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What has happened in the past appears to be almost as vague and uncertain as 
what will happen in the future...Note that observers of automobile accidents 
almost invariably disagree as to the actual sequence of events. And so it is, even 
in science. We can reconstruct the history of the solar system with little more 
confidence than we can predict its future. Actually, we possess only a 
fragmentary knowledge of the system today and have inadequate theoretical 
tools to deal with many of the physical processes that have taken place. 

                                          F.L. Whipple, PNAS 52, 565 (1964)
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A correlation between giant-planet mass and atmospheric heavy elemental abundance
was first noted in the past century from observations of planets in our own Solar
System and has served as a cornerstone of planet-formation theory. Using data from
the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a
detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b.
We detected prominent H2O absorption bands with a maximum base-to-peak amplitude
of 525 parts per million in the transmission spectrum. Using the water abundance
as a proxy for metallicity, we measured HAT-P-26b’s atmospheric heavy element
content (4:8þ21:5

"4:0 times solar). This likely indicates that HAT-P-26b’s atmosphere is
primordial and obtained its gaseous envelope late in its disk lifetime, with little
contamination from metal-rich planetesimals.

H
AT-P-26b is a Neptune-mass planet with
a lower bulk density as compared with
those of the four other Neptune-sized
planets with well-measured masses and
radii (Uranus, Neptune, GJ 436b, and HAT-

P-11b) (1). Neptune-sized worlds are among the
most common planets in our galaxy and fre-
quently exist in orbital periods very different
from that of our own Solar System ice giants (2).
Atmospheric studies using transmission spec-
troscopy can be used to constrain their forma-
tion and evolution. The low gravity (4.17 ms−2)
and moderate equilibrium temperature (Teq ≈
990 K) (1) of HAT-P-26b results in a large at-
mospheric scale height, which is ideal for char-
acterization studies that observe the wavelength
dependence of the starlight filtered through the
atmosphere during a transit.

The atmospheres of Neptune-mass worlds
could have arisen from many different sources,
resulting in a wide range of possible atmospheric
compositions. Depending on their formation and
evolutionary history, atmospheres rich in H/He,
H2O, and CO2 are all expected to be possible (3).
H/He–rich atmospheres are formed if gas ac-
cretes directly from the protoplanetary disc.
Alternatively, many of these planets could be
water-worlds with an H2O-rich atmosphere, or

a rocky planet with an atmosphere produced by
outgassing. For hot neptunes in particular, it is
an open question as to whether these exoplanets
contain large amounts of water and other ices and
how much of that is mixed into the detectable
atmospheric envelope. Previous observations
of Neptune-mass exoplanets show both cloudy
atmospheres, such as that of GJ 436b (4), and
relatively clear atmospheres, as seen in HAT-P-
11b (5), where a muted H2O absorption band was
detected.
A correlation between giant planet mass and

atmospheric elemental abundancewas firstmea-
sured from the CH4 abundance in the atmos-
pheres of Jupiter (6), Saturn (7), Uranus (8), and
Neptune (9) and has served as a constraint of
planet-formation theory (10). Abundances of key
species have now begun to be measured in exo-
planets, such as the well-constrained H2O abun-
dance on the two-Jupiter-mass planetWASP-43b
(11). Atmospheric abundance measurements for
Neptune and smaller mass exoplanets remain
essentially unconstrained, known only within
several orders of magnitude, as the detection of
H2O in HAT-P-11b implies metallicities between
1 to 700 solar units (× solar) (5). We add an
additional point in the mass-metallicity trend
from an observational study of the extrasolar
planet HAT-P-26b, which has a similar mass to
that of Neptune and Uranus (1).
We observed four transits of HAT-P-26b

with the Hubble Space Telescope (HST) via two
observational programs: One transit was ob-
served with the HST Space Telescope Imaging
Spectrograph (STIS) (12) G750L grating (cover-
ing 0.5 to 1.0 mm), and one transit with the HST
Wide Field Camera 3 (WFC3) (13) G102 grism
(0.8 to 1.1 mm). We observed a further two
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Fig. 1. The measured transmission spectrum of HAT-P-26b.We show the atmospheric transmission
spectrum (open and solid circles alternating between different observational modes indicated by the
labeled bars at the bottom) fitted with a model (red) derived by using the ATMO retrieval code (18).
The best-fitting models have isothermal profiles and include a uniform cloud opacity. Shown here are
the results for model M1 with 1s, 2s, and 3s uncertainty shown in the dark- to light-blue shaded
regions. The right-hand axis shows the corresponding scale of the atmospheric transmission in terms of
planetary scale height, which is a logarithmic parameter of the atmosphere based on the planet’s
temperature, gravity, and mean molecular weight.
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Fig. 1. The measured transmission spectrum of HAT-P-26b.We show the atmospheric transmission
spectrum (open and solid circles alternating between different observational modes indicated by the
labeled bars at the bottom) fitted with a model (red) derived by using the ATMO retrieval code (18).
The best-fitting models have isothermal profiles and include a uniform cloud opacity. Shown here are
the results for model M1 with 1s, 2s, and 3s uncertainty shown in the dark- to light-blue shaded
regions. The right-hand axis shows the corresponding scale of the atmospheric transmission in terms of
planetary scale height, which is a logarithmic parameter of the atmosphere based on the planet’s
temperature, gravity, and mean molecular weight.
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It’s Friday—start with something we experience in a cocktail
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Fig. 1. The measured transmission spectrum of HAT-P-26b.We show the atmospheric transmission
spectrum (open and solid circles alternating between different observational modes indicated by the
labeled bars at the bottom) fitted with a model (red) derived by using the ATMO retrieval code (18).
The best-fitting models have isothermal profiles and include a uniform cloud opacity. Shown here are
the results for model M1 with 1s, 2s, and 3s uncertainty shown in the dark- to light-blue shaded
regions. The right-hand axis shows the corresponding scale of the atmospheric transmission in terms of
planetary scale height, which is a logarithmic parameter of the atmosphere based on the planet’s
temperature, gravity, and mean molecular weight.
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Fig. 1. The measured transmission spectrum of HAT-P-26b.We show the atmospheric transmission
spectrum (open and solid circles alternating between different observational modes indicated by the
labeled bars at the bottom) fitted with a model (red) derived by using the ATMO retrieval code (18).
The best-fitting models have isothermal profiles and include a uniform cloud opacity. Shown here are
the results for model M1 with 1s, 2s, and 3s uncertainty shown in the dark- to light-blue shaded
regions. The right-hand axis shows the corresponding scale of the atmospheric transmission in terms of
planetary scale height, which is a logarithmic parameter of the atmosphere based on the planet’s
temperature, gravity, and mean molecular weight.

 o
n 

M
ay

 1
2,

 2
01

7
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fro
m

 



M. Chaplin, LSBUBulk Phases of Water



M. Chaplin, LSBUBulk Phases of Water
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Let us move along a line of two-phase coexistence? 



Some Surface Phases…
Equilibrium Transitions

(1) Surface Roughening
(2) Surface Melting



Faceted Orientations(1)



Faceted Orientations

Can Become Rough Orientations
⇠ = A exp[c (TR � T )�1/2

]

(1)



Faceted Orientations

Can Coexist with Rough Orientations

(2)



The Roughening Transition

Balibar, Alles & Parshin Rev Mod Phys 77, 317 (2005)
Dash, Rempel & JSW     Rev Mod Phys 78, 695 (2006)

(1)
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where pressure p is in MPa and temperature T is in
!C: The fitting curves are plotted with the data in
Fig. 1. A discontinuity in the H2O ice melting
curve near "16 !C and 160MPa, which was found
in the previous study [19] was not observed. Thus,
the previous finding might have been an artifact of
the previous device.

Fig. 3 shows steady-state growth shapes when a
constant growth drive is applied at Dm=kT # 1$
10"4: Below "25 !C; as in Figs. 3(a) and (e), the
shape is a hexagonal plate with both well-devel-
oped prism and basal facets. Around "20 !C; as in
Figs. 3(b) and (f), prism facets are visible, but the
corners and edges are rounded. Just above the
roughening temperature of "16 !C; as in Fig. 3(c),
the prism facets have disappeared and the surfaces
were curved although the sixfold symmetry re-
mained. The roughening temperature was deter-
mined in the previous experiment [16] by the
growth rate versus growth drive relation that

changes from parabolic to linear around "16 !C:
This value is consistent with the present observa-
tion of the disappearance temperature of prism
facets. Well above the roughening temperature, as
in Figs. 3(d), (g) and (h), no prism facets are
observed but the basal facets are still well
developed. In Fig. 3(g) the c-axis is slightly tilted
along the observation axis so that one basal facet
is seen. In contrast to hcp 4He crystals [3], basal
facets always appeared even up to 0 !C; and
pyramidal facets never appeared even down to
"40 !C: For this finding, the anvil cell was
particularly useful because crystal orientations
with the c-axis pointed in the plane of the window
surface (i.e., normal to the observation axis) were
far more common in the anvil cell as compared to
the inner cell.
In growth rate measurements, the advance of a

surface or a facet was plotted as a function of time;
for example, the diameter of a disc crystal above
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Fig. 3. Variation of H2O ice morphologies below and above the roughening temperature of the prism face ("16 !C). Ice crystals are
steadily growing in liquid water at Dm=kT # 1$ 10"4: Crystals in the upper images of (a)–(d) have their c-axis vertical (i.e., along the
observation axis). Crystals in the lower images of (e)–(h) have their c-axis horizontal (i.e., perpendicular to the observation axis), as
indicated in (e). In (e), (f), and (h) the crystal is seen in a gasket hole of an anvil cell. All other images were taken with the inner cell.
Equilibrium temperatures and pressures are as follows: (a) "25:2 !C; 228MPa, (b) "20:2 !C; 192MPa, (c) "15:2 !C; 152MPa, (d)
"10:3 !C; 112MPa, (e) "35 !C; 290MPa, (f) "20 !C; 191MPa, (g) "12:5 !C; 130MPa, (h) "5 !C; 56MPa.
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What about the Vapor Surface
near the bulk melting point?
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µs(T, p) = µℓ(T, p)

