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Quantum computers are: a) good for Fourier
Transform-based algorithms ceene

b) (obviously) good for avoiding the sign problem

no-coherence ?

c) most probably bad for "Golf Course”
(=Random Energy=Glassy) systems
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Sign Problem
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We are asked to compute averages
over configurations s

>, e "Y0(s)
<O> — Zs o W(s)

and W = Wg+iW; is notreal.
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e Quantum mechanics / Field Theory with real
time or d-terms

e Hubbard-Stratonovich decoupling W =1, — 5> C?

2

7 — Ze o(s)=b>C2%2 __ Z/d)‘ e (s)+VbAa C’a—%l

The Hubbard-Stratonovich transformation above introduces an

imaginary term W; = /|b| >_ A, C, in the repulsive case b < 0.
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In solid state theory the sign problem is the main

obstacle for giving a numerical answer to very

urgent questions.

e.g. Hubbard model H = ftz<ij>_n((:>ro(:jg +he)+ U, nigpngg

(3
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For definiteness: W; = ih;M(s)

where M (s) is an integer-valued:

Z = Z Zyy e~ hiM

S = 3 ) )

e Field theory with 9 terms. M = a topological number tHooft, Haldane,...
e Fermion systems: M = Fermion world-line crossings muramatsu et al
e Hubbard model: M = the number of up Hirsch spins

[with a variant of Hubbard-Stratonovich transformation, see: DeForcrand, Batrouni]
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Also: If we knew how to deal with the sign problem, we would
know how to compute numerically averaged disordered models

using identities of the form

. e . n _
% = —hm)\A,OO 16T = _llmA%OO Zcfo(il)n%xn !
T 197 - e P Ny
(E) = —Z-1 g— = —hm)\—mo% > ( n) ar
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In practice, what we can do is to compute
(0) = (e 1 Ola ;. where (e)g = > e WRG)

(e ™) S e VRE)

Note that Monte Carlo is only really good to calculate (O) for O
non-exponential

and not for
_ (7B O
(0) = (e=B)a

if, e.g. B is exponential in N
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An example:

Non-interacting spins in a magnetic field .z + i3
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(@+p) @n"

@+ =3, ey ¢

(- =3, MNLLT)' (—1) gV Tp"
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(@+p) @»”

put z =  and use Stirling:

(g +p)N = [ do eNlwle—(=a)In(-a)+(1-2)lng+elnp]

saddle: (12) = (2) € [0.1]
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(@+p) @»”

put z = & and use Stirling:

<q p f dx eN[—;tlna:—(l z) In(1—z)+(1—2z) In ¢+z In p+imz]

saddle: (12*) = - (g) not € [0,1]
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(a+p) @»”

Monte Carlo Sampling of the same problem:

M) e =

(¢ — p)N -~ Zr {eNS(T)+(,A\"\;\»_>' " ,/(,.)} (_l)qufrpr who wins?
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Quantum Annealing of Hard
Problems
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H({o}) =E{o*})+T ) of =Ho+TV (1)

=1
Staying in the lowest level without de-railing requires speed A2
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Fat and small versus thin and tall...
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The speed is directly given by the minimal gap.

Adiabatic Quantum Computation is Equivalent to Standard Quantum
Computation anaronov et al)
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If you know where the crossing takes place, you gain a square root

-2
speed ~ A2 timc~A_2 time’~ A . A =\ time

if you know where the crossing is ...

I
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Grover
Finding a needle in a haystack, if you know its color...

1.
1_‘ 1
0 O
0
0 0 1. JRUT B |

WHERE IS THE -1?

From N to v/N, non-trivial yet non miraculous...
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The Random Energy Model.

Energies are independent Gaussian random numbers.

An idealization of the p (> 2)-spin model...

E({o*}) = limpsoo ), iy Jityenip 05, 05
K-SAT...
E({c*}) = > quuse o Ca C,, = 0 iff the clause « is satisfied.

and many other glass models.
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The Random Energy Model.
Energies are independent Gaussian random numbers.

each basin is schematised by a single configuration
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REM ’unfrozen’

12+ f=-T(In(2))"%-1/4T Quantum Paramagnet
=T In(2)

1t -TIncosh(I'/T) |

08 | ]

Glass transition

06 F-------"--"--"“---“"------- b
15%order quantum

04 L transition

REM ’frozen’

02t f=(In2)" 1
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r
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To compute the gap, we just have to diagonalise:

H|p) = [ Eo|SG)(SG| = TN|QP)(QP[]|¢) = A|¢)

The gap is exponentially small

Amin(N) = 2|E,|27N/?
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Generic Random First Order random p > 2-spin, Potts, etc etc
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Suzuki-Trotter + Replica Approach

Order parameter: ¢"¥(t,t')

A replicated closed polymer in a random potential!
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One-step RSB ansatz

J. Kurchan (LPS-ENS) Quantum annealing and glass problems 32/36



A two-time instanton Approach

tl 2 3
a1 (1.2)) (1,1) (1,2)
2
(1,1) (1,2) (1.1) (1.2)
3

@n

@n

d
qr) , q )

quantum spin—glass
paramagnet
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In general, the Gap is (minus) the exponential of the free-energy cost
of a two-tme wall

It is hence the exponential of a negative extensive quantity

One can easily recover the result of the REM
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In conclusion, this class of hard problems
remains exponentially hard in Quantum
Annealing

Not surprising: you do not thermalize a glass in
real life by making it quantum.
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Sign problem is more mysterious

it is understandably not hard for a quantum
computer, but does not seem to require
coherence (?)
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