Phase Transitions in Astrophysics, from ISM to Planets

Phase Transition Dynamics of ISM: The Formation of Molecular Clouds and Galactic Star Formation Shu-ichiro Inutsuka (Nagoya University)

NORDITA, Stockholm, Sweden

May 22, 2017

Outline

- Formation of Molecular Clouds
 - Phase Transition Dynamics
 - Thermal Instability, Sustained Turbulence
 - Effect of Magnetic Field
- Self-Gravitational Dynamics of Filaments

 Mass Function of Dense Cores → IMF
- Galactic Picture of Cloud/Star Formation
 - Destruction of Molecular Clouds
 - SF Efficiency & Schmidt-Kennicutt Law
 - Mass Function of Molecular Clouds
- Summary

Dynamical Timescales of ISM

- **Dynamical Three Phase Medium**
 - e.g., McKee & Ostriker 1977
 - SN Explosion Rate in Galaxy... 1/(100yr)
 - Expansion Time...1Myr
 - Expansion Radius... 100pc

 $(10^{-2} \text{ yr}^{-1}) \times (10^{6} \text{ yr}) \times (100 \text{ pc})^{3} = 10^{10} \text{ pc}^{3} \sim \text{V}_{\text{Gal.Disk}}$

(10kpc)²×100pc

Dynamical Timescale of ISM ~ 1 Myr

« Timescale of Galactic Density Wave ~ 100 Myr

Expanding HII regions can be more important!

Basic Equations for ISM Dynamics

 $\overline{}$

- Eq. of Continuity
- EoM

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = 0$$
$$\frac{\partial}{\partial t} (\rho v) + \frac{\partial}{\partial x} (P + \rho v^2 + \Pi) = 0$$

 $=\rho\Gamma-\rho^2\Lambda$

 $\frac{\partial E}{\partial t} + \frac{\partial}{\partial x} \left(\left(E + P \right) \mathbf{v} - \kappa \frac{\partial T}{\partial x} \right)$

- Eq. of Energy
 - Radiative Heating & Cooling: Γ , Λ
 - H, C⁺, O, Fe⁺, Si⁺, H₂, CO
 - Chemical Reaction
 - HII, HI, H₂, CII, CO
 - Thermal Conduction
 - conduction coefficient: κ

Self-Gravity Negligible for Low Density Gas
for
$$M < M_{Jeans}$$

Observed "Turbulence" in ISM

Observation of Molecular Clouds

line-width $\delta v > C_S$

- Universal Supersonic Velocity Dispersion
 - even in the clouds without star formation activity
 - \rightarrow should not be due to star formation activity

Numerical Simulation of (Isothermal) MHD

- Turbulence \Rightarrow Rapid Shock Dissipation or Cascade
 - Dissipation time « Lifetime of Molecular Clouds
 - Gammie & Ostriker 1996, Mac Low 1997, Ostriker et al. 1999, Stone et al. 1999, etc...

Studies on Origin of Supersonic Motions

- Koyama & Inutsuka, ApJL **564**, L97, 2002
- Kritsuk & Norman 2002a, ApJ 569, L127; 2002b ApJ 580, L51
- Audit & Hennebelle 2005, A&A **433**, 1
- Heitsch, et al. 2005, ApJ 633, L113, Vazquez-Semadeni et al. 2006, etc...

Radiative Equilibrium for a given density

Radiative Cooling & Heating

Koyama & SI (2000) ApJ **532**, 980, (adding CO to Wolfire et al. 1995)

Radiative Equilibrium for a given density

e.g., Wolfire et al. 1995, Koyama & SI 2000

Dispersion Relation of Thermal Instability

'Field length'' :
$$\lambda_{\rm F} \equiv \sqrt{\frac{\kappa T}{\rho^2 \Lambda}} \rightarrow 10^{-2} \, {\rm pc}$$

Thermal Instability
for $\lambda > \lambda_{\rm F}$
If $\kappa = 0$, then $\lambda_{\rm crit} = 0$
In two-phase medium,
the width of transition layer
'Field length'' : $\lambda_{\rm F} = \sqrt{\frac{\kappa T}{\rho^2 \Lambda}} \rightarrow 10^{-2} \, {\rm pc}$
Isobarically contracting case
Isobarically con