∆µ ≈

[

∂∆µ
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−1/3

µs(T, p) − µℓ(T, p) ≡ ∆µ = U(d)
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2|∆γ|σ2

ρℓd3
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6πρℓd3

µf (T, p, d) ≡ µℓ(T, p) + U(d) = µs(T, p) {
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I(d) =
kT

8πd2

∞
∑

n=0

′
∫

∞

rn

dx x

{

ℓn

[

1 −

(x − xi)(x − xs)

(x + xi)(x + xs)
e
− x

]

+ ℓn

[

1 −

(ϵsx − ϵwxs)(ϵix − ϵwxi)

(ϵsx + ϵwxs)(ϵix + ϵwxi)
e
− x

]}

xj =

[

x2
− rn

2

(

1 −

ϵj

ϵw

)]1/2

(j = i, s)

U(d) = −
|A|

6πρℓd3

iξn = i(2πkT/h̄)n

rn = 2d(ϵℓ)
1/2ξn/c

ϵ(iξ)

ϵ(ω)

ϵ(ω) = 1 +
∑

j

fj

e2
j − ih̄ωgj − (h̄ω)2

required in the integral is evaluated at 
and obtained by analytic continuation of the material dielectric 
function          to imaginary frequencies using

where A ≡ lim
d→0

[

−12πd
2
I(d)

]



The Truth...for Solid/Liquid/X

I(d) =
kT

8πd2

∞
∑

n=0

′
∫

∞

rn

dx x

{

ℓn

[

1 −

(x − xi)(x − xs)

(x + xi)(x + xs)
e
− x

]

+ ℓn

[

1 −

(ϵsx − ϵwxs)(ϵix − ϵwxi)

(ϵsx + ϵwxs)(ϵix + ϵwxi)
e
− x

]}

xj =

[

x2
− rn

2

(

1 −

ϵj

ϵw

)]1/2

(j = i, s)

U(d) = −
|A|

6πρℓd3

iξn = i(2πkT/h̄)n

rn = 2d(ϵℓ)
1/2ξn/c

ϵ(iξ)

ϵ(ω)

ϵ(ω) = 1 +
∑

j

fj

e2
j − ih̄ωgj − (h̄ω)2

required in the integral is evaluated at 
and obtained by analytic continuation of the material dielectric 
function          to imaginary frequencies using

where A ≡ lim
d→0

[

−12πd
2
I(d)

]

Casimir-Polder…Long Story in and of itself



…Some More Surface Physics

Disequilibrium Transitions

(2) Damage Assisted Surface Melting

(1) Kinetic Roughening
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So What has this got 

to do with Astro-anything? 

Every solid is finite and hence has a surface

These phenomena define and hence control

material behavior 

Examples abound…protoplanetary discs are 
filled with solids…
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Collisions and Cosmogony

Phil Armitage, JILA

Collapse ~ 0.1 Myr

Accretion & Primary Planetesimals Form ~ 1 Myr

Slow Accretion & then clearing by photoevaporative wind
 ~ 1 Myr + 0.1 Myr � Need to make planets fast!
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while at short wavelengths λ ≪ hc/kT (rin) there is an
exponential cut-off that matches that of the hottest an-
nulus in the disk,

λFλ ∝ λ−4e−hc/λkT (rin). (38)

For intermediate wavelengths,

hc

kT (rin)
≪ λ ≪

hc

kT (rout)
(39)

the form of the spectrum can be found by substituting,

x ≡
hc

λkT (rin)

(

r

rin

)3/4

(40)

into equation (35). We then have, approximately,

Fλ ∝ λ−7/3

∫ ∞

0

x5/3dx

ex − 1
∝ λ−7/3 (41)

and so

λFλ ∝ λ−4/3. (42)

The overall spectrum, shown schematically in Figure 11,
is that of a ‘stretched’ blackbody (Lynden-Bell, 1969).

The SED predicted by this simple model generates an
IR-excess, but with a declining SED in the mid-IR. This
is too steep to match the observations of even most Class
II sources.

4. Sketch of more complete models

Two additional pieces of physics need to be included
when computing detailed models of the SEDs of passive
disks. First, as already noted above, all reasonable disk
models flare toward large r, and as a consequence inter-
cept and reprocess a larger fraction of the stellar flux. At
large radii, Kenyon & Hartmann (1987) find that consis-
tent flared disk models approach a temperature profile,

Tdisk ∝ r−1/2, (43)

which is much flatter than the profile derived previously.
Second, the assumption that the emission from the disk
can be approximated as a single blackbody is too simple.
In fact, dust in the surface layers of the disk radiates at a
significantly higher temperature because the dust is more
efficient at absorbing short-wavelength stellar radiation
than it is at emitting in the IR (Shlosman & Begelman,
1989). Dust particles of size a absorb radiation efficiently
for λ < 2πa, but are inefficient absorbers and emitters for
λ > 2πa (i.e. the opacity is a declining function of wave-
length). As a result, the disk absorbs stellar radiation
close to the surface (where τ1µm ∼ 1), where the optical
depth to emission at longer IR wavelengths τIR ≪ 1. The
surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.

C. Actively accreting disks

The radial force balance in a passive disk includes con-
tributions from gravity, centrifugal force, and radial pres-
sure gradients. The equation reads,

v2
φ

r
=

GM∗

r2
+

1

ρ

dP

dr
, (44)

where vφ is the orbital velocity of the gas and P is the
pressure. To estimate the magnitude of the pressure gra-
dient term we note that,

1

ρ

dP

dr
∼ −

1

ρ

P

r

∼ −
1

ρ

ρc2
s

r

∼ −
GM∗

r2

(

h

r

)2

, (45)

where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,

v2
φ = v2

K

[

1 −O
(

h

r

)2
]

, (46)

i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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disk.
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The SED predicted by this simple model generates an
IR-excess, but with a declining SED in the mid-IR. This
is too steep to match the observations of even most Class
II sources.

4. Sketch of more complete models

Two additional pieces of physics need to be included
when computing detailed models of the SEDs of passive
disks. First, as already noted above, all reasonable disk
models flare toward large r, and as a consequence inter-
cept and reprocess a larger fraction of the stellar flux. At
large radii, Kenyon & Hartmann (1987) find that consis-
tent flared disk models approach a temperature profile,

Tdisk ∝ r−1/2, (43)

which is much flatter than the profile derived previously.
Second, the assumption that the emission from the disk
can be approximated as a single blackbody is too simple.
In fact, dust in the surface layers of the disk radiates at a
significantly higher temperature because the dust is more
efficient at absorbing short-wavelength stellar radiation
than it is at emitting in the IR (Shlosman & Begelman,
1989). Dust particles of size a absorb radiation efficiently
for λ < 2πa, but are inefficient absorbers and emitters for
λ > 2πa (i.e. the opacity is a declining function of wave-
length). As a result, the disk absorbs stellar radiation
close to the surface (where τ1µm ∼ 1), where the optical
depth to emission at longer IR wavelengths τIR ≪ 1. The
surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.

C. Actively accreting disks

The radial force balance in a passive disk includes con-
tributions from gravity, centrifugal force, and radial pres-
sure gradients. The equation reads,
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where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,
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i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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FIG. 17 The settling and growth of a single particle in a lami-
nar (non-turbulent) protoplanetary disk. The model assumes
that a single particle (with initial size a = 1 µm (solid line),
0.1 µm (dashed line), or 0.01 µm (long dashed line) accretes
all smaller particles it encounters as it settles toward the disk
midplane. The smaller particles are assumed to be at rest.
The upper panel shows the height above the midplane as a
function of time, the lower panel the particle radius a. For
this example the disk parameters adopted are: orbital radius
r = 1 AU, scale height h = 3 × 1011 cm, surface density
Σ = 103 g cm−2, dust to gas ratio f = 10−2, and mean ther-
mal speed v̄ = 105 cm s−1. The dust particle is taken to have
a material density ρd = 3 g cm−3 and to start settling from
a height z0 = 5h.

by more sophisticated models (Dullemond & Dominik,
2005), which show that if collisions lead to particle adhe-
sion growth from sub-micron scales up to small macro-
scopic scales (of the order of a mm) occurs rapidly. There
are no time scale problems involved with the very earliest
phases of particle growth. Indeed, what is more problem-
atic is to understand how the population of small grains
– which are unquestionably present given the IR excesses
characteristic of Classical T Tauri star – survive to late
times. The likely solution to this quandary involves the
inclusion of particle fragmentation in sufficiently ener-
getic collisions, which allows a broad distribution of par-
ticle sizes to survive out to late times. Fragmentation
is not likely given collisions at relative velocities of the
order of a cm s−1 – values typical of settling for micron-
sized particles – but becomes more probable for collisions
at velocities of a m s−1 or higher.

3. Radial drift of particles

Previously we showed (equation 46) that the azimuthal
velocity of gas within a geometrically thin disk is close
to the Keplerian velocity. That it is not identical, how-
ever, turns out to have important consequences for the
evolution of small solid bodies within the disk (Weiden-
schilling, 1977b). We can distinguish two regimes,

• Small particles (a < cm) are well-coupled to the
gas. To a first approximation we can imagine that
they orbit with the gas velocity. Since they don’t
experience the same radial pressure gradient as the
gas, however, this means that they feel a net in-
ward force and drift inward at their radial terminal
velocity.

