New Phenomena in Turbulent Transport: Astrophysics and Planetary Physics

Igor ROGACHEVSKII, Nathan KLEEORIN, Tov ELPERIN

Ben-Gurion University of the Negev, Beer Sheva, Israel NORDITA, KTH Royal Institute of Technology and Stockholm University, Sweden

Michael LIBERMAN, Nils HAUGEN, Axel BRANDENBURG NORDITA, KTH Royal Institute of Technology and Stockholm University, Sweden

Effect of Chemical Reactions and Phase Transitions on Turbulent Diffusion

T. Elperin, N. Kleeorin, M. Liberman, I. Rogachevskii, Phys. Rev E 90, 053001 (2014); T. Elperin, N. Kleeorin, M. Liberman, A. Lipatnikov, I. Rogachevskii, R. Yu, Phys. Rev E, submit. (2017)

Instantaneous particle number density of admixture:

$$\frac{\partial n_{\beta}}{\partial t} + \boldsymbol{\nabla} \cdot (n_{\beta} \, \boldsymbol{v}) = -\nu_{\beta} \hat{W}(n_{\beta}, T) + \hat{D}(n_{\beta}),$$

The Arrhenius law:

Q

$$\hat{W} = A \exp\left(-E_a/RT\right) \,\Pi_{\beta=1}^m \,(n_\beta)^{\nu_\beta},$$

The source term:

$$-\nu_{\beta}\hat{W}(n_{\beta},T)$$

Instantaneous fluid temperature field:

$$\frac{\partial T}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{\nabla})T + (\gamma - 1)T(\boldsymbol{\nabla} \cdot \boldsymbol{v}) = q\hat{W}(n_{\beta}, T) + \hat{D}(T),$$

is the reaction energy release; q

$$q = Q/\rho c_p$$

 ν_{β} is the stoichiometric coefficient that is the order of the reaction;

Turbulent Diffusion of Gases

T. Elperin, N. Kleeorin, M. Liberman, I. Rogachevskii, Phys. Rev E 90, 053001 (2014); T. Elperin, N. Kleeorin, M. Liberman, A. Lipatnikov, I. Rogachevskii, R. Yu, Phys. Rev E, submitted (2017)

$$\langle n'_{\beta} \boldsymbol{u} \rangle = -D_{\beta}^{T} \boldsymbol{\nabla} \overline{N}_{\beta} + \sum_{\lambda=1;\lambda\neq\beta}^{m} D_{\lambda}^{\text{MTD}}(\beta) \boldsymbol{\nabla} \overline{N}_{\lambda} + \boldsymbol{V}_{\text{eff}} \overline{N}_{\beta},$$
$$\langle \theta \boldsymbol{u} \rangle = -D^{T} \boldsymbol{\nabla} \overline{T} - \sum_{\lambda=1}^{m} D_{\lambda}^{\text{TDE}} \boldsymbol{\nabla} \overline{N}_{\lambda}.$$

the coefficient of turbulent diffusion:

$$D_{\beta}^{T} = \frac{D_{0}^{T}}{\mathrm{Da}} \begin{bmatrix} 1 - \frac{1}{2\mathrm{Da}\left[1 - \mathrm{Re}^{-1/2}\right]} \ln \frac{1 + 2\mathrm{Da}}{1 + 2\mathrm{Da} \mathrm{Re}^{-1/2}} \end{bmatrix} - 2D_{0}^{T} \left(1 + \mathrm{Pr}^{-1}\right) \frac{\ln \mathrm{Re}}{\mathrm{Re}}$$

$$Da = \tau_{0}/\tau_{c} \text{ is the turbulent Damköhler number}$$

$$\text{the simplest chemical reaction } A \to B \qquad O_{2} \to O + O$$

$$Da \gg 1 \qquad D_{\beta}^{T} = D_{0}^{T}/\mathrm{Da} = \tau_{c}u_{0}^{2}/3 \qquad D_{0}^{T} = \tau_{0}u_{0}^{2}/3$$

Concentration of reagent A decreases much faster during the chemical time, so that the usual turbulent diffusion based on the turbulent time does not contribute to the mass flux of a reagent A.

