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Questions



» Kapitza (1937): Flow through capillaries without friction when T <2.17 K
* In a rotating vessel the superfluid component does not rotate with the vessel, so
that the moment of inertia looks reduced [Hess-Fairbank experiment Phys. Rev. Lett.

19, 216 (1967)]

* Upon increasing the angular velocity, vortices start

to nucleate in the sample ’o
* If one rotates above the critical temperature, cools

down below it and stops the vessel one has persistent ’ o
flow of the superfluid component

Yarmchuk, Gordon, & Packard PRL43, 214 (1979)
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* Landau (1941): The dispersion of excitations explains superfluidity. Excitations
cannot be created unless the velocity satisfies
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e Intuitively, BEC occurs when a macroscopic number of particles occupy the lowest
energy state and are coherently described by the same complex wave-function

i(r)
(which reduces simply to a complex number in the ideally uniform case).

* The above quantity is nothing but the expectation value of the bosonic field
operator appearing in the Hamiltonian of the system
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 The Hamiltonian has a U(7) symmetry, corresponding to the conservation of the
mass current (Noether theorem), which is spontaneously broken by the condensate.

* One can quantize the fluctuations above the condensate and obtain the Bogoliubov

spectrum
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(cf. Landau’s criterion for superfluidity)
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* Focusing on the condensate, at weak coupling one can in the first approximation
substitute the bosonic operator with its expectation value, which will be a solution of
the Gross-Pitaevskii equation
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» Superfluid current conservation
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» Superfluid velocity and vorticity

v(r,t) = EVS V x v(r,t) =0 except at singular points



« Consider the cylindrically symmetric ansatz ¢ (r) = f(r)e'™?

i) total angular momentum L. = Nnh

i) velocit hn
Vp = ——
y ¢ mr
iii) quantized circulation
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h
V XV =2rn—
m

A

vorticity 53 (r )z

* Energy of the vortex
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* Energy of the vortex in rotating frame

E =E,—QL,
E

A single vortex becomes stable at the critical frequency (). = N_%

At increasing rotation frequency there is the formation of a triangular vortex lattice

MIT, Ketterle group




U(l) vortex reconnection
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[J. Koplik and H. Levine, Phys. Rev. Lett. 71, 1375 (1993); 76, 4745 (1996); M. Leadbeater, T.
Winiecki,D. C. Samuels, C. F. Barenghi, and C. S. Adams, Phys. Rev. Lett. 86, 1410 (2001)]

[M.Kobayashi et al. Phys.Rev.Lett.103:115301; figure by M.Kobayashi based on
time-dependent Gross-Pitaevskii]



e First homotopy group 1 (M)

{f:S8" — M} /continuous deformations

* Spontaneous symmetry breaking G — H

Order parameter space G/H

Vortices are classified by

T (G/H) T = 4

Note: it does not need to be Abelian.

* Example

U(l) -1 symmetry breaking

m[U(1)] =7Z U(1) vortices have integer topological charge
(winding number)



* Fermions cannot condense like bosons.
However, let us consider a Fermi surface at
T~0. It is known to be unstable to Cooper
pairing instability for any attractive interaction
between fermions, however small.

A = (pr(k)p(=k))

This fermion bilinear has bosonic statistics and
can condense below a certain critical temperature.

* With a perturbative calculation at weak coupling it is possible to write down the
Ginzburg-landau action in terms of the order parameter

ScLlA,A] = ,B/ddr [gmﬁ + §|6A|‘2 + u.|A|4]

* This is in fact very similar to the Gross-PitaevskKii
action and gives rise to similar physics, in particular
the vortex lattice

6-Li [MIT]
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http://www.astroscu.unam.mx/neutrones/NS-Picture/NStar/NStar.html
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[Tamagaki, PTP 44 (1970), 905;
adapted by Page et al. arXiv:1110.5116]
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[Sauls, NATO ASI Series 262,457]

* p>4.3x10" g/cm3. Neutron leaking
from nuclei. BCS pairing occurs in the
usual s-wave channel and the 1S
superfluid is formed.

* p>2x 1074 g/cm3. The 3P2 channel
becomes the most attractive and the 3P>
superfluid is formed.



J=L+8S 101=23130 Total angular momentum

* The order parameter can be expressed as a traceless symmetric 3x3 complex matrix

A,

N

Spin Orbital

* Transformation property under the symmetry group G = U(1) x SO(3)r+s

A — " “OAO0"

» Ginzburg-Landau free energy derived from BCS theory (weak coupling)

F:/d3p (fgrad+f2+4+f6+fﬂ)
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e Various patterns of spontaneous symmetry breaking from the minimization of F

(r 0 0)
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[K.Masuda and M.Nitta, Phys.Rev.C 93, 035804]

* Biaxial nematic states (BN) support non-Abelian first homotopy groups and therefore
non-Abelian (non-commutative) vortices.

* The vortex topological charge is not just an integer number, but it can include an
element of a non-commutative group, e.g. the quaternions Q



Collision dynamics of non-Abelian vortices
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[M.Kobayashi et al. Phys.Rev.Lett.103:115301; figures by M.Kobayashi]




e Can we give more qualitative and quantitative
characterization of the non-Abelian vortex network in neutron
stars?

e Can we identify its possible signatures of the non-Abelian
vortex network in neutron stars?