• Rocks (a > m) are less strongly coupled to the gas.
To a first approximation we can imagine that they
orbit with the Keplerian velocity. This is faster
than the gas velocity, so the rocks see a headwind
that saps their angular momentum and causes them
to spiral in toward the star.

To quantify these effects, we first compute the magnitude
of the deviation between the gas and Keplerian orbital
velocities. Starting from the radial component of the
momentum equation,

v2
φ,gas

r
=

GM∗

r2
+

1

ρ

dP

dr
, (112)

we write the variation of the midplane pressure with ra-
dius as a power-law near radius r0,

P = P0

(

r

r0

)−n

(113)

where P0 = ρ0c2
s. Substituting, we find,

vφ,gas = vK (1 − η)1/2 (114)

where

η = n
c2
s

v2
K

. (115)

Typically n is positive (i.e. the pressure decreases out-
ward), so the gas orbits slightly slower than the local
Keplerian velocity. For example, for a disk of constant
h(r)/r = 0.05 and surface density profile Σ ∝ r−1 we
have n = 3 and,

vφ,gas ≃ 0.996vK . (116)

The fractional difference between the gas and Keplerian
velocities is small indeed! However, at 1 AU even this
small fractional difference amounts to a relative velocity
of the order of 100 ms−1. Large rocks will then experience
a substantial, albeit subsonic, headwind.

With ⇥ v� = vK(1� �)1/2 with
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have n = 3 and,
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while at short wavelengths λ ≪ hc/kT (rin) there is an
exponential cut-off that matches that of the hottest an-
nulus in the disk,

λFλ ∝ λ−4e−hc/λkT (rin). (38)

For intermediate wavelengths,

hc

kT (rin)
≪ λ ≪

hc

kT (rout)
(39)

the form of the spectrum can be found by substituting,

x ≡
hc

λkT (rin)

(

r

rin

)3/4

(40)

into equation (35). We then have, approximately,

Fλ ∝ λ−7/3

∫ ∞

0

x5/3dx

ex − 1
∝ λ−7/3 (41)

and so

λFλ ∝ λ−4/3. (42)

The overall spectrum, shown schematically in Figure 11,
is that of a ‘stretched’ blackbody (Lynden-Bell, 1969).

The SED predicted by this simple model generates an
IR-excess, but with a declining SED in the mid-IR. This
is too steep to match the observations of even most Class
II sources.

4. Sketch of more complete models

Two additional pieces of physics need to be included
when computing detailed models of the SEDs of passive
disks. First, as already noted above, all reasonable disk
models flare toward large r, and as a consequence inter-
cept and reprocess a larger fraction of the stellar flux. At
large radii, Kenyon & Hartmann (1987) find that consis-
tent flared disk models approach a temperature profile,

Tdisk ∝ r−1/2, (43)

which is much flatter than the profile derived previously.
Second, the assumption that the emission from the disk
can be approximated as a single blackbody is too simple.
In fact, dust in the surface layers of the disk radiates at a
significantly higher temperature because the dust is more
efficient at absorbing short-wavelength stellar radiation
than it is at emitting in the IR (Shlosman & Begelman,
1989). Dust particles of size a absorb radiation efficiently
for λ < 2πa, but are inefficient absorbers and emitters for
λ > 2πa (i.e. the opacity is a declining function of wave-
length). As a result, the disk absorbs stellar radiation
close to the surface (where τ1µm ∼ 1), where the optical
depth to emission at longer IR wavelengths τIR ≪ 1. The
surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.

C. Actively accreting disks

The radial force balance in a passive disk includes con-
tributions from gravity, centrifugal force, and radial pres-
sure gradients. The equation reads,

v2
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r
=

GM∗

r2
+

1

ρ

dP

dr
, (44)

where vφ is the orbital velocity of the gas and P is the
pressure. To estimate the magnitude of the pressure gra-
dient term we note that,
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, (45)

where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,

v2
φ = v2

K

[

1 −O
(

h

r

)2
]

, (46)

i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.

C. Actively accreting disks
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tributions from gravity, centrifugal force, and radial pres-
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where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,
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i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
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disk model made up of,

1. A hot surface dust layer that directly re-radiates
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2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.

C. Actively accreting disks
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tributions from gravity, centrifugal force, and radial pres-
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where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,
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i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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FIG. 17 The settling and growth of a single particle in a lami-
nar (non-turbulent) protoplanetary disk. The model assumes
that a single particle (with initial size a = 1 µm (solid line),
0.1 µm (dashed line), or 0.01 µm (long dashed line) accretes
all smaller particles it encounters as it settles toward the disk
midplane. The smaller particles are assumed to be at rest.
The upper panel shows the height above the midplane as a
function of time, the lower panel the particle radius a. For
this example the disk parameters adopted are: orbital radius
r = 1 AU, scale height h = 3 × 1011 cm, surface density
Σ = 103 g cm−2, dust to gas ratio f = 10−2, and mean ther-
mal speed v̄ = 105 cm s−1. The dust particle is taken to have
a material density ρd = 3 g cm−3 and to start settling from
a height z0 = 5h.

by more sophisticated models (Dullemond & Dominik,
2005), which show that if collisions lead to particle adhe-
sion growth from sub-micron scales up to small macro-
scopic scales (of the order of a mm) occurs rapidly. There
are no time scale problems involved with the very earliest
phases of particle growth. Indeed, what is more problem-
atic is to understand how the population of small grains
– which are unquestionably present given the IR excesses
characteristic of Classical T Tauri star – survive to late
times. The likely solution to this quandary involves the
inclusion of particle fragmentation in sufficiently ener-
getic collisions, which allows a broad distribution of par-
ticle sizes to survive out to late times. Fragmentation
is not likely given collisions at relative velocities of the
order of a cm s−1 – values typical of settling for micron-
sized particles – but becomes more probable for collisions
at velocities of a m s−1 or higher.

3. Radial drift of particles

Previously we showed (equation 46) that the azimuthal
velocity of gas within a geometrically thin disk is close
to the Keplerian velocity. That it is not identical, how-
ever, turns out to have important consequences for the
evolution of small solid bodies within the disk (Weiden-
schilling, 1977b). We can distinguish two regimes,

• Small particles (a < cm) are well-coupled to the
gas. To a first approximation we can imagine that
they orbit with the gas velocity. Since they don’t
experience the same radial pressure gradient as the
gas, however, this means that they feel a net in-
ward force and drift inward at their radial terminal
velocity.

• Rocks (a > m) are less strongly coupled to the gas.
To a first approximation we can imagine that they
orbit with the Keplerian velocity. This is faster
than the gas velocity, so the rocks see a headwind
that saps their angular momentum and causes them
to spiral in toward the star.

To quantify these effects, we first compute the magnitude
of the deviation between the gas and Keplerian orbital
velocities. Starting from the radial component of the
momentum equation,
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we write the variation of the midplane pressure with ra-
dius as a power-law near radius r0,
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where P0 = ρ0c2
s. Substituting, we find,

vφ,gas = vK (1 − η)1/2 (114)

where
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. (115)

Typically n is positive (i.e. the pressure decreases out-
ward), so the gas orbits slightly slower than the local
Keplerian velocity. For example, for a disk of constant
h(r)/r = 0.05 and surface density profile Σ ∝ r−1 we
have n = 3 and,

vφ,gas ≃ 0.996vK . (116)

The fractional difference between the gas and Keplerian
velocities is small indeed! However, at 1 AU even this
small fractional difference amounts to a relative velocity
of the order of 100 ms−1. Large rocks will then experience
a substantial, albeit subsonic, headwind.

With ⇥ v� = vK(1� �)1/2 with
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FIG. 17 The settling and growth of a single particle in a lami-
nar (non-turbulent) protoplanetary disk. The model assumes
that a single particle (with initial size a = 1 µm (solid line),
0.1 µm (dashed line), or 0.01 µm (long dashed line) accretes
all smaller particles it encounters as it settles toward the disk
midplane. The smaller particles are assumed to be at rest.
The upper panel shows the height above the midplane as a
function of time, the lower panel the particle radius a. For
this example the disk parameters adopted are: orbital radius
r = 1 AU, scale height h = 3 × 1011 cm, surface density
Σ = 103 g cm−2, dust to gas ratio f = 10−2, and mean ther-
mal speed v̄ = 105 cm s−1. The dust particle is taken to have
a material density ρd = 3 g cm−3 and to start settling from
a height z0 = 5h.

by more sophisticated models (Dullemond & Dominik,
2005), which show that if collisions lead to particle adhe-
sion growth from sub-micron scales up to small macro-
scopic scales (of the order of a mm) occurs rapidly. There
are no time scale problems involved with the very earliest
phases of particle growth. Indeed, what is more problem-
atic is to understand how the population of small grains
– which are unquestionably present given the IR excesses
characteristic of Classical T Tauri star – survive to late
times. The likely solution to this quandary involves the
inclusion of particle fragmentation in sufficiently ener-
getic collisions, which allows a broad distribution of par-
ticle sizes to survive out to late times. Fragmentation
is not likely given collisions at relative velocities of the
order of a cm s−1 – values typical of settling for micron-
sized particles – but becomes more probable for collisions
at velocities of a m s−1 or higher.