Comparison with Numerical Simulations (MFS)

A. Brandenburg, N. E. L. Haugen and N. Babkovskaia, Phys. Rev. E 83, 016304 (2011)

Kolmogorov-Petrovskii-Piskunov-Fisher Equation (advection-reaction-diffusion equation):

$$\frac{\partial n}{\partial t} + \boldsymbol{\nabla} \cdot (n \, \boldsymbol{v}) = \frac{n}{\tau_c} \left(1 - \frac{n}{n_0} \right) + D\Delta n,$$

Mean-Field KPPF-equation:

$$\frac{\partial \overline{N}}{\partial t} + \tau \frac{\partial^2 \overline{N}}{\partial t^2} = \frac{\overline{N}}{\tau_c} \left(1 - \frac{\overline{N}}{n_0} \right) + D_{\mathrm{T}} \Delta \overline{N},$$

the reaction speed (the front speed):

$$s_{\rm T} = (d/dt) \int (\overline{N}/n_0) dz$$

$$s_{\mathrm{T}} = 2(D_\beta^T/\tau_c)^{1/2}$$

T. Elperin, N. Kleeorin, M. Liberman, I. Rogachevskii, Phys. Rev E 90, 053001 (2014)

$$\frac{D_{\beta}^{\mathrm{\scriptscriptstyle T}}}{D_0^T} = \frac{1}{\mathrm{Da}_{\mathrm{\scriptscriptstyle T}}} \left(1 - \frac{\ln(1 + 2\mathrm{Da}_{\mathrm{\scriptscriptstyle T}})}{2\mathrm{Da}_{\mathrm{\scriptscriptstyle T}}} \right)$$

FIG. 1. Comparison of the theoretical dependence of turbulent diffusion coefficient D_{β}^{T}/D_{0}^{T} versus turbulent Damköhler number Da_{T} with the corresponding results of MFS performed in [49].

Comparison with Direct Numerical Simulations

T. Elperin, N. Kleeorin, M. Liberman, A. Lipatnikov, I. Rogachevskii, R. Yu, Phys. Rev E, submitted (2017)

Direct numerical simulations of a finite thickness reaction wave propagation in forced, ho-

mogeneous, isotropic, and incompressible turbulence for the first-order chemical reactions,

$$\frac{\partial c}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{\nabla})c = W(c) + D\Delta c$$
$$\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{\nabla})\boldsymbol{v} = -\frac{1}{\rho}\boldsymbol{\nabla}p + \nu\Delta\boldsymbol{v} + \boldsymbol{f}$$

TABLE I. DNS cases.								
Case	Re	Re_{λ}	$\eta/\Delta x$	S_{L}/u_{0}	$\ell_{11}/\delta_{_F}$	$\mathrm{Da}_{\mathrm{DNS}}$		
1	50	18	0.68	0.1	2.1	0.2		
2	50	18	0.68	0.2	2.1	0.4		
3	50	18	0.68	0.5	2.1	1.0		
4	50	18	0.68	1.0	2.1	2.1		
5	50	18	0.68	2.0	2.1	4.1		
6	100	30	0.86	0.1	3.7	0.4		
7	100	30	0.86	0.2	3.7	0.7		
8	100	30	0.86	0.5	3.7	1.9		
9	100	30	0.86	1.0	3.7	3.7		
10	100	30	0.86	2.0	3.7	7.5		
11	200	45	1.06	0.1	6.7	0.7		
12	200	45	1.06	0.2	6.7	1.3		
13	200	45	1.06	0.5	6.7	3.4		
14	200	45	1.06	1.0	6.7	6.7		
15	200	45	1.06	2.0	6.7	13.5		

