l 1213 2434

(3.1)

There is a single MHV diagram to compute, represented in Figure 3. It consists of one
supersymmetric four-point MHV vertex,
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• Alternatively calculate “minimal” Form Factors at one loop 
(M. Wilhelm)

• simple 2-particle cuts

• Result: bubbles (UV divergent) and triangles (IR divergent)

• Coefficients of bubbles give dilatation operator: 

• Gives physical interpretation of Zwiebel’s form of dilatation 
operator; more on that in a moment…

A

X
Hi,i+1

tr(. . .�Ai �Bi+1 . . .)

�(pi)A0
i

�(pi+1)B0
i+1

on-shell state →

… …



• N=4 super Yang-Mills thought to be integrable

• Two different manifestations of Yangian symmetry on 

• amplitudes

• dilatation operator

• Goal: derive the action of the Yangian on the one-loop 
dilatation operator from the Yangian of amplitudes

Amplitude Yangian = Dilatation Operator Yangian
(AB, Heslop, Travaglini, Young)



• Fact 1:   Tree-level super-amplitudes in N=4 SYM are 
Yangian invariant  (Drummond, Henn, Plefka)

• level-zero charges                      ⟶ superconformal algebra

• level-one generators 

-                              are non-local densities acting on particles i and j

• level-one generators ⟶ dual superconformal algebra     

• dual superconformal symmetry of amplitudes (Drummond, Henn, 
Korchemsky, Sokatchev; AB, Heslop, Travaglini)

QA
ij := fA

CBJ
B
i JC

j

QA =
X

i<j

QA
ij

JA =
X

JA
i

Amplitude  Yangian



• Fact 2:   The complete one-loop dilatation operator is Yangian 
invariant up to boundary terms (Dolan, Nappi, Witten)

• Equivalent to showing    

- H =        Hii+1 ,  where  H12  acts on sites 1 and 2

• When acting on spin chains with periodic boundary 
conditions the boundary term vanishes

• Next: derive Fact 2 from Fact 1 

Dilatation operator  Yangian

LX

i=1

[QA , H] ⇠ JA
1 � JA

L

[QA
12 , H12] ⇠ JA

1 � JA
2



• Main tool: form of one-loop dilatation operator by 
Zwiebel          

•  Building blocks of this formula:

• tree-level four-point superamplitude (Yangian invariant)

• tree-level minimal form factors

• represent the states on which the dilatation operator acts

• Idea: use known action of  Yangian generators on amplitudes to 
derive action on the dilatation operator

h�1 . . .�L|tr(�1 . . .�L)(0)|0i



• States & single-trace operators

• A “state” corresponds to a single-trace operator                             

• The letters      :                                                            
(and symmetrised covariant derivatives D acting on them)

• representation in terms of spinor helicity variables via the 
map 
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• States in spinor-helicity language: 

• combine 

• a state is a polynomial                      in the    ’s

• Examples: 

• half-BPS

• Konishi    

•                     = tree-level minimal form factor of the  
corresponding operator (Wilhelm)    
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• One-loop form factor phase space integral… 

• phase-space measure                                 

• superamplitude 

• P(1,2)   represents the operator/state

•   

• … gives Zwiebel’s dilatation operator

•                                                                  (similarly for       ) 

• one-loop phase space is a two-sphere!  
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Figure 1: In Figure (a) we show the diagram calculating the cut in the q2-channel of
the Sudakov form factor (2.3). The cross denotes a form factor insertion. A second
diagram with legs 1 and 2 swapped has to be added and doubles up the result of the first
diagram. The result of this cut is given by (twice) a cut one-mass triangle function,
depicted in Figure (b).

The q2-cut of the form factor (i.e. its discontinuity in the q2-channel) is obtained
from the diagram on the left-hand side of Figure 1, whose expression is3

F (1)(q2)
∣

∣

q2−cut
= 2

∫

dLIPS(l1, l2; q) F
(0)(l1, l2; q)A

(0)
(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

,

(2.5)
where the Lorentz invariant phase space measure is

dLIPS(l1, l2; q) := dDl1 d
Dl2 δ

+(l21)δ
+(l22)δ

D(l1 + l2 + q) , (2.6)

and q is given in (2.4). The tree-level component amplitude appearing in (2.5),
A(0)

(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

, can be extracted from Nair’s superamplitude
[18]
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where λn+1 ≡ λ1. The result is

A(0)
(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

=
⟨l1l2⟩⟨12⟩
⟨l21⟩⟨2l1⟩

. (2.8)

The other quantity appearing in (2.5), F (0) is the tree-level expression for the form
factor (2.3), which is trivially equal to 1. Thus, we get

F (1)(q2)
∣

∣

q2−cut
= 2

∫

dLIPS(l1, l2; q)
⟨12⟩⟨l1l2⟩
⟨2l1⟩⟨l21⟩

= −2 q2
∫

dLIPS(l1, l2; q)
1

(l2 + p1)2
.

