Fragmentation of Filamentary Molecular Clouds Threaded by Perpendicular Magnetic Field

Taurus Palmeirim+ 13 250 cont. + Magnetic Field (Polarization)

B direction matters.

submitted to ApJ

Tomoyuki Hanawa (U. Chiba) Takahiro Kudo (U. Nagasaki) Kohji Tomisaka (NAOJ)

Magnetic Field is Perpendicular to the Main Filaments. Striations (sub filaments) are parallel to B.

Serpens South (K-band) Sugitani+11

Serpens South (K-band) Sugitani+11

Cloud cores are formed through fragmentation of the main filament.

5E+21 1E+22 1.5E+22 2E+22 2.5E+22 3E+22 3.5E+22 4E+22 4.5E+22

Vela C Kusune+16

Fragmentation of a Filamentary Cloud is a *Classic* Problem.

ACTA ASTRONOMICA Vol. 13, (1963) No 1

1963

a half century ago!

On the Gravitational Instability of Some Magneto-hydrodynamical Systems of Astrophysical Interest

Part III

by

J. S. Stodółkiewicz

Stodolkiewcz 63, Ostriker 64, Nagasawa 87, Nakamura+93, 95, Hanawa+93, Matsumoto+94, Fiege & Pudritz 00

Equilibrium model: Longitudinal Magnetic Field

cf. Nagasawa 87 Nakamura+ 93, 95

1**D**

symmetric around the axis

$$\rho(r) = \rho_0 \left(1 + \frac{r^2}{8H^2} \right)^{-2}$$
$$B_z(r) = B_0 \left(1 + \frac{r^2}{8H^2} \right)^{-1}$$
$$4\pi G \rho_0 H^2 = c_s^2 + \frac{B_0^2}{8\pi\rho_0}$$

supported in part by magnetic fields. Stodolkiewicz 63

 B_{ϕ} : hoop stress cf. Fiege & Pudritz 00

Unstable against fragmentation Jeans wavelength several times of the filament diameter Stability of Magnetized Sheet Cloud (Nakano & Nakamura 78, Nakamura+ 91, Nagai+98)

 $B > 2\pi \sqrt{G}\Sigma$ stable

B suppresses fragmentation

always unstable (supercritical)

fragmentation no magnetic force parallel to B

B direction matters.

displacement

X

B is bent.

may be subcritical

1. Magnetic Force is Perpendicular to **B**.

2. Critical Mass, $B_{\rm cr} = 2\pi \sqrt{G \Sigma}$

displacement ξ B_{\parallel} unchanged

always supercritical

Idealized Equilibrium Model

Equilibrium

$$\rho_0 = \rho_c \left(1 + \frac{x^2 + y^2}{8H^2} \right)^{-2},$$

$$H^2 = \frac{c_s^2}{4\pi G\rho_c},$$

$$\boldsymbol{B}_0 = B_0 \boldsymbol{e}_x,$$

$$\begin{split} \text{Ideal MHD Eq.} \\ \frac{\partial \rho}{\partial t} &= -\boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) \,, \\ \frac{\partial \boldsymbol{v}}{\partial t} &= -c_s^2 \boldsymbol{\nabla} \ln \rho - \boldsymbol{\nabla} \psi + \boldsymbol{j} \times \boldsymbol{B}, \\ \frac{\partial \boldsymbol{B}}{\partial t} &= \boldsymbol{\nabla} \left(\boldsymbol{v} \times \boldsymbol{B} \right), \\ \boldsymbol{j} &= \frac{\boldsymbol{\nabla} \times \boldsymbol{B}}{4\pi}, \\ \Delta \psi &= 4\pi G \rho. \end{split}$$

x: magnetic field, *z*: filament axis c_s : sound speed

$$\begin{split} \rho &= \rho_0 + \delta \varrho(x, y) e^{\sigma t} \cos kz, \\ \boldsymbol{\xi} &= e^{\sigma t} \left[\xi_x(x, y) \cos kz \boldsymbol{e}_x + \xi_y(x, y) \cos kz \boldsymbol{e}_y + \xi_z(x, y) \sin kz \boldsymbol{e}_z \right], \\ \boldsymbol{B} &= B_0 \boldsymbol{e}_x + e^{\sigma t} \left[b_x(x, y) \cos kz \boldsymbol{e}_x + b_y(x, y) \cos kz \boldsymbol{e}_y + b_z(x, y) \sin kz \boldsymbol{e}_z \right], \\ \boldsymbol{j} &= e^{\sigma t} \left[j_x(x, y) \sin kz \boldsymbol{e}_x + j_y(x, y) \sin kz \boldsymbol{e}_y + j_z(x, y) \cos kz \boldsymbol{e}_z \right], \\ \psi &= \psi_0 + e^{\sigma t} \delta \psi(x, y) \cos kz, \end{split}$$