FIG. 5. Theoretical dependence $\tilde{D}_T \equiv D_T/D_0^T$ versus Damköhler number Da determined by Eq. (12) for different values of the Reynolds number Re = 50 (blue), 100 (black), 200 (red) at Pr = 1. The DNS data on $\langle D_T \rangle$ normalized using $u_0 l_{11}$ are shown in blue triangles (Re = 50), black squares (Re = 100), and red circles (Re = 200).

$$W = \frac{1-c}{\tau_R \left(1+\tau\right)} \exp\left(-\frac{E_a}{RT}\right)$$

Particle Clustering

Large-scale clustering (large-scale inhomogeneous structures) in Stratified Turbulent Flows (with imposed mean temperature gradient)

$L_c \gg \ell_0$

> Small-Scale Tangling Clustering in Stratified Turbulent Flows $L_c \ll \ell_0$

 $\frac{\partial n'}{\partial t} \propto -(\mathbf{v} \cdot \nabla)N + \dots$

$$\frac{\partial \theta}{\partial t} \propto -(\mathbf{v} \cdot \nabla)T + \dots$$

Large-Scale Clustering: DNS for Non-Inertial Particles in 3D Forced Turbulence

256³

A white noise non-helical homogeneous and isotropic random forcing.

All simulations are performed with the **PENCIL CODE**, which uses sixth-order explicit finite differences in space and a third-order accurate time stepping method.

Particle Flux in Turbulent Flow for Non-inertial Particles

Turbulent Flux of Particles:

 $\langle \mathbf{u} \, n' \rangle = N \, \mathbf{V}^{\mathsf{eff}} - D_T \, \nabla N$

Effective Pumping Velocity:

$$\mathbf{V}^{\mathsf{eff}} = D_T \frac{\boldsymbol{\nabla}\rho}{\rho} = -D_T \frac{\boldsymbol{\nabla}T}{T}$$

Turbulent Diffusion Coefficient:

$$Pe = \frac{u_0 \ell_0}{D_m} \ll 1 \qquad D_T = \frac{q-1}{q+1} \frac{u_0 \ell_0}{3} \operatorname{Pe}$$
$$Pe = \frac{u_0 \ell_0}{D_m} \gg 1 \qquad D_T = \frac{u_0 \ell_0}{3}$$

Turbulent flux of particles $\frac{\partial n}{\partial t} + \operatorname{div}(n \mathbf{u}) = D \Delta n$ $n = \overline{N} + n'$ $\frac{\partial \overline{N}}{\partial t}$

Fluctuations of particles number density:

$$\frac{\partial n'}{\partial t} - D \Delta n' + \operatorname{div} \left(n' \mathbf{u} - \left\langle n' \mathbf{u} \right\rangle \right) = -\operatorname{div} \left(\overline{N} \mathbf{u} \right)$$

 $n' \sim -\tau \,\overline{N} \operatorname{div} \mathbf{u} - \tau \,(\mathbf{u} \cdot \nabla) \overline{N}$

$$\mathsf{LHS}\sim \frac{n'}{\tau}$$

 $\frac{\partial \overline{N}}{\partial t} + \operatorname{div}\left(\langle n'\mathbf{u} \rangle\right) = D \Delta \overline{N}$ $\overline{\mathbf{V}} = \mathbf{0}$

$$\overline{\mathbf{J}}_T \equiv \langle \mathbf{u} \, n' \rangle \sim -\tau \, \overline{N} \langle \mathbf{u} \, \mathrm{div} \, \mathbf{u} \rangle - \tau \, \langle \mathbf{u} \, (\mathbf{u} \cdot \nabla) \rangle \overline{N}$$

$$\mathbf{V}_{eff} = -\tau \langle \mathbf{u} \operatorname{div} \mathbf{u} \rangle$$

 $D_T \equiv D_{ii} = \tau \langle u_i u_j \rangle$

 $\overline{\mathbf{J}}_{T} = \overline{N} \, \mathbf{V}_{eff} - D_{T} \nabla \overline{N}$