3. Radial drift of particles

Previously we showed (equation 46) that the azimuthal
velocity of gas within a geometrically thin disk is close
to the Keplerian velocity. That it is not identical, how-
ever, turns out to have important consequences for the
evolution of small solid bodies within the disk (Weiden-
schilling, 1977b). We can distinguish two regimes,

• Small particles (a < cm) are well-coupled to the
gas. To a first approximation we can imagine that
they orbit with the gas velocity. Since they don’t
experience the same radial pressure gradient as the
gas, however, this means that they feel a net in-
ward force and drift inward at their radial terminal
velocity.

• Rocks (a > m) are less strongly coupled to the gas.
To a first approximation we can imagine that they
orbit with the Keplerian velocity. This is faster
than the gas velocity, so the rocks see a headwind
that saps their angular momentum and causes them
to spiral in toward the star.

To quantify these effects, we first compute the magnitude
of the deviation between the gas and Keplerian orbital
velocities. Starting from the radial component of the
momentum equation,

v2
φ,gas

r
=

GM∗

r2
+

1

ρ

dP

dr
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we write the variation of the midplane pressure with ra-
dius as a power-law near radius r0,
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where P0 = ρ0c2
s. Substituting, we find,

vφ,gas = vK (1 − η)1/2 (114)

where
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c2
s

v2
K

. (115)

Typically n is positive (i.e. the pressure decreases out-
ward), so the gas orbits slightly slower than the local
Keplerian velocity. For example, for a disk of constant
h(r)/r = 0.05 and surface density profile Σ ∝ r−1 we
have n = 3 and,

vφ,gas ≃ 0.996vK . (116)

The fractional difference between the gas and Keplerian
velocities is small indeed! However, at 1 AU even this
small fractional difference amounts to a relative velocity
of the order of 100 ms−1. Large rocks will then experience
a substantial, albeit subsonic, headwind.

� (a) v� = 0.996vK for n = 3
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while at short wavelengths λ ≪ hc/kT (rin) there is an
exponential cut-off that matches that of the hottest an-
nulus in the disk,

λFλ ∝ λ−4e−hc/λkT (rin). (38)

For intermediate wavelengths,

hc

kT (rin)
≪ λ ≪

hc

kT (rout)
(39)

the form of the spectrum can be found by substituting,

x ≡
hc

λkT (rin)

(

r

rin

)3/4

(40)

into equation (35). We then have, approximately,

Fλ ∝ λ−7/3

∫ ∞

0

x5/3dx

ex − 1
∝ λ−7/3 (41)

and so

λFλ ∝ λ−4/3. (42)

The overall spectrum, shown schematically in Figure 11,
is that of a ‘stretched’ blackbody (Lynden-Bell, 1969).

The SED predicted by this simple model generates an
IR-excess, but with a declining SED in the mid-IR. This
is too steep to match the observations of even most Class
II sources.

4. Sketch of more complete models

Two additional pieces of physics need to be included
when computing detailed models of the SEDs of passive
disks. First, as already noted above, all reasonable disk
models flare toward large r, and as a consequence inter-
cept and reprocess a larger fraction of the stellar flux. At
large radii, Kenyon & Hartmann (1987) find that consis-
tent flared disk models approach a temperature profile,

Tdisk ∝ r−1/2, (43)

which is much flatter than the profile derived previously.
Second, the assumption that the emission from the disk
can be approximated as a single blackbody is too simple.
In fact, dust in the surface layers of the disk radiates at a
significantly higher temperature because the dust is more
efficient at absorbing short-wavelength stellar radiation
than it is at emitting in the IR (Shlosman & Begelman,
1989). Dust particles of size a absorb radiation efficiently
for λ < 2πa, but are inefficient absorbers and emitters for
λ > 2πa (i.e. the opacity is a declining function of wave-
length). As a result, the disk absorbs stellar radiation
close to the surface (where τ1µm ∼ 1), where the optical
depth to emission at longer IR wavelengths τIR ≪ 1. The
surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.

C. Actively accreting disks

The radial force balance in a passive disk includes con-
tributions from gravity, centrifugal force, and radial pres-
sure gradients. The equation reads,

v2
φ

r
=

GM∗

r2
+

1

ρ

dP

dr
, (44)

where vφ is the orbital velocity of the gas and P is the
pressure. To estimate the magnitude of the pressure gra-
dient term we note that,

1

ρ

dP

dr
∼ −

1

ρ

P

r

∼ −
1

ρ

ρc2
s

r

∼ −
GM∗

r2

(

h

r

)2

, (45)

where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,

v2
φ = v2

K

[

1 −O
(

h

r

)2
]

, (46)

i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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λ > 2πa (i.e. the opacity is a declining function of wave-
length). As a result, the disk absorbs stellar radiation
close to the surface (where τ1µm ∼ 1), where the optical
depth to emission at longer IR wavelengths τIR ≪ 1. The
surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.

C. Actively accreting disks

The radial force balance in a passive disk includes con-
tributions from gravity, centrifugal force, and radial pres-
sure gradients. The equation reads,
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where vφ is the orbital velocity of the gas and P is the
pressure. To estimate the magnitude of the pressure gra-
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where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,
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i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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ang & Goldreich (1997) showed that a relatively simple
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half of the stellar flux and re-emits it as thermal
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can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.
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tributions from gravity, centrifugal force, and radial pres-
sure gradients. The equation reads,
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where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,
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i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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FIG. 17 The settling and growth of a single particle in a lami-
nar (non-turbulent) protoplanetary disk. The model assumes
that a single particle (with initial size a = 1 µm (solid line),
0.1 µm (dashed line), or 0.01 µm (long dashed line) accretes
all smaller particles it encounters as it settles toward the disk
midplane. The smaller particles are assumed to be at rest.
The upper panel shows the height above the midplane as a
function of time, the lower panel the particle radius a. For
this example the disk parameters adopted are: orbital radius
r = 1 AU, scale height h = 3 × 1011 cm, surface density
Σ = 103 g cm−2, dust to gas ratio f = 10−2, and mean ther-
mal speed v̄ = 105 cm s−1. The dust particle is taken to have
a material density ρd = 3 g cm−3 and to start settling from
a height z0 = 5h.

by more sophisticated models (Dullemond & Dominik,
2005), which show that if collisions lead to particle adhe-
sion growth from sub-micron scales up to small macro-
scopic scales (of the order of a mm) occurs rapidly. There
are no time scale problems involved with the very earliest
phases of particle growth. Indeed, what is more problem-
atic is to understand how the population of small grains
– which are unquestionably present given the IR excesses
characteristic of Classical T Tauri star – survive to late
times. The likely solution to this quandary involves the
inclusion of particle fragmentation in sufficiently ener-
getic collisions, which allows a broad distribution of par-
ticle sizes to survive out to late times. Fragmentation
is not likely given collisions at relative velocities of the
order of a cm s−1 – values typical of settling for micron-
sized particles – but becomes more probable for collisions
at velocities of a m s−1 or higher.

3. Radial drift of particles

Previously we showed (equation 46) that the azimuthal
velocity of gas within a geometrically thin disk is close
to the Keplerian velocity. That it is not identical, how-
ever, turns out to have important consequences for the
evolution of small solid bodies within the disk (Weiden-
schilling, 1977b). We can distinguish two regimes,

• Small particles (a < cm) are well-coupled to the
gas. To a first approximation we can imagine that
they orbit with the gas velocity. Since they don’t
experience the same radial pressure gradient as the
gas, however, this means that they feel a net in-
ward force and drift inward at their radial terminal
velocity.

• Rocks (a > m) are less strongly coupled to the gas.
To a first approximation we can imagine that they
orbit with the Keplerian velocity. This is faster
than the gas velocity, so the rocks see a headwind
that saps their angular momentum and causes them
to spiral in toward the star.

To quantify these effects, we first compute the magnitude
of the deviation between the gas and Keplerian orbital
velocities. Starting from the radial component of the
momentum equation,

v2
φ,gas

r
=

GM∗

r2
+

1

ρ

dP

dr
, (112)

we write the variation of the midplane pressure with ra-
dius as a power-law near radius r0,

P = P0

(

r

r0

)−n

(113)

where P0 = ρ0c2
s. Substituting, we find,

vφ,gas = vK (1 − η)1/2 (114)

where

η = n
c2
s

v2
K

. (115)

Typically n is positive (i.e. the pressure decreases out-
ward), so the gas orbits slightly slower than the local
Keplerian velocity. For example, for a disk of constant
h(r)/r = 0.05 and surface density profile Σ ∝ r−1 we
have n = 3 and,

vφ,gas ≃ 0.996vK . (116)

The fractional difference between the gas and Keplerian
velocities is small indeed! However, at 1 AU even this
small fractional difference amounts to a relative velocity
of the order of 100 ms−1. Large rocks will then experience
a substantial, albeit subsonic, headwind.

With ⇥ v� = vK(1� �)1/2 with

24

FIG. 17 The settling and growth of a single particle in a lami-
nar (non-turbulent) protoplanetary disk. The model assumes
that a single particle (with initial size a = 1 µm (solid line),
0.1 µm (dashed line), or 0.01 µm (long dashed line) accretes
all smaller particles it encounters as it settles toward the disk
midplane. The smaller particles are assumed to be at rest.
The upper panel shows the height above the midplane as a
function of time, the lower panel the particle radius a. For
this example the disk parameters adopted are: orbital radius
r = 1 AU, scale height h = 3 × 1011 cm, surface density
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to the Keplerian velocity. That it is not identical, how-
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gas. To a first approximation we can imagine that
they orbit with the gas velocity. Since they don’t
experience the same radial pressure gradient as the
gas, however, this means that they feel a net in-
ward force and drift inward at their radial terminal
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• Rocks (a > m) are less strongly coupled to the gas.
To a first approximation we can imagine that they
orbit with the Keplerian velocity. This is faster
than the gas velocity, so the rocks see a headwind
that saps their angular momentum and causes them
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Typically n is positive (i.e. the pressure decreases out-
ward), so the gas orbits slightly slower than the local
Keplerian velocity. For example, for a disk of constant
h(r)/r = 0.05 and surface density profile Σ ∝ r−1 we
have n = 3 and,

vφ,gas ≃ 0.996vK . (116)

The fractional difference between the gas and Keplerian
velocities is small indeed! However, at 1 AU even this
small fractional difference amounts to a relative velocity
of the order of 100 ms−1. Large rocks will then experience
a substantial, albeit subsonic, headwind.