 $= \lambda_{\rm F}.$

Warning to Numerical Simulation

THE ASTROPHYSICAL JOURNAL, 602:L25–L28, 2004 February 10 © 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE FIELD CONDITION: A NEW CONSTRAINT ON SPATIAL RESOLUTION IN SIMULATIONS OF THE NONLINEAR DEVELOPMENT OF THERMAL INSTABILITY

HIROSHI KOYAMA^{1,2} AND SHU-ICHIRO INUTSUKA³ Received 2003 February 6; accepted 2004 January 2; published 2004 January 30

Dynamical Triggering of Thermal Instability

Hennebelle & Pérault 1999; Koyama & Inutsuka 2000

Hennebelle & Pérault 1999

→ WNM is linearly stable but non-linearly unstable.

1D Shock Propagation into WNM

Realistic Cooling/Heating + Chemistry (H₂, CO)

Koyama & Inutsuka 2000, ApJ **532**, 980 See also Hennebelle & Pérault 1999

Shock Propagation into WNM

Koyama & Inutsuka (2002) ApJ 564, L97

Summary of TI-Driven Turbulence

- 2D/3D Calculation of Propagation of Shock Wave into WNM via Thermal Instability
 - fragmentation of cold layer into cold clumps with long-sustained supersonic velocity dispersion (~ km/s)
 - 1D: Shock $\Rightarrow E_{th} \Rightarrow E_{rad}$
 - 2D&3D: Shock $\Rightarrow E_{th} \Rightarrow E_{rad} + E_{kin}$
 - $\delta v \sim a \text{ few km/s} < C_{S,WNM} = 10 \text{km/s}$ $\leftarrow 10^4 \text{K}$ due to Ly α line: Universality! $T_{CNM} \sim 10^2 \text{K} \leftarrow C^+ 158 \mu \text{m} (\sim 10^2 \text{K})$

Koyama & SI (2002) ApJ 564, L97

density and velocit

Hennebelle & Audit 07 10,000²

the sale water

20 pc

/ (pc)

0

20.00 Myr

-5

0 x [pc] 5

y [pc]

x (pc)

Vazquez-Semadeni ____

et al. 2011

density and velocity fields, t= 26.82 My

3

log(p [g cm⁻³])

-21

-22

-23

-24

20 µG

x (pc)

2

c.f.
 Kritsuk &
 Norman 1999

1.4 -0.7 Heitsch+ 2006 2D, 4096²

log(n) (cm⁻¹

= 7.6 Myr, $\log n \left[cm^3 \right]$

Property of "Turbulence"...Subsonic

δv < C_{S,WNM} → Kolmogorov Spectrum 2D: Hennebelle & Audit 2007; see also Gazol & Kim 2010

Two Aspects in Multi-Phase Dynamics # 2: Phase Transition Dynamics without Shock Waves

Does turbulence decay without external mechanical driving such as due to shock waves?

The Answer is NO!

Sustained "Turbulence" in Periodic Box

Periodic Box Evolution <u>without Shock Driving</u> With Cooling/Heating and Thermal Conduction Without Physical Viscosity (*Prandtl* #=0)

Non-Linear Development of TI without External Forcing

Sustained Turbulence for realistic conduction κ

Koyama & Inutsuka 2006; Iwasaki & Inutsuka 2014 ApJ 784,115

Decaying Turbulence for $\kappa \propto n$

Brandenburg et al. 2007

In reality, $\kappa = const.$ $\kappa \propto nvl \propto \underline{n}v/(\underline{n}\sigma)$

Further Analysis on Phase Transition Dynamics

1. Evaporation & Condensation

- 2. New Instability of Transition Layer
- 3. Effect of Magnetic Field

Radiative Equilibrium for a given density

Textbook Example of Phase Equilibrium

-V

Exact Equilibrium of 2-Phases

- 1D Plane-Parallel Case: Zeldovich & Pikelner 1969
- 2D Cylindrical Symmetry: Graham & Langer 1973
- 3D Spherical Symmetry: Nagashima, SI, Koyama 2005 No Unique $P_{sat} \rightarrow 2$ -Phase with various P

