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Superfluid helium

• Kapitza (1937): Flow through capillaries without friction when T < 2.17 K
• In a rotating vessel the superfluid component does not rotate with the vessel, so 
that the moment of inertia looks reduced [Hess-Fairbank experiment Phys. Rev. Lett. 
19, 216 (1967)]

Yarmchuk, Gordon, & Packard PRL43, 214 (1979)

• Upon increasing the angular velocity, vortices start 
to nucleate in the sample
• If one rotates above the critical temperature, cools 
down below it and stops the vessel one has persistent 
flow of the superfluid component



Two-fluid model

• Landau (1941): The dispersion of excitations explains superfluidity. Excitations 
cannot be created unless the velocity satisfies

v1 > min
✏(p)

p

Dispersion of excitation in helium (phonons, rotons)



Bose-Einstein condensate (BEC)

• Intuitively, BEC occurs when a macroscopic number of particles occupy the lowest 
energy state and are coherently described by the same complex wave-function

 (r)

(which reduces simply to a complex number in the ideally uniform case).

• The above quantity is nothing but the expectation value of the bosonic field 
operator appearing in the Hamiltonian of the system
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• The Hamiltonian has a U(1) symmetry, corresponding to the conservation of the 
mass current (Noether theorem), which is spontaneously broken by the condensate.

• One can quantize the fluctuations above the condensate and obtain the Bogoliubov 
spectrum

✏(p) =

"
µ

m
p2 +

✓
p2

2m

◆2
# 1

2

(cf. Landau’s criterion for superfluidity)



• Focusing on the condensate, at weak coupling one can in the first approximation 
substitute the bosonic operator with its expectation value, which will be a solution of 
the Gross-Pitaevskii equation
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• Superfluid current conservation
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• Superfluid velocity and vorticity
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~
m
rS r⇥ v(r, t) = 0 except at singular points



n = 1

n = 2

r

f(r)

Vortex solution
• Consider the cylindrically symmetric ansatz 
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• Energy of the vortex
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MIT, Ketterle group

• Energy of the vortex in rotating frame

E0
v = Ev � ⌦Lz

A single vortex becomes stable at the critical frequency ⌦c =
Ev

N~

• At increasing rotation frequency there is the formation of a triangular vortex lattice

Vortex nucleation and vortex lattice



U(1) vortex reconnection

[M.Kobayashi et al. Phys.Rev.Lett.103:115301; figure by M.Kobayashi based on 
time-dependent Gross-Pitaevskii]

[J. Koplik and H. Levine, Phys. Rev. Lett. 71, 1375 (1993); 76, 4745 (1996); M. Leadbeater, T. 
Winiecki,D. C. Samuels, C. F. Barenghi, and C. S. Adams, Phys. Rev. Lett. 86, 1410 (2001)]



Homotopy argument

• First homotopy group ⇡1(M)

{f : S1 ! M}/continuous deformations

⇡1 = Z

• Spontaneous symmetry breaking G ! H

Order parameter space G/H

Vortices are classified by

⇡1(G/H)

• Example

U(1) ! 1 symmetry breaking

⇡1[U(1)] = Z U(1) vortices have integer topological charge 
(winding number)

Note: it does not need to be Abelian.



Fermionic superfluidity: BCS theory

• Fermions cannot condense like bosons.  
However, let us consider a Fermi surface at 
T~0. It is known to be unstable to Cooper 
pairing instability for any attractive interaction 
between fermions, however small.

� = h "(k) #(�k)i

This fermion bilinear has bosonic statistics and
can condense below a certain critical temperature. 

• With a perturbative calculation at weak coupling it is possible to write down the 
Ginzburg-landau action in terms of the order parameter

• This is in fact very similar to the Gross-Pitaevskii 
action and gives rise to similar physics, in particular 
the vortex lattice

6-Li [MIT]



Neutron stars

from http://www.astroscu.unam.mx/
neutrones/NS-Picture/NStar/NStar.html

• Neutron stars are believed to host 
neutron superfluids.

• BCS theory predicts a pairing 
instability for any (however small) 
attractive interaction between fermions

• The typical temperature of a neutron 
star is well below the predicted 
superfluid transition temperature 

http://www.astroscu.unam.mx/neutrones/NS-Picture/NStar/NStar.html


[Tamagaki, PTP 44  (1970), 905; 
adapted by Page et al. arXiv:1110.5116]

[Sauls, NATO ASI Series 262,457]

• ρ > 4.3x1011 g/cm3. Neutron leaking 
from nuclei. BCS pairing occurs in the 
usual s-wave channel and the 1S0 
superfluid is formed.
• ρ > 2 x 1014 g/cm3. The 3P2 channel 
becomes the most attractive and the 3P2 
superfluid is formed.



3P2 superfluid

J = L+ S 1⌦ 1 = 2� 1� 0

• The order parameter can be expressed as a traceless symmetric 3x3 complex matrix

Total angular momentum

Aµi

• Transformation property under the symmetry group G = U(1)⇥ SO(3)L+S

A ! ei↵OAOT

Spin Orbital

• Ginzburg-Landau free energy derived from BCS theory (weak coupling)

Kinetic 2nd & 4th 
order in A

6th order
in A

coupling to 
magnetic field



[K.Masuda and M.Nitta, Phys.Rev.C 93, 035804]

• Various patterns of spontaneous symmetry breaking from the minimization of F

• Biaxial nematic states (BN) support non-Abelian first homotopy groups and therefore
non-Abelian (non-commutative) vortices.

• The vortex topological charge is not just an integer number, but it can include an 
element of a non-commutative group, e.g. the quaternions Q



Collision dynamics of non-Abelian vortices

[M.Kobayashi et al. Phys.Rev.Lett.103:115301; figures by M.Kobayashi]

[a, b] = 0

Passing through

Rung formation

[a, b] = c 6= 0



Questions

•  Can we give more qualitative and quantitative 
characterization of the non-Abelian vortex network in neutron 
stars?

• Can we identify its possible signatures of the non-Abelian 
vortex network in neutron stars?