� (a) v� = 0.996vK for n = 3 Particle Headwind
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The overall spectrum, shown schematically in Figure 11,
is that of a ‘stretched’ blackbody (Lynden-Bell, 1969).

The SED predicted by this simple model generates an
IR-excess, but with a declining SED in the mid-IR. This
is too steep to match the observations of even most Class
II sources.

4. Sketch of more complete models

Two additional pieces of physics need to be included
when computing detailed models of the SEDs of passive
disks. First, as already noted above, all reasonable disk
models flare toward large r, and as a consequence inter-
cept and reprocess a larger fraction of the stellar flux. At
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tent flared disk models approach a temperature profile,

Tdisk ∝ r−1/2, (43)
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Second, the assumption that the emission from the disk
can be approximated as a single blackbody is too simple.
In fact, dust in the surface layers of the disk radiates at a
significantly higher temperature because the dust is more
efficient at absorbing short-wavelength stellar radiation
than it is at emitting in the IR (Shlosman & Begelman,
1989). Dust particles of size a absorb radiation efficiently
for λ < 2πa, but are inefficient absorbers and emitters for
λ > 2πa (i.e. the opacity is a declining function of wave-
length). As a result, the disk absorbs stellar radiation
close to the surface (where τ1µm ∼ 1), where the optical
depth to emission at longer IR wavelengths τIR ≪ 1. The
surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.
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where vφ is the orbital velocity of the gas and P is the
pressure. To estimate the magnitude of the pressure gra-
dient term we note that,

1

ρ

dP

dr
∼ −

1

ρ

P

r

∼ −
1

ρ

ρc2
s

r

∼ −
GM∗

r2

(

h

r

)2

, (45)

where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,

v2
φ = v2

K

[

1 −O
(

h

r

)2
]

, (46)

i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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while at short wavelengths λ ≪ hc/kT (rin) there is an
exponential cut-off that matches that of the hottest an-
nulus in the disk,

λFλ ∝ λ−4e−hc/λkT (rin). (38)

For intermediate wavelengths,

hc

kT (rin)
≪ λ ≪

hc

kT (rout)
(39)

the form of the spectrum can be found by substituting,

x ≡
hc

λkT (rin)

(

r

rin

)3/4

(40)

into equation (35). We then have, approximately,

Fλ ∝ λ−7/3

∫ ∞

0

x5/3dx

ex − 1
∝ λ−7/3 (41)

and so

λFλ ∝ λ−4/3. (42)

The overall spectrum, shown schematically in Figure 11,
is that of a ‘stretched’ blackbody (Lynden-Bell, 1969).

The SED predicted by this simple model generates an
IR-excess, but with a declining SED in the mid-IR. This
is too steep to match the observations of even most Class
II sources.

4. Sketch of more complete models

Two additional pieces of physics need to be included
when computing detailed models of the SEDs of passive
disks. First, as already noted above, all reasonable disk
models flare toward large r, and as a consequence inter-
cept and reprocess a larger fraction of the stellar flux. At
large radii, Kenyon & Hartmann (1987) find that consis-
tent flared disk models approach a temperature profile,

Tdisk ∝ r−1/2, (43)

which is much flatter than the profile derived previously.
Second, the assumption that the emission from the disk
can be approximated as a single blackbody is too simple.
In fact, dust in the surface layers of the disk radiates at a
significantly higher temperature because the dust is more
efficient at absorbing short-wavelength stellar radiation
than it is at emitting in the IR (Shlosman & Begelman,
1989). Dust particles of size a absorb radiation efficiently
for λ < 2πa, but are inefficient absorbers and emitters for
λ > 2πa (i.e. the opacity is a declining function of wave-
length). As a result, the disk absorbs stellar radiation
close to the surface (where τ1µm ∼ 1), where the optical
depth to emission at longer IR wavelengths τIR ≪ 1. The
surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.

C. Actively accreting disks

The radial force balance in a passive disk includes con-
tributions from gravity, centrifugal force, and radial pres-
sure gradients. The equation reads,

v2
φ
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=

GM∗

r2
+
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ρ

dP

dr
, (44)

where vφ is the orbital velocity of the gas and P is the
pressure. To estimate the magnitude of the pressure gra-
dient term we note that,
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ρ
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, (45)

where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,

v2
φ = v2

K

[

1 −O
(

h

r

)2
]

, (46)

i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
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where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,
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i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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FIG. 17 The settling and growth of a single particle in a lami-
nar (non-turbulent) protoplanetary disk. The model assumes
that a single particle (with initial size a = 1 µm (solid line),
0.1 µm (dashed line), or 0.01 µm (long dashed line) accretes
all smaller particles it encounters as it settles toward the disk
midplane. The smaller particles are assumed to be at rest.
The upper panel shows the height above the midplane as a
function of time, the lower panel the particle radius a. For
this example the disk parameters adopted are: orbital radius
r = 1 AU, scale height h = 3 × 1011 cm, surface density
Σ = 103 g cm−2, dust to gas ratio f = 10−2, and mean ther-
mal speed v̄ = 105 cm s−1. The dust particle is taken to have
a material density ρd = 3 g cm−3 and to start settling from
a height z0 = 5h.

by more sophisticated models (Dullemond & Dominik,
2005), which show that if collisions lead to particle adhe-
sion growth from sub-micron scales up to small macro-
scopic scales (of the order of a mm) occurs rapidly. There
are no time scale problems involved with the very earliest
phases of particle growth. Indeed, what is more problem-
atic is to understand how the population of small grains
– which are unquestionably present given the IR excesses
characteristic of Classical T Tauri star – survive to late
times. The likely solution to this quandary involves the
inclusion of particle fragmentation in sufficiently ener-
getic collisions, which allows a broad distribution of par-
ticle sizes to survive out to late times. Fragmentation
is not likely given collisions at relative velocities of the
order of a cm s−1 – values typical of settling for micron-
sized particles – but becomes more probable for collisions
at velocities of a m s−1 or higher.

3. Radial drift of particles

Previously we showed (equation 46) that the azimuthal
velocity of gas within a geometrically thin disk is close
to the Keplerian velocity. That it is not identical, how-
ever, turns out to have important consequences for the
evolution of small solid bodies within the disk (Weiden-
schilling, 1977b). We can distinguish two regimes,

• Small particles (a < cm) are well-coupled to the
gas. To a first approximation we can imagine that
they orbit with the gas velocity. Since they don’t
experience the same radial pressure gradient as the
gas, however, this means that they feel a net in-
ward force and drift inward at their radial terminal
velocity.

• Rocks (a > m) are less strongly coupled to the gas.
To a first approximation we can imagine that they
orbit with the Keplerian velocity. This is faster
than the gas velocity, so the rocks see a headwind
that saps their angular momentum and causes them
to spiral in toward the star.

To quantify these effects, we first compute the magnitude
of the deviation between the gas and Keplerian orbital
velocities. Starting from the radial component of the
momentum equation,

v2
φ,gas

r
=

GM∗

r2
+

1

ρ

dP

dr
, (112)

we write the variation of the midplane pressure with ra-
dius as a power-law near radius r0,

P = P0

(

r

r0

)−n

(113)

where P0 = ρ0c2
s. Substituting, we find,

vφ,gas = vK (1 − η)1/2 (114)

where

η = n
c2
s

v2
K

. (115)

Typically n is positive (i.e. the pressure decreases out-
ward), so the gas orbits slightly slower than the local
Keplerian velocity. For example, for a disk of constant
h(r)/r = 0.05 and surface density profile Σ ∝ r−1 we
have n = 3 and,

vφ,gas ≃ 0.996vK . (116)

The fractional difference between the gas and Keplerian
velocities is small indeed! However, at 1 AU even this
small fractional difference amounts to a relative velocity
of the order of 100 ms−1. Large rocks will then experience
a substantial, albeit subsonic, headwind.

With ⇥ v� = vK(1� �)1/2 with
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have n = 3 and,
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� (a) v� = 0.996vK for n = 3
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momentum of the gas within the disk is just that of a
Keplerian orbit,

l = r2Ω =
√

GM∗r, (47)

which is an increasing function of radius. To accrete
on to the star, gas in a disk must lose angular momentum,
either,

1. Via redistribution of angular momentum within the
disk (normally described as being due to ‘viscosity’,
though this is a rather loaded term).

2. Via loss of angular momentum from the star-disk
system, for example in a magnetically driven disk
wind.

Models in the second class – one well-known example of
which is the disk wind solution described by Blandford
& Payne (1982) – are, perhaps undeservedly, not widely
considered (in part, because in some disk-accreting white
dwarf systems observations disfavor wind models, though
no such constraints exist for protoplanetary disks). Here,
we will derive the equation for the time evolution of the
surface density for a thin, viscous disk (Lynden-Bell &
Pringle, 1974; Shakura & Sunyaev, 1973). Clear reviews
of the fundamentals of accretion disk theory can be found
in Pringle (1981) and in Frank, King & Raine (2002).