- turbulent flux of particles

Turbulent thermal diffusion of non-inertial particles

 $\mathbf{v}_p = \mathbf{u}$

 $\rho \operatorname{div} \mathbf{u} + (\mathbf{u} \cdot \nabla) \rho \approx 0$

div $\mathbf{u} \approx -\mathbf{u} \cdot \frac{\nabla \rho}{\rho}$

Equation of state for ideal gas yields:

 $\frac{\nabla\overline{\rho}}{\overline{\rho}} \approx -\frac{\nabla\overline{T}}{\overline{T}}$

$$\frac{\partial N}{\partial t} + \operatorname{div}\left(\overline{N}\,\overline{\mathbf{V}} + \overline{N}\,\mathbf{V}_{eff} - D_T\nabla\overline{N}\right) = 0$$

$$\mathbf{V}_{eff} = -\tau \langle \mathbf{u} \operatorname{div} \mathbf{u} \rangle$$

$$-\tau \langle u_i \operatorname{div} \mathbf{u} \rangle = \tau \langle u_i u_j \rangle \frac{\nabla_j \overline{\rho}}{\overline{\rho}} = D_T \frac{\nabla_i \overline{\rho}}{\overline{\rho}}$$

$$\mathbf{V}_{eff} = D_T \frac{\nabla \overline{\rho}}{\overline{\rho}} = -D_T \frac{\nabla \overline{T}}{\overline{T}}$$

Turbulent thermal diffusion of inertial particles

M. R. Maxey, J. Fluid Mech. 174, 441 (1987)

$$\mathbf{v}_p = \mathbf{u} - \tau_p \frac{d \mathbf{u}}{d t} + O(\tau_p^2)$$

div
$$\mathbf{v}_p = \operatorname{div} \mathbf{u} + \tau_p \frac{\Delta P}{\rho} + O(\tau_p^2)$$

$$\mathbf{V}_{eff} = -D_T \alpha \frac{\nabla \overline{T}}{\overline{T}}$$

$$\alpha \approx 1 + \left(\frac{m_p}{m_\mu}\right) \left(\frac{\overline{T}}{T_*}\right) \frac{\ln (\text{Re})}{\text{Pe}}$$

$$\overline{\mathbf{J}}_T = -D_T k_T \frac{\nabla T}{\overline{T}} - D_T \nabla \overline{N} - \text{turbulent flux of particles}$$

 $k_T = \alpha N$ - turbulent thermal diffusion ratio

Derivation of Effect of Turbulent Thermal Diffusion

- All known approaches (including dimensional reasoning)
- Path integral approach (finite correlation time); $\mathbf{V}_{eff} = -\tau \langle \mathbf{v}(\mathbf{x}) \, \nabla \cdot \mathbf{v}(\mathbf{x}) \rangle$
- The spectral tau approximation; Quasi-linear approach, etc.
- T. Elperin, N. Kleeorin and I. Rogachevskii
- Physical Review Letters **76**, 224 (1996)
- Physical Review E **55**, 2713 (1997)
- Physical Review Letters **80**, 69 (1998)
- Intern. Journal of Multiphase Flow 24, 1163 (1998)
- Atmospheric Research 53, 117 (2000)

T. Elperin, N. Kleeorin, I. Rogachevskii and D. Sokoloff

- Physical Review E **61**, 2617 (2000)
- Physical Review E **64**, 026304 (2001)

R.V.R. Pandya and F. Mashayek, Physical Review Letters 88, 044501 (2002)

M.W. Reeks, Intern. Journal of Multiphase Flow 31, 93 (2005)

M. Soliev, V. F. Solieva, T. Elperin, N. Kleeorin, I. Rogachevskii and S. Zilitinkevich, J. Geophys. Res. 114, D18209 (2009).