Saturation Pressure in 1D Geometry

Evaporation of Spherical CNM in WNM

Nagashima, Koyama, Inutsuka & 2005, MNRAS **361**, L25 Nagashima, Inutsuka, & Koyama 2006, ApJL **652**, L41

Evaporation of Spherical CNM in WNM

cf. "Tiny Scale Atomic Structure" Braun & Kanekar 2005, Stanimirovic & Heiles 2005

Further Analysis on Phase Transition Dynamics

1. Evaporation & Condensation

- 2. New Instability of Transition Layer
- 3. Effect of Magnetic Field

2) Instability of Phase Transition Layer

Instability of Phase Transition Layer

Linear Analysis of New Instability

Vazquez-Semadeni et al. 2011

-0.7 Heitsch+ 2006 2D, 4096²

= 7.6 Myr, $\log n e^{3}$

Cloud Formation in Magnetized Medium

Can compression of magnetized WNM create molecular clouds?

Ref. Inoue & SI (2008) ApJ 687, 303

 Ambipolar
 Inoue & SI (2009) ApJ 704, 161

diffusion included Inoue & SI (2012) ApJ **759**, 35

SI, Inoue, Iwasaki, Hosokawa 2015 A&A 580, A49

<u>Two-Fluid</u> Resistive MHD + Cooling/Heating + Thermal Conduction + Chemistry (H_2 , CO,...)

Colliding WNM with $B_0 = 3\mu G$

Compression of Magnetized WNM

Can direct compression of magnetized WNM create molecular clouds?

Not at once! *Inoue & SI* (2008) ApJ **687**, 303 Inoue & SI (2009) ApJ 704, 161 Essentially same result by *Heitsch*+2009; *Körtgen & Banerjee* 2015; Valdivia+2016

We need multiple episodes of compression.

Timescale of Molecular Cloud Formation ~ a few 10⁷yr Next Question: What happens for further compressions?

Compression of CNM (HI) \rightarrow H₂

Compression <u>along</u> <u>Magnetic Field</u> <u>lines, + H₂,CO</u>

Formation of Magnetized Molecular Clouds

Transformation of HI to H₂ *Inoue & SI* (2012) **759**, 35

Further Compress. of Mole. Clouds

Further Compression of Molecular Cloud

→ Magnetized
 Massive Filaments⁴
 & Striations
 3

Self-Gravity Included, SI, Inoue, Iwasaki, & Hosokawa 2015

Observed Molecular Clouds

Cox, Arzoumanian, André+2016

Ph. André - MW2011 Conference - 21/09/2011

Outline

- Formation of Molecular Clouds
 - Phase Transition Dynamics
 - Thermal Instability, Sustained Turbulence
 - Effect of Magnetic Field
- Self-Gravitational Dynamics of Filaments

 Mass Function of Dense Cores → IMF
- Galactic Picture of Cloud/Star Formation
 - Destruction of Molecular Clouds
 - SF Efficiency & Schmidt-Kennicutt Law
 - Mass Function of Molecular Clouds
- Summary

Mass Function of Cores in a Filament

Inutsuka 2001, ApJ 559, L149

Line-Mass Fluctuation of Filaments Initial Power Spectrum $P(k) \propto k^{-1.5}$

Mass Function $dN/dM \propto M^{-2.5}$

Observation of Both Perturbation Spectrum and Mass Function

→ Clear and Direct Test!

 $t/t_{ff} = 0$ (dotted), 2, 4, 6, 8, 10 (solid)

"A possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function"

Roy, André, Arzoumanian et al. (2015) A&A **584**, A111

Supporting Inutsuka 2001

Applicability of Filament Paradigm for Massive Stars?

Massive Stars through Filaments

Declination (J2000)

(Peretto+2013)

- Uniform but Different Velocity in Each Filament
- Infall through Filament ~ 10⁻³ M_☉/yr
 Nicely Understood in Filament Paradigm

Toward Global Picture of Cloud Formation

$$t_{\rm form} = a \; {\rm few} \times 10^7 {\rm yr}$$

 $N_{\rm H} \sim 10^{21} {\rm cm}^{-2} = 1 {\rm cm}^{-3} \times 300 {\rm pc}$ 300pc ~ 10km/s ×30Myr