1. Diffusive evolution equation

Let the disk have surface density Σ(r, t) and radial ve-
locity vr(r, t) (defined such that vr < 0 for inflow). The
potential is assumed fixed so that the angular velocity
Ω = Ω(r) only. In cylindrical co-ordinates, the conti-
nuity equation for an axisymmetric flow gives (see e.g.
Pringle (1981) for an elementary derivation),

r
∂Σ

∂t
+

∂

∂r
(rΣvr) = 0. (48)

Similarly, conservation of angular momentum yields,

r
∂

(

Σr2Ω
)

∂t
+

∂

∂r

(

rΣvr · r2Ω
)

=
1

2π

∂G

∂r
, (49)

where the term on the right-hand side represents the net
torque acting on the fluid due to viscous stresses. From
fluid dynamics (Pringle, 1981), G is given in terms of the
kinematic viscosity ν by the expression,

G = 2πr · νΣr
dΩ

dr
· r (50)

where the right-hand side is the product of the circum-
ference, the viscous force per unit length, and the level
arm r. If we substitute for G, eliminate vr between equa-
tion (48) and equation (49), and specialize to a Keplerian

potential with Ω ∝ r−3/2, we obtain the evolution equa-
tion for the surface density of a thin accretion disk in its
normal form,

∂Σ

∂t
=

3

r

∂

∂r

[

r1/2 ∂

∂r

(

νΣr1/2
)

]

. (51)

This partial differential equation for the evolution of the
surface density Σ has the form of a diffusion equation.
To make that explicit, we change variables to,

X ≡ 2r1/2

f ≡
3

2
ΣX. (52)

For a constant ν, equation (51) then takes the prototyp-
ical form for a diffusion equation,

∂f

∂t
= D

∂2f

∂X2
(53)

with a diffusion coefficient,

D =
12ν

X2
. (54)

The characteristic diffusion time scale implied by equa-
tion (53) is X2/D. Converting back to the physical vari-
ables, we find that the evolution time scale for disk of
scale r with kinematic viscosity ν is,

τ ≃
r2

ν
. (55)

Observations of disk evolution (for example determina-
tions of the time scale for the secular decline in the ac-
cretion rate) can therefore be combined with estimates of
the disk size to yield an estimate of the effective viscosity
in the disk (Hartmann et al., 1998).

2. Solutions

In general, ν is expected to be some function of the
local conditions within the disk (surface density, radius,
temperature, ionization fraction etc). If ν depends on Σ,
then equation (51) becomes a non-linear equation with
no analytic solution (except in some special cases), while
if there is more a complex dependence on the local con-
ditions then the surface density evolution equation will
often need to be solved simultaneously with an evolution
equation for the central temperature (Pringle, Verbunt &
Wade, 1986). Analytic solutions are possible, however, if
ν can be written as a power-law in radius (Lynden-Bell &
Pringle, 1974), and these suffice to illustrate the essential
behavior implied by equation (51).

First, we describe a Green’s function solution to equa-
tion (51) for the case ν = constant. Suppose that at
t = 0, all of the gas lies in a thin ring of mass m at
radius r0,

Σ(r, t = 0) =
m

2πr0
δ(r − r0). (56)

Particle Headwind
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while at short wavelengths λ ≪ hc/kT (rin) there is an
exponential cut-off that matches that of the hottest an-
nulus in the disk,

λFλ ∝ λ−4e−hc/λkT (rin). (38)

For intermediate wavelengths,

hc

kT (rin)
≪ λ ≪

hc

kT (rout)
(39)

the form of the spectrum can be found by substituting,

x ≡
hc

λkT (rin)

(

r

rin

)3/4

(40)

into equation (35). We then have, approximately,

Fλ ∝ λ−7/3

∫ ∞

0

x5/3dx

ex − 1
∝ λ−7/3 (41)

and so

λFλ ∝ λ−4/3. (42)

The overall spectrum, shown schematically in Figure 11,
is that of a ‘stretched’ blackbody (Lynden-Bell, 1969).

The SED predicted by this simple model generates an
IR-excess, but with a declining SED in the mid-IR. This
is too steep to match the observations of even most Class
II sources.

4. Sketch of more complete models

Two additional pieces of physics need to be included
when computing detailed models of the SEDs of passive
disks. First, as already noted above, all reasonable disk
models flare toward large r, and as a consequence inter-
cept and reprocess a larger fraction of the stellar flux. At
large radii, Kenyon & Hartmann (1987) find that consis-
tent flared disk models approach a temperature profile,

Tdisk ∝ r−1/2, (43)

which is much flatter than the profile derived previously.
Second, the assumption that the emission from the disk
can be approximated as a single blackbody is too simple.
In fact, dust in the surface layers of the disk radiates at a
significantly higher temperature because the dust is more
efficient at absorbing short-wavelength stellar radiation
than it is at emitting in the IR (Shlosman & Begelman,
1989). Dust particles of size a absorb radiation efficiently
for λ < 2πa, but are inefficient absorbers and emitters for
λ > 2πa (i.e. the opacity is a declining function of wave-
length). As a result, the disk absorbs stellar radiation
close to the surface (where τ1µm ∼ 1), where the optical
depth to emission at longer IR wavelengths τIR ≪ 1. The
surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.

C. Actively accreting disks

The radial force balance in a passive disk includes con-
tributions from gravity, centrifugal force, and radial pres-
sure gradients. The equation reads,

v2
φ

r
=

GM∗

r2
+

1

ρ

dP

dr
, (44)

where vφ is the orbital velocity of the gas and P is the
pressure. To estimate the magnitude of the pressure gra-
dient term we note that,

1

ρ

dP

dr
∼ −

1

ρ

P

r

∼ −
1

ρ

ρc2
s

r

∼ −
GM∗

r2

(

h

r

)2

, (45)

where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,

v2
φ = v2

K

[

1 −O
(

h

r

)2
]

, (46)

i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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length). As a result, the disk absorbs stellar radiation
close to the surface (where τ1µm ∼ 1), where the optical
depth to emission at longer IR wavelengths τIR ≪ 1. The
surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.

C. Actively accreting disks

The radial force balance in a passive disk includes con-
tributions from gravity, centrifugal force, and radial pres-
sure gradients. The equation reads,
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ρ
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, (44)

where vφ is the orbital velocity of the gas and P is the
pressure. To estimate the magnitude of the pressure gra-
dient term we note that,
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where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,

v2
φ = v2

K

[

1 −O
(

h

r

)2
]

, (46)

i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r ≪
1) disk3. To a good approximation, the specific angular

3 This is not to say that pressure gradients are unimportant – as
we will see later the small difference between vφ and vK is of
critical importance for the dynamics of small rocks within the
disk.
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while at short wavelengths λ ≪ hc/kT (rin) there is an
exponential cut-off that matches that of the hottest an-
nulus in the disk,

λFλ ∝ λ−4e−hc/λkT (rin). (38)
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hc

kT (rout)
(39)

the form of the spectrum can be found by substituting,
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into equation (35). We then have, approximately,

Fλ ∝ λ−7/3

∫ ∞

0

x5/3dx

ex − 1
∝ λ−7/3 (41)

and so

λFλ ∝ λ−4/3. (42)

The overall spectrum, shown schematically in Figure 11,
is that of a ‘stretched’ blackbody (Lynden-Bell, 1969).
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is too steep to match the observations of even most Class
II sources.

4. Sketch of more complete models

Two additional pieces of physics need to be included
when computing detailed models of the SEDs of passive
disks. First, as already noted above, all reasonable disk
models flare toward large r, and as a consequence inter-
cept and reprocess a larger fraction of the stellar flux. At
large radii, Kenyon & Hartmann (1987) find that consis-
tent flared disk models approach a temperature profile,

Tdisk ∝ r−1/2, (43)

which is much flatter than the profile derived previously.
Second, the assumption that the emission from the disk
can be approximated as a single blackbody is too simple.
In fact, dust in the surface layers of the disk radiates at a
significantly higher temperature because the dust is more
efficient at absorbing short-wavelength stellar radiation
than it is at emitting in the IR (Shlosman & Begelman,
1989). Dust particles of size a absorb radiation efficiently
for λ < 2πa, but are inefficient absorbers and emitters for
λ > 2πa (i.e. the opacity is a declining function of wave-
length). As a result, the disk absorbs stellar radiation
close to the surface (where τ1µm ∼ 1), where the optical
depth to emission at longer IR wavelengths τIR ≪ 1. The
surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.