Particle Inertia Effect

Turbulent Thermal Diffusion: Inertial Particles

Non-diffusive mean flux of particles is in the direction of the mean heat flux (i.e., in the direction of minimum fluid temperature).

Particle Inertia Effect

Non-inertial Particles

 $\longrightarrow \overline{n U}$

Experimental set - up: oscillating grids turbulence generator and particle image velocimetry system

Particle Image Velocimetry System

Raw image of the incense smoke tracer particles in oscillating grids turbulence

Particle Image Velocimetry Data Processing

Experimental Set-up

Experimental Set-up for Temperature Measurements

Mean Temperature and Particle Number Density (Stable Stratification, f = 10.5 Hz)

 $\overline{T}(z)$

 $\overline{N}(z)$

Mean Temperature and Particle Number Density (Unstable Stratification, f = 10.5 Hz)

 $\overline{T}(z)$

N(z)

Mean Temperature and Particle Number Density (Unstable Stratification, f = 6 Hz)

 $\overline{T}(z)$

 $\overline{N}(z)$

Mean Temperature Fields in Forced and Unforced Turbulent Convection

Forced turbulent convection (two oscillating grids)

Unforced convection

Turbulent Thermal Diffusion

Normalized mean particle number density vs. normalized temperature gradient: - stable stratification, - unstable stratification.

Experimental set-up with ten fans

Turbulent Thermal Diffusion

Normalized mean particle number density, vs. normalized temperature

DNS for Non-Inertial Solid Particles in 3D Forced Turbulence

$$\begin{aligned} &\frac{\partial n}{\partial t} + \operatorname{div} \left(n \,\mathbf{u} - D \,\boldsymbol{\nabla} n \right) = 0, \\ &\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \boldsymbol{\nabla} \right) \mathbf{u} = -\frac{\boldsymbol{\nabla} p}{\rho} + \mathbf{f}_{\nu} + \mathbf{f}, \\ &\frac{\partial \rho}{\partial t} + \operatorname{div} \left(\rho \mathbf{u} \right) = 0, \\ &T \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \boldsymbol{\nabla} \right) s = \frac{1}{\rho} \operatorname{div} \left(\kappa \,\boldsymbol{\nabla} T \right) + I_{\nu} - I_{\text{cooling}} \end{aligned}$$

BOUNDARY CONDITIONS are periodic in 3D.

$$\mathsf{Re} = \mathsf{Pe}_D = rac{u_f}{D \, k_f} = 75$$

A white noise non-helical homogeneous and isotropic random forcing.

 $k_{f} = 5k_{1}$

All simulations are performed with the **PENCIL CODE**, which uses sixth-order explicit finite differences in space and a third-order accurate time stepping method.

Entropy distribution:

DNS for Non-Inertial Solid Particles in 3D Forced Turbulence

N.E.L. Haugen, N. Kleeorin, I. Rogachevskii and A. Brandenburg, Phys. Fluids 24, 075106 (2012).

$$\mathsf{Re} = \mathsf{Pe}_D = \frac{u_f}{D\,k_f} = 75$$

A white noise non-helical homogeneous and isotropic random forcing.

All simulations are performed with the **PENCIL CODE**, which uses sixth-order explicit finite differences in space and a third-order accurate time stepping method.

DNS for Non-Inertial Solid Particles in 3D Forced Turbulence

DNS for Inertial Solid Particles in 3D Forced Turbulence

Fluid: DNS in an Eulerian framework

$$\begin{split} &\frac{\mathrm{D}\ln\rho}{\mathrm{D}t} = -\boldsymbol{\nabla}\cdot\boldsymbol{U},\\ &\frac{\mathrm{D}\boldsymbol{U}}{\mathrm{D}t} = -\frac{1}{\rho}\left[\boldsymbol{\nabla}p - \boldsymbol{\nabla}\cdot(2\rho\nu\mathbf{S})\right] + \boldsymbol{f},\\ &T\frac{\mathrm{D}s}{\mathrm{D}t} = \frac{1}{\rho}\boldsymbol{\nabla}\cdot\boldsymbol{K}\boldsymbol{\nabla}T + 2\nu\mathbf{S}^2 - c_{\mathrm{P}}(T - T_{\mathrm{ref}}), \end{split}$$