Numerical Methods

Displacement vector

$$\begin{split} \delta\varrho &= -\frac{\partial}{\partial x} \left(\rho_0 \xi_x\right) - \frac{\partial}{\partial y} \left(\rho_0 \xi_y\right) - k\rho_0 \xi_z, \\ b_x &= -B_0 \left[\frac{\partial}{\partial y} \xi_y(x,y) + k\xi_z\right], \\ b_y &= B_0 \frac{\partial \xi_y}{\partial x}, \\ b_z &= -B_0 \frac{\partial \xi_z}{\partial x}, \\ j_x &= \frac{1}{4\pi} \left(\frac{\partial b_z}{\partial y} + kb_y\right), \\ j_y &= -\frac{1}{4\pi} \left(k\delta b_x + \frac{\partial b_z}{\partial x}\right), \\ j_z &= \frac{1}{4\pi} \left(\frac{\partial b_y}{\partial x} - \frac{\partial b_x}{\partial y}\right). \\ \delta\psi(\mathbf{r}) &= \int \mathbf{G}(\mathbf{r}, \mathbf{r}')\varrho(\mathbf{r}')d\mathbf{r}' \end{split}$$

$$\boldsymbol{\xi} = \int \boldsymbol{v} dt$$

$$\rho_0 \frac{d^2 \boldsymbol{\xi}}{dt^2} = \boldsymbol{F} \left(\boldsymbol{\xi} \right),$$
$$\rho_0 \sigma^2 \boldsymbol{\xi} = \left(\boldsymbol{A} + \frac{B_0^2}{4\pi} \boldsymbol{C} \right) \boldsymbol{\xi}.$$

Force is proportional to ξ .

generalized eigenvalue problem

$$\boldsymbol{A} + \frac{B_0^2}{4\pi} \boldsymbol{C} - \rho_0 \boldsymbol{I} \bigg| = 0$$

LAPACK Numerical Library

A perturbed quantity is expressed as a function of ξ .

Boundary (1) Fixed $\xi_x, \xi_y, \xi_z = 0$ (2) Free $\frac{\partial \xi}{\partial x} = 0$ $\frac{\partial \xi}{\partial \xi} = 0$

for
$$x > n_x \Delta x$$
 or $y > n_y \Delta y$

$$= 0 \quad \text{for } x > n_x \Delta x$$
$$\frac{\partial \boldsymbol{\xi}}{\partial y} = 0 \quad \text{for } y > n_y \Delta y$$

Boundary Condition

1) Fixed $\xi = 0$ 2) Free $\partial \xi / \partial x = 0$ keep straight

 $kH = 0.3 \rightarrow \lambda = 5.8 d_{\text{FWHM}}$

Eigen function kH = 0.2 normalization $\xi_z(0, 0) = -H$

Change in *B*

kH = 0.2

$\xi_{z}\left(0,0\right)=-H$

Further strong magnetic field (kH = 0.2) $1/\beta = 0.375$

Enlargement

 $1/\beta = 0.375, kH = 0.2$

Flow in the *yz*-plane (x = 0)

 $kH = 0.2, 1/\beta = 0.0$

 $kH = 0.2, 1/\beta = 0.125$

x

x

Free boundary

incompressible mode (cf. Nagai+98, Fiege & Pudritz 00)

Free boundary $kH = 0.2, \beta = 0.5$

Similarity to truncated filament model.

Fiege & Pudritz 00

truncated filament

compression

circulation

low β plasma \rightleftharpoons high T

Free boundary $kH = 0.05, \beta = 2$

Why the growth rate depends on the boundary?

Alfvén transit time

$$\tau_{\rm A} = \int \frac{ds}{v_{\rm A}} = \int \frac{\sqrt{4\pi\rho}}{B} ds$$

Magnetic tension propagates at v_A .

 τ_A is finite in our simple model, since B = const and $\rho \propto r^{-4}$.

How about in reality?

Empirical EOS

$$\begin{split} \rho &= \rho_c \left(1 + \frac{r^2}{4H^2} \right)^{-1}, \\ \lambda_r &= \int_0^r 2\pi r' \rho(r') dr' \\ &= 4\pi \rho_c H^2 \ln \left(1 + \frac{r^2}{4H^2} \right)^{-1}, \\ g_r &= -\frac{2G\lambda_r}{r} \\ &= -\frac{8\pi G\rho_c H^2}{r} \ln \left(1 + \frac{r^2}{4H^2} \right), \\ \frac{dP}{dr} &= \rho g_r \\ &= -\frac{8\pi G\rho_c H^2}{r} \ln \left(1 + \frac{r^2}{4H^2} \right), \\ \frac{d\rho}{dr} &= -\frac{r\rho_c}{2H^2} \left(1 + \frac{r^2}{4H^2} \right)^{-2}, \end{split}$$

$$\begin{aligned} \frac{dP}{d\rho} &= \frac{dP/dr}{d\rho/dr} \\ &= \frac{4\pi G\rho_c H^2}{r^2} \left(1 + \frac{r^2}{4H^2}\right) \ln\left(1 + \frac{r^2}{4H^2}\right) \\ &= -4\pi G\rho_c \left(1 - \frac{\rho}{\rho_c}\right) \ln\left(\frac{\rho}{\rho_c}\right) \end{aligned}$$

Stability Analysis $\rho = \rho_0 + \varrho(x, y)e^{\sigma t} \cos kz$

 $dx = 0.6H, n_x = n_y = 100$

Dispersion Relation

$$\rho = \rho_0 + \varrho(x, y) e^{\sigma t} \cos kz$$

 $\rho_0 = \rho_c \left(1 + \frac{r^2}{4H^2} \right)^{-1}$

unstable for radial collapse

Summary

- Vertical (uniform) magnetic field works against fragmentation.
- Compressible mode is suppressed by rather weak magnetic field.
- Incompressible mode survives even when B is extremely strong, if the magnetic field is not fixed on the boundary.
- Weak magnetic field affects flow in the low density region.