C. Actively accreting disks

The radial force balance in a passive disk includes con-
tributions from gravity, centrifugal force, and radial pres-
sure gradients. The equation reads,

v2
φ

r
=

GM∗

r2
+

1

ρ

dP

dr
, (44)

where vφ is the orbital velocity of the gas and P is the
pressure. To estimate the magnitude of the pressure gra-
dient term we note that,

1

ρ

dP

dr
∼ −

1

ρ

P

r

∼ −
1

ρ

ρc2
s

r

∼ −
GM∗

r2

(

h

r

)2

, (45)

where for the final step we have made use of the relation
h = cs/Ω. If vK is the Keplerian velocity at radius r, we
then have that,

v2
φ = v2

K

[

1 −O
(

h

r

)2
]

, (46)

i.e pressure gradients make a negligible contribution to
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FIG. 17 The settling and growth of a single particle in a lami-
nar (non-turbulent) protoplanetary disk. The model assumes
that a single particle (with initial size a = 1 µm (solid line),
0.1 µm (dashed line), or 0.01 µm (long dashed line) accretes
all smaller particles it encounters as it settles toward the disk
midplane. The smaller particles are assumed to be at rest.
The upper panel shows the height above the midplane as a
function of time, the lower panel the particle radius a. For
this example the disk parameters adopted are: orbital radius
r = 1 AU, scale height h = 3 × 1011 cm, surface density
Σ = 103 g cm−2, dust to gas ratio f = 10−2, and mean ther-
mal speed v̄ = 105 cm s−1. The dust particle is taken to have
a material density ρd = 3 g cm−3 and to start settling from
a height z0 = 5h.

by more sophisticated models (Dullemond & Dominik,
2005), which show that if collisions lead to particle adhe-
sion growth from sub-micron scales up to small macro-
scopic scales (of the order of a mm) occurs rapidly. There
are no time scale problems involved with the very earliest
phases of particle growth. Indeed, what is more problem-
atic is to understand how the population of small grains
– which are unquestionably present given the IR excesses
characteristic of Classical T Tauri star – survive to late
times. The likely solution to this quandary involves the
inclusion of particle fragmentation in sufficiently ener-
getic collisions, which allows a broad distribution of par-
ticle sizes to survive out to late times. Fragmentation
is not likely given collisions at relative velocities of the
order of a cm s−1 – values typical of settling for micron-
sized particles – but becomes more probable for collisions
at velocities of a m s−1 or higher.

3. Radial drift of particles

Previously we showed (equation 46) that the azimuthal
velocity of gas within a geometrically thin disk is close
to the Keplerian velocity. That it is not identical, how-
ever, turns out to have important consequences for the
evolution of small solid bodies within the disk (Weiden-
schilling, 1977b). We can distinguish two regimes,

• Small particles (a < cm) are well-coupled to the
gas. To a first approximation we can imagine that
they orbit with the gas velocity. Since they don’t
experience the same radial pressure gradient as the
gas, however, this means that they feel a net in-
ward force and drift inward at their radial terminal
velocity.

• Rocks (a > m) are less strongly coupled to the gas.
To a first approximation we can imagine that they
orbit with the Keplerian velocity. This is faster
than the gas velocity, so the rocks see a headwind
that saps their angular momentum and causes them
to spiral in toward the star.

To quantify these effects, we first compute the magnitude
of the deviation between the gas and Keplerian orbital
velocities. Starting from the radial component of the
momentum equation,

v2
φ,gas

r
=

GM∗

r2
+

1

ρ

dP

dr
, (112)

we write the variation of the midplane pressure with ra-
dius as a power-law near radius r0,

P = P0

(

r

r0

)−n

(113)

where P0 = ρ0c2
s. Substituting, we find,

vφ,gas = vK (1 − η)1/2 (114)

where

η = n
c2
s

v2
K

. (115)

Typically n is positive (i.e. the pressure decreases out-
ward), so the gas orbits slightly slower than the local
Keplerian velocity. For example, for a disk of constant
h(r)/r = 0.05 and surface density profile Σ ∝ r−1 we
have n = 3 and,

vφ,gas ≃ 0.996vK . (116)

The fractional difference between the gas and Keplerian
velocities is small indeed! However, at 1 AU even this
small fractional difference amounts to a relative velocity
of the order of 100 ms−1. Large rocks will then experience
a substantial, albeit subsonic, headwind.

With ⇥ v� = vK(1� �)1/2 with
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Keplerian velocity. For example, for a disk of constant
h(r)/r = 0.05 and surface density profile Σ ∝ r−1 we
have n = 3 and,
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small fractional difference amounts to a relative velocity
of the order of 100 ms−1. Large rocks will then experience
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momentum of the gas within the disk is just that of a
Keplerian orbit,

l = r2Ω =
√

GM∗r, (47)

which is an increasing function of radius. To accrete
on to the star, gas in a disk must lose angular momentum,
either,

1. Via redistribution of angular momentum within the
disk (normally described as being due to ‘viscosity’,
though this is a rather loaded term).

2. Via loss of angular momentum from the star-disk
system, for example in a magnetically driven disk
wind.

Models in the second class – one well-known example of
which is the disk wind solution described by Blandford
& Payne (1982) – are, perhaps undeservedly, not widely
considered (in part, because in some disk-accreting white
dwarf systems observations disfavor wind models, though
no such constraints exist for protoplanetary disks). Here,
we will derive the equation for the time evolution of the
surface density for a thin, viscous disk (Lynden-Bell &
Pringle, 1974; Shakura & Sunyaev, 1973). Clear reviews
of the fundamentals of accretion disk theory can be found
in Pringle (1981) and in Frank, King & Raine (2002).

1. Diffusive evolution equation

Let the disk have surface density Σ(r, t) and radial ve-
locity vr(r, t) (defined such that vr < 0 for inflow). The
potential is assumed fixed so that the angular velocity
Ω = Ω(r) only. In cylindrical co-ordinates, the conti-
nuity equation for an axisymmetric flow gives (see e.g.
Pringle (1981) for an elementary derivation),

r
∂Σ

∂t
+

∂

∂r
(rΣvr) = 0. (48)

Similarly, conservation of angular momentum yields,

r
∂

(

Σr2Ω
)

∂t
+

∂

∂r

(

rΣvr · r2Ω
)

=
1

2π

∂G

∂r
, (49)

where the term on the right-hand side represents the net
torque acting on the fluid due to viscous stresses. From
fluid dynamics (Pringle, 1981), G is given in terms of the
kinematic viscosity ν by the expression,

G = 2πr · νΣr
dΩ

dr
· r (50)

where the right-hand side is the product of the circum-
ference, the viscous force per unit length, and the level
arm r. If we substitute for G, eliminate vr between equa-
tion (48) and equation (49), and specialize to a Keplerian

potential with Ω ∝ r−3/2, we obtain the evolution equa-
tion for the surface density of a thin accretion disk in its
normal form,

∂Σ

∂t
=

3

r

∂

∂r

[

r1/2 ∂

∂r

(

νΣr1/2
)

]

. (51)

This partial differential equation for the evolution of the
surface density Σ has the form of a diffusion equation.
To make that explicit, we change variables to,

X ≡ 2r1/2

f ≡
3

2
ΣX. (52)

For a constant ν, equation (51) then takes the prototyp-
ical form for a diffusion equation,

∂f

∂t
= D

∂2f

∂X2
(53)

with a diffusion coefficient,

D =
12ν

X2
. (54)

The characteristic diffusion time scale implied by equa-
tion (53) is X2/D. Converting back to the physical vari-
ables, we find that the evolution time scale for disk of
scale r with kinematic viscosity ν is,

τ ≃
r2

ν
. (55)

Observations of disk evolution (for example determina-
tions of the time scale for the secular decline in the ac-
cretion rate) can therefore be combined with estimates of
the disk size to yield an estimate of the effective viscosity
in the disk (Hartmann et al., 1998).

2. Solutions

In general, ν is expected to be some function of the
local conditions within the disk (surface density, radius,
temperature, ionization fraction etc). If ν depends on Σ,
then equation (51) becomes a non-linear equation with
no analytic solution (except in some special cases), while
if there is more a complex dependence on the local con-
ditions then the surface density evolution equation will
often need to be solved simultaneously with an evolution
equation for the central temperature (Pringle, Verbunt &
Wade, 1986). Analytic solutions are possible, however, if
ν can be written as a power-law in radius (Lynden-Bell &
Pringle, 1974), and these suffice to illustrate the essential
behavior implied by equation (51).

First, we describe a Green’s function solution to equa-
tion (51) for the case ν = constant. Suppose that at
t = 0, all of the gas lies in a thin ring of mass m at
radius r0,

Σ(r, t = 0) =
m

2πr0
δ(r − r0). (56)

Particle Headwind

Loss of Ang. Mom.
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The effect of the drag force on the dynamics of particles
of arbitrary sizes has been calculated by Weidenschilling
(1977b). Here, we adopt the approach of Takeuchi &
Lin (2002) and proceed by considering the radial and
azimuthal equations of motion for the particle9,

dvr

dt
=

v2
φ

r
− Ω2

Kr −
1

tfric
(vr − vr,gas)

d

dt
(rvφ) = −

r

tfric
(vφ − vφ,gas) . (117)

We simplify the azimuthal equation by noting that the
specific angular momentum always remains close to Ke-
plerian (i.e. the particle spirals in through a succession
of almost circular, almost Keplerian orbits),

d

dt
(rvφ) ≃ vr

d

dr
(rvK) =

1

2
vrvK . (118)

This yields,

vφ − vφ,gas ≃ −
1

2

tfricvrvK

r
. (119)

Turning now to the radial equation, we substitute for ΩK

using equation (114). Retaining only the lowest order
terms,

dvr

dt
= −η

v2
K

r
+

2vK

r
(vφ − vφ,gas) −

1

tfric
(vr − vr,gas) .

(120)
The dvr/dt term is negligible, and for simplicity we also
assume that vr,gas ≪ vr, which will be true for those par-
ticles experiencing the most rapid orbital decay. Elimi-
nating (vφ − vφ,gas) between equations (119) and (120)
we obtain,

vr

vK
=

−η
vK

r tfric + r
vK

t−1
fric

. (121)

This result can be cast into a more intuitive form by
defining a dimensionless stopping time,

τfric ≡ tfricΩK , (122)

in terms of which the particle radial velocity is,

vr

vK
=

−η

τfric + τ−1
fric

. (123)

The peak radial velocity is attained when τfric = 1 (i.e.
when the friction time scale equals Ω−1

K , and equals
ηvK/2 independent of the disk properties.

Figure 18 plots vr/vK as a function of the dimension-
less stopping time for a fiducial disk with h/r = 0.05.