(2.9)

3In this and the following formulae we omit a power of the ’t Hooft coupling, defined as a :=
(g2N)/(16π2)(4πe−γ)ϵ. Note that this is 1/2 the ’t Hooft coupling defined in [12].
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• Summarising: 

• Unintegrated form: 

• integrated form (Zwiebel): 

• It is not at all obvious to see how the relation 

H12|1, 2i =
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is realised when acting on the integrated form

Amplitudes to the rescue!



• Act with level-one generator p(1) on un-integrated form:

• from DHP (dual K)

r :=
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• Ingredients of the general proof (for arbitrary states): 

• after integration by parts (IBP), combination of generators acting 
on amplitude is                                                                 

•             = dual conformal K, which annihilates amplitude!

• (Q13 +   Q14 + Q23 + Q24) A = 0 since action of Yangian generators on 
amplitudes is compatible with cyclicity of amplitudes!

• the left-over terms combine after phase space integration into 

X

i<j

Qij

Q12 +Q34 =
X

i<j

Qij � (Q13 +Q14 +Q23 +Q24)

[Q12, H12]|1, 2i = 2(p1 � p2)|1, 2i



• Comments: 

1. can check other commutators: e.g.  if  Q is the level-one 
generator associated to supersymmetry q: 

2. not obvious to see this result on the “integrated form” of 
Zwiebel’s formula (without amplitudes)!

3. Direct link between Yangian symmetry of amplitudes and 
Yangian (almost)-invariance of dilatation operator H !!

[Q12, H12]|1, 2i = 2(q1 � q2)|1, 2i



2-loop FF’s of unprotected operators

• Interesting to calculate form factors of tr(F3), tr(DF DF),.. in 
QCD

• N=4 SYM captures “most complicated part”, e.g. tr(F2)

• In N=4 such operators are related to simpler operators 
without derivates e.g. tr(X2), tr(X[Y,Z]), tr([X,Y]2)

• Goals: 

• extract universal building blocks, identify regularities

• compare with QCD (currently only known at 1-loop)



Form factors in SU(2|3) sector

• In N=4 SYM local operators built from the following letters 
form the largest sector closed under renormalisation

• Dilatation operator known up to 3 loops, length changing 
interactions                      from 2 loops on (Beisert 
dynamic spin chain)

• Focus on operators of (classical) dimension = 3:

• protected                                        same FF as 

• unprotected

X = �12, Y = �23, Z = �31,  ↵ =  123,↵

XY Z ⇠   

OBPS = tr(X{Y, Z})
OB = tr(X[Y, Z]) OF =

1

2
tr( ↵ ↵)

operator mixing

tr(X3)



some comments on the operators

• starting with chiral primary operator 

• part of (chiral) stress tensor multiplet

• Konishi 

• in the process of renormalisation/diagonalisation we will 
recover these combinations

tr(X2)

tr(X ↵)

OF + gOB =
1

2
tr(  ) + g(X[Y, Z])

gtr(X[Y, Z])� g2N

16⇡2
tr(  ) Konishi 

Anomaly

Q↵

Q↵

(Q)2
K ⇠ tr(X̄X + Ȳ Y + Z̄Z)



Matrix of form factors

• In the following we will consider form factors of the bare 
operators                           and                            with 
external states: 

• It is natural to package them into a matrix of form factors

• Goal: calculate the form factor matrix to 2-loop order

• Find the renormalisation constants    and dilatation 
operator  H  from:

hX̄(1)Ȳ (2)Z̄(3)| h ̄(1) ̄(2)|
OB = tr(X[Y, Z]) OF =

1

2
tr( ↵ ↵)

F :=

0

@
h ̄ ̄|OF |0i hX̄Ȳ Z̄|OF |0i

h ̄ ̄|OB |0i hX̄Ȳ Z̄|OB |0i

1

A

ZF = Fren

Z

H = �µR
d

dµR
logZ



Computation of form factors

• Uses on-shell recursion relations to find non-minimal tree-
level form factors needed in cuts and generalised unitarity

• Some expressions are simplified using the symbol of 
transcendental functions

• Form factors have IR and/or UV divergences

• degree of transcendentality ranges from 4…0

• Start with most complicated FF: 

• at tree level

hX̄Ȳ Z̄|OB |0i
hX̄Ȳ Z̄|OB |0i(0) = 1



Minimal                   at one loop

• A useful decomposition

• contribution from BPS is known to 2 loops

• offset contribution particularly simple: contains UV 
divergences and terms of strictly less than maximal degree 
of transcendentality