Network of Expanding Shells

Velocity Dispersion of Clouds

Multiple Episodes of Compression -> **Formation of Magnetized** Stark & Brand 1989 .6 normalized liklihood $\mathscr{L}_{\mathbf{0}}$ **Molecular Clouds** peak .4 high X .2 0 \star 0 2 9 10 11 velocity dispersion σ_{\star} (km/s) Shell Expansion Cloud-to-Cloud Velocities ~ 10^1 km/s Velocity Dispersion

12

Outline

- Formation of Molecular Clouds
 - Phase Transition Dynamics
 - Thermal Instability, Sustained Turbulence
 - Effect of Magnetic Field
- Self-Gravitational Dynamics of Filaments

 Mass Function of Dense Cores → IMF
- Galactic Picture of Cloud/Star Formation
 - Destruction of Molecular Clouds
 - SF Efficiency & Schmidt-Kennicutt Law
 - Mass Function of Molecular Clouds
- Summary

Cloud Collision (Fukui, Tan, Tasker, Dobbs,...) Collect & Collapse (Elmegreen-Lada, Whitworth, Palouš, Deharveng, Zavagno,...)

Formation of Molecular Clouds

Can direct compression of magnetized WNM create molecular clouds? → Not at once.

We need multiple episodes of compression.

Inoue & SI (2008) ApJ **687**, 303; Inoue & SI (2009) ApJ **704**, 161 Inoue & SI (2012) ApJ **759**, 35 Transformation of HI to H₂

$$t_{\rm form} = a \, {\rm few 10^7 yr}$$

Further Compression of Molecular Clouds

→ Magnetized Massive Filaments & Striations

= "Herschel Filaments"

Network of Expanding Shells

Natural Acceleration of Star Formation

Molecular Cloud Growth
→ Collisions of Clouds

➔ Accelerated SF

Also in Lupus, Chamaeleon, ρ Ophiuchi, Upper Scorpius, IC 348, and NGC 2264

c.f., Vazquez-Semadeni+2007

Destruction of Molecular Clouds

How to Stop Star Formation?

Radiative Feedback

See also Kuiper+, Walch+, Hennebelle+

Expanding HII Region in <u>Magnetized</u> Molecular Cloud

UV/FUV + H2 + CO Chemistry (Hosokawa & SI 2005, 2006ab, 2007)

Disruption of <u>Magnetized</u> Molecular Clouds

Feedback due to UV/FUV in a Magnetized Cloud by MHD version of *Hosokawa & SI* (2005,2006ab)

 $30M_{\odot} \text{ star destroys}$ $10^{5}M_{\odot} \text{ H}_{2} \text{ gas}$ in 4Myrs!

(SI, Inoue, Iwasaki, & Hosokawa 2015 A&A 580, A49)

Star Formation Efficiency, KS-Law

 $10^5 M_{\odot}$ H₂ destroyed by $M_* > 30 M_{\odot}$ in 4Myrs!

If $M_{\rm total} \sim 10^3 M_{\odot}$ stars

→ ~1 Massive (> $30M_{\odot}$) Star for Standard IMF

Galactic Population of Molecular Clouds ???

Mass Function of Molecular Clouds

$$dn = N_{cl}(M_{cl})dM_{cl}$$

$$\frac{\partial N_{cl}}{\partial t} + \frac{\partial}{\partial M_{cl}} \left(N_{cl} \frac{dM_{cl}}{dt} \right) = -\frac{N_{cl}}{T_{depl}}$$
Self-Growth
$$M_{cl}$$
In steady state
$$\rightarrow N_{cl}(M_{cl}) = \frac{N_0}{M_0} \left(\frac{M_{cl}}{M_0} \right)^{-\alpha}, \alpha = 1 + \frac{T_{form}}{T_{dis}}$$

$$T_{dis} \sim 14 \text{Myr} \& T_{form} \sim 10 \text{Myr} \rightarrow \alpha = 1.7$$

(SI, Inoue, Iwasaki, & Hosokawa 2015 A&A 580, A49)

Effect of <u>Cloud-Cloud Collision</u> on <u>Mass Function</u> of Molecular Clouds