9 Although this calculation is straightforward, it’s easy to confuse
the three different azimuthal velocities that are involved – that
of the particle, that of the gas, and the Kepler speed. Be careful!

FIG. 18 Radial drift velocity of particles at the midplane of
a protoplanetary disk with h/r = 0.05, plotted as a function
of the dimensionless stopping time τfric. The radial velocity
of the gas has been set to zero. The most rapid inward drift
occurs for a physical stopping time Ω−1

K , which for typical disk
models translates to a particle size in the 10 cm to m range.
At 1 AU, the peak inward velocity is around 60 ms−1, which
implies a decay time of less than 100 yr.

Using equations (96) and (98), one can associate a par-
ticular τfric with a unique particle size a given known
conditions in the protoplanetary disk. Generically, one
finds that at radii of a few AU the peak inspiral rate is
attained for particles with size of the order of 10 cm to
a few m. The minimum inspiral time scale at a given
orbital radius depends only on η – at 1 AU it is of the
order of 100 yr. The inescapable conclusion is that the
radial drift time scale ≪ disk lifetime for meter-
scale bodies in the protoplanetary disk.

As we noted earlier, the fact that most of the heavy
elements in the Solar System are found in the Sun means
that we can tolerate some loss of planetary raw mate-
rial during planet formation. However, radial drift time
scales as short as 100 yr would clearly lead to a catas-
trophic loss of mass into the star unless, in fact, growth
through the meter-scale size regime is very fast. The
most important conclusion from this analysis is, there-
fore, that planetesimal formation must be a rapid pro-
cess. This is a robust inference since it derives directly
from the unavoidable existence of a velocity differential
between the gas disk and solid bodies orbiting within it.

The radial drift velocities given by equation (123) im-
ply significant radial migration over the lifetime of the
disk – not just for particles at the most vulnerable meter-
scale size range but also for substantially smaller and
larger bodies. This means that we should expect substan-

~gas

E.g., Papaloizou & Terquem, Rep Prog Phys  69, 119 (2006)
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dvr

dt
=

v2
φ

r
− Ω2

Kr −
1

tfric
(vr − vr,gas)

d

dt
(rvφ) = −

r

tfric
(vφ − vφ,gas) . (117)

We simplify the azimuthal equation by noting that the
specific angular momentum always remains close to Ke-
plerian (i.e. the particle spirals in through a succession
of almost circular, almost Keplerian orbits),

d

dt
(rvφ) ≃ vr

d

dr
(rvK) =

1

2
vrvK . (118)

This yields,

vφ − vφ,gas ≃ −
1

2

tfricvrvK

r
. (119)

Turning now to the radial equation, we substitute for ΩK

using equation (114). Retaining only the lowest order
terms,

dvr

dt
= −η

v2
K

r
+

2vK

r
(vφ − vφ,gas) −

1

tfric
(vr − vr,gas) .

(120)
The dvr/dt term is negligible, and for simplicity we also
assume that vr,gas ≪ vr, which will be true for those par-
ticles experiencing the most rapid orbital decay. Elimi-
nating (vφ − vφ,gas) between equations (119) and (120)
we obtain,

vr

vK
=

−η
vK

r tfric + r
vK

t−1
fric

. (121)

This result can be cast into a more intuitive form by
defining a dimensionless stopping time,

τfric ≡ tfricΩK , (122)

in terms of which the particle radial velocity is,

vr

vK
=

−η

τfric + τ−1
fric

. (123)

The peak radial velocity is attained when τfric = 1 (i.e.
when the friction time scale equals Ω−1

K , and equals
ηvK/2 independent of the disk properties.

Figure 18 plots vr/vK as a function of the dimension-
less stopping time for a fiducial disk with h/r = 0.05.

9 Although this calculation is straightforward, it’s easy to confuse
the three different azimuthal velocities that are involved – that
of the particle, that of the gas, and the Kepler speed. Be careful!

FIG. 18 Radial drift velocity of particles at the midplane of
a protoplanetary disk with h/r = 0.05, plotted as a function
of the dimensionless stopping time τfric. The radial velocity
of the gas has been set to zero. The most rapid inward drift
occurs for a physical stopping time Ω−1

K , which for typical disk
models translates to a particle size in the 10 cm to m range.
At 1 AU, the peak inward velocity is around 60 ms−1, which
implies a decay time of less than 100 yr.

Using equations (96) and (98), one can associate a par-
ticular τfric with a unique particle size a given known
conditions in the protoplanetary disk. Generically, one
finds that at radii of a few AU the peak inspiral rate is
attained for particles with size of the order of 10 cm to
a few m. The minimum inspiral time scale at a given
orbital radius depends only on η – at 1 AU it is of the
order of 100 yr. The inescapable conclusion is that the
radial drift time scale ≪ disk lifetime for meter-
scale bodies in the protoplanetary disk.

As we noted earlier, the fact that most of the heavy
elements in the Solar System are found in the Sun means
that we can tolerate some loss of planetary raw mate-
rial during planet formation. However, radial drift time
scales as short as 100 yr would clearly lead to a catas-
trophic loss of mass into the star unless, in fact, growth
through the meter-scale size regime is very fast. The
most important conclusion from this analysis is, there-
fore, that planetesimal formation must be a rapid pro-
cess. This is a robust inference since it derives directly
from the unavoidable existence of a velocity differential
between the gas disk and solid bodies orbiting within it.

The radial drift velocities given by equation (123) im-
ply significant radial migration over the lifetime of the
disk – not just for particles at the most vulnerable meter-
scale size range but also for substantially smaller and
larger bodies. This means that we should expect substan-

~gas
1 m scale body at 1AU 
Spirals into the central 
star in about 100 years

E.g., Papaloizou & Terquem, Rep Prog Phys  69, 119 (2006)
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Sticking together—Collisional Fusion

what happens in a high speed central 
collision?
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tions will be justified later (where??).
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FIG. 1. The physical process of a collision between a
sphere and a plane (a), and the corresponding status in
the PT diagram (b). P and T are at their ambient val-
ues at the onset of the contact (A); P and T rise rapidly
to their maximum values and the region near the contact
point melts (blue in B); as the impactor starts to recoil,
P drops much more quickly than T in the melt zone (red
in C); the melt zone refreezes partially or completely be-
fore separation takes place. Note that the coexistence
curve (solid) is extremely flat at low temperature around
⇠ 150K [14]. The dashed curve is the shift of the coex-
istence curve due to interfacial melting (see text). figintro

(Main assumptions)

• Decoupled collisional dynamics and phase
transition dynamics: the compression-and-
recoil process obeys modified Hertz theory [9],
and the melting-freezing process is modeled as
a Stefan problem. If the melt zone has simi-
lar elastic properties as the unmelt zone, this
assumption is likely to be valid.

• The impactor does not fracture during the im-
pact.

• We only consider the e↵ect of interfacial melt-
ing but not bulk melting. Since bulk melting
is always preceded by interfacial melting and
requires much more violent impact, its role in
the collisional fusion should be less important.
It remains to be seen how bulk melting...

IV. ANALYSIS

secana

(Energy loss due to viscous dissipation)
Energy loss during a collision is mainly through

viscous dissipation, surface waves, and plastic defor-
mation [8]. When impact velocity is not too large
(i.e., much smaller than the sound speed of the ma-
terial), the energy loss into surface waves and plastic
deformation is negligible, and the dominant energy
loss is due to viscous dissipation. Denote by ⇠ the
ratio of viscous energy dissipation to the total en-
ergy, then it can be approximated by ⇠ ⇡ 1� e�2�,
where

� = 1.92

✓
⌘5V R

M2E3

◆1/5

(1) KinHertz

is a proportional to the ratio of the dissipated energy
to the total energy, and ⌘ the viscosity [9]. Here
R, M , and E are the e↵ective radius, mass, and
Young’s modulus, respectively, and ⌘ the viscosity
[9]. It should be noted that although this approx-
imation correctly models the dissipation as an in-
creasing function of V , its vanishing as V goes to
infinity is due to the lack of other physical mecha-
nism such as fracture. As shown by He & Wettlaufer
[9], viscous dissipation is the dominant energy loss
only at low impact velocity, so we choose a cut-o↵
of energy loss as

⇠(V ) = min{1� e�2�, 0.8}. (2) enloss1

The choice of the upper bound in (2) is somewhat
arbitrary, but it only a↵ects the upper bound of the
permissible CF window of V for small particles (see
Fig. 4). Moreover, the specific value of the upper
cuto↵ seems not important to the growth of drifter,
as we will show in Sec. V. Notice that � / R1/5,
which imposes a weak constraint on the size of the
impactors. It is noteworthy that although such a
cut-o↵ is needed for ice, certain materials (such as
hydrogel [15]) do dissipate almost all its kinetic en-
ergy. From a practical point of view, it may serve as
an ideal material for CF at ambient conditions.
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Combining it all...

Soft Matter, 10, 2264 (2014)

Hertz Beyond Belief
Andong He & JSW
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What happens in a high speed central collision?

Data: Higa et al., Icarus 133, 310 (1998). 

Chokshi et al., ApJ 407, 806 (1993).
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Nebular Setting and Drifter Growth

Drifter Trajectory:

7 Au, T = 105 K 3 Au, T = 150 K
Slowing of Trajectory due to collisional accretion
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Summary

(2) The meter bottleneck problem can be overcome by

(1) All Materials are finite and have surfaces where
     phase transitions are initiated. 

 Growth by particle accretion and ASSUMING perfect
     sticking for all collisional speeds

Weidenschilling & Cuzzi

(a) This assumption violated previously 
understood collisional physics

(b) The mechanism described here provides the 
collisional physics that underlies sticking
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