• 1-loop cut 

• gives 

hX̄Ȳ Z̄|OB |0i

OB = O
BPS

+O
o↵set

OBPS = tr(X{Y, Z})
O

o↵set

= �2tr(XZY )

UV divergent



One-loop anomalous dimension of 

• UV divergence is                               with

• Hence we find the 1-loop counterterm 

• with this we find

• This is in agreement with the known one-loop anomalous 
dimension of the Konishi multiplet

• at this order inclusion of            -term not needed

OB

F (1)
OB

���
µR,UV
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✏
a(µR) a(µR) :=

g2Ne�✏�E
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log(1 + Z(1)
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Minimal                   at two loops

• Use (iterated) 2-particle and 3-particle cuts

• 2-loop form factor of                                   is equal to 
known FF of              which is given by (AB, Penante, Travaglini, Wen) 

• Use (iterated) 2- and 3-particle cuts for 

•  

hX̄Ȳ Z̄|OB |0i

OBPS = tr(X{Y, Z})
tr(X3)

O
o↵set

= �2tr(XZY )

maximal
degree of
transcen-
dentality



• the combined result in terms of integral functions

• BPS form factor given by first line

• numerators indicated by dotted lines

• remaining integrals: UV divergent, transcendentality < 4

• all integrals known (Gehrmann-Remiddi)



• BDS-style remainder:

• Mixed UV/IR divergences cancel!

• All IR divergences have cancelled

• Left over: (log of) 2-loop UV divergences: 

• only first term enters Z, second term is “spurious” 

• BPS contribution, transcendentality=4, classical polylogs
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• Novel part: 

• where we have ordered terms by transcendentality:

• Since transcendentality < 4 only classical polylogs

• Next: Intriguing relation to FF densities in SU(2) sector
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Unexpected relation with SU(2) sector

• 2-loop form factor remainders of tr(XXXYX….YXY) are 
sums of 3 independent remainder densities (Loebbert, Nandan, Sieg, 
Wilhelm, Yang)

• each depends on 3 adjacent momenta

• intriguing relation between transcendentality and “shuffling”

“zero shuffle”,
transcendentality
= 4, BPS 

“single shuffle”,
transcendentality
up to 3 

“double shuffle”,
transcendentality
up to 2 



• We found the following relations to the form factor in the 
SU(2|3) sector

• Sum over permutations of (u,v,w)

• Universality of form factors across different sectors?

• No obvious explanation like Ward identities



• Recall

• “state shorter than operator”

• Zero at tree-level & 1-loop; at 2 loops: IR finite / UV divergent

• Induces “length changing interaction” in operator mixing

• 3-particle cut only!!

• Result

• UV-divergence: 

Subminimal FF                 at two loopsh ̄ ̄|OB |0i

OB = tr(X[Y, Z])

h21i6
✏

a2(µR)

g



Non-minimal FF                 at one loop

• Recall

• vanishes at tree level.  At 1-loop IR finite/UV divergent

• cuts

• result

• UV-divergence:
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F (2)
OBPS0 (1

 ̄123

, 2 ̄
123

) = h21i⇥

Minimal FF                 at two loops

• Write

• IR divergent at 1 & 2 loops/UV divergent at 2 loops

•    

• part of stress tensor multiplet                              

•         contribution:(-g)x

• clean separation between UV/IR divergences

• UV-divergence:

h ̄ ̄|OF |0i

OF =
1

2
tr(  ) + gtr(X[Y, Z])� gtr(X[Y, Z]) = OBPS0 � gOB

(van Neerven)
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The two-loop dilatation operator

• demanding that the left-hand side is UV finite, and after 
removing universal IR divergences we find

• from which we get the dilatation operator up to 2 loops
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• Eigenvalues of H (anomalous dimension) up to 2 loops are:

• the corresponding diagonal operators are

• in agreement with known results, where        is a 
descendant of the Konishi operator (which has the same 
anomalous dimension)      

• 2-loop FF of                           proportional to

• 2-loop remainders of         and        differ by terms with 
transcendentally < 3

�BPS0 = 0 , �K = 12a� 48a2 +O(a3)

OK

hX̄Ȳ Z̄|OBPS0 |0i
OB OK

hX̄X̄g+|tr(X2)|0i

OBPS0 = OF + gOB , OK = OB � gN

8⇡2
OF



Conclusions

• Calculation of one- and two-loop dilatation operator in 
N=4 SYM using on-shell methods

• 2-point functions vs. form factors

• Relation between amplitude and dilatation operator 
Yangians. What about higher loops? Zwiebel at 2 loops?

• 2-loop Form Factors in SU(2|3) sector

• transcendentally 0…4, operator mixing, unexpected 
similarities with SU(2) sector (universal building blocks?), 
2-loop dilatation operator

• To do: longer operators, other operators like tr(F3) 
comparison with QCD, …