Formulation of Coagulation Equation

Kobayashi, SI, Kobayashi, & Hasegawa 2017, ApJ 836, 175

Resultant Mass Functions

Case without Cloud-Cloud Collision

self-growth & self-dispersal only

Assumption: $\delta v_{cloud-cloud} = 10 \text{km/s}$

Resultant Mass Functions

Case with Cloud-Cloud Collision

CCC does not alter GMC mass function significantly! Kobayashi, SI, Kobayashi, & Hasegawa 2017, ApJ 836, 175

Summary

- Fragmentation of Filaments → Core Mass Function
- Bubble-Dominated Formation of Molecular Clouds
 - Unified Picture of Star Formation
 - $\delta v_{cloud-cloud}$ ~ 10^{1} km/s
 - Star Formation Efficiency: $\epsilon_{SF} \sim 10^{-2}$
 - Schmidt-Kennicutt Law
 - Accelerated Star Formation
 - Slope of Cloud Mass Func =1+ $T_{form}/T_{dis} \sim 1.7$

SI, Inoue, Iwasaki, & Hosokawa 2015, A&A **580**, A49 *Kobayashi, SI, Kobayashi, & Hasegawa 2017*, ApJ **836**, 175

Massive Star Formation in Ridge

Extensive Herschel Studies on Massive Star Formation in "Ridges"

Advent of Large Surveys such as FUGIN

FUGIN R: ¹²CO G: ¹³CO B: C¹⁸O

Herschel R: 500µm G: 350µm B: 250µm

Numerous Straight Ridges or Bars! Why?

Edge-On View of Compressed Shells = Ridges or Bars! → Bar // B → Obs Proof of Cloud Formation Theory!!!

Galactic Scale View HI Clouds vs Molecular Clouds

HI (VLA) CO(1-0)

M51 in PAWS Schinnerer+ (2013)

©Annie Hughes, MPIA

Slope of Cloud Mass Function

Steady State Mass Function of Molecular Clouds

$$\rightarrow N_{\rm cl}(M_{\rm cl}) = \frac{N_0}{M_0} \left(\frac{M_{\rm cl}}{M_0}\right)^{-\alpha}, \alpha = 1 + \frac{T_{\rm form}}{T_{\rm dis}}$$

Typically, $T_{dis} \sim T_{form} + 4Myr \rightarrow \alpha = 1.7$ In low density region (Inter-Arm Region) Larger $T_{form} > T_{dis} \rightarrow Larger \alpha$ In high density region (Arm Region) Smaller $T_{form} \rightarrow Smaller \alpha$ $\rightarrow GMCs in M51 (Colombo+2014)$

Variation of GMC Mass Function in M51

©Annie Hughes, MPIA

Mass Function of Molecular Clouds

$$dn = N_{\rm cl}(M_{\rm cl})dM_{\rm cl}$$
$$\frac{\partial N_{\rm cl}}{\partial t} + \frac{\partial}{\partial M_{\rm cl}} \left(N_{\rm cl}\frac{dM_{\rm cl}}{dt}\right) = -\frac{N_{\rm cl}}{\tau_{\rm dis}}$$
$$\Rightarrow \text{CO-Dark Gas}$$

 In steady state, mass of CO-dark gas can be huge!
 → Formation of Molecular Clouds should recycle CO-Dark Gas!

Summary

- Fragmentation of Filaments → Core Mass Function
- Bubble-Dominated Formation of Molecular Clouds
 - Unified Picture of Star Formation
 - $\delta v_{cloud-cloud}$ ~ 10^{1} km/s
 - Star Formation Efficiency: $\epsilon_{SF} \sim 10^{-2}$
 - Schmidt-Kennicutt Law
 - Accelerated Star Formation
 - Slope of Cloud Mass Func =1+ $T_{form}/T_{dis} \sim 1.7$

SI, Inoue, Iwasaki, & Hosokawa 2015, A&A **580**, A49 *Kobayashi, SI, Kobayashi, & Hasegawa 2017*, ApJ **836**, 175

Future Work

- Galactic Disk Scale Simulations with GMC Model
 as a Sub-Grid Physics: Spatial Resolution ~ 100pc
- Galactic Center
- Model of Spur

SI, Inoue, Iwasaki, & Hosokawa 2015, A&A **580**, A49 Kobayashi, SI, Kobayashi, & Hasegawa 2017, ApJ **836**, 175