$$T_{\rm ref} = T_0 - \delta T \, \exp(-z^2/2\sigma^2), \ \sigma = 0.5.$$

Particles: Lagrangian iramework

$$\frac{\mathrm{d}\boldsymbol{U}_{\mathrm{p}}}{\mathrm{d}t} = \boldsymbol{g} - \tau_{\mathrm{p}}^{-1}(\boldsymbol{U}_{\mathrm{p}} - \boldsymbol{U})$$

BOUNDARY CONDITIONS are periodic in 3D. In the presence of gravity, particles are made elastically reflecting from the vertical boundaries. Entropy t=1530.6

DNS for Inertial Solid Particles in 3D Forced Turbulence

Particles: Lagrangian iramework

$$\frac{\mathrm{d}\boldsymbol{U}_{\mathrm{p}}}{\mathrm{d}t} = \boldsymbol{g} - \tau_{\mathrm{p}}^{-1}(\boldsymbol{U}_{\mathrm{p}} - \boldsymbol{U})$$

 $\mathrm{d} \boldsymbol{X}/\mathrm{d} t = \boldsymbol{U}_\mathrm{p}$

1. Particles are treated as point particles (pointparticle approximation).

One-way coupling approximation, i.e., there is an effect of the fluid on the particles only, while the particles do not influence the fluid motions.
 BOUNDARY CONDITIONS are periodic in 3D. In the presence of gravity, particles are made electrically relecting from the vertical boundaries.

Stokes time $\tau_p = \frac{\rho_p}{\rho} \frac{d^2}{18\nu \left(1 - f_c\right)}$ $f_{\rm C} = 0.15 {\rm Re}_p^{0.687}$ $\operatorname{Re}_p = \frac{|\mathbf{U}_p - \mathbf{U}|d}{|\mathbf{U}_p - \mathbf{U}||}$ Stokes number

DNS for Inertial Particles N.E.L. Haugen, N. Kleeorin, I. Rogachevskii and A. Brandenburg, Phys. Fluids 24, 075106 (2012).

DNS for Inertial Particles

Re = 240 St = 0.9 $k_f = 5$ without gravity middle-plane: z = 0

Distribution of Number Density of Aerosols (black) and Mean Temperature Distribution (gray) (Satellite Gomos Data)

M. Sofrey, V. F. Sofreyn, T. Diperin, S. Kleeorin, I. Rogrehevskii and Zilitinkevich, J. Geophys. Res. 114, D18209 (2009).

The ratio $|V_{eff}/W|$ for typical atmospheric parameters (different temperature gradients and different particle sizes)

a_*	1 K / 100 m	$1 { m K} / 200 { m m}$	1 K / 300 m
$1\mu{ m m}$	13	6.5	4.33
$5\mu{ m m}$	3.4	1.7	1.13
$10 - 20\mu\mathrm{m}$	3	1.5	1
$30\mu{ m m}$	2.7	1.35	0.9

Time of Formation of Aerosol Layers

	1 K/100 m	1 K/200 m	
$a_* = 30 \ \mu m$	11 min	105 min	
$a_* = 100 \ \mu m$	1 min	120 min	

$$t_T \propto \frac{L_T}{|\mathbf{V}_{eff} - \mathbf{W}|}$$

T. Elperin, N. Keeorin, I. Rogachevskii, Atmospheric Research, 53, 117 (2000).

New Development in Theory and Experiments

G. Amir, A. Eidelman, T. Elperin, N. Kleeorin, I. Rogachevskii, Phys. Rev Fluids, in press (2017)

Turbulent Flux of Particles:

$$\langle \mathbf{u} n' \rangle = N \mathbf{V}^{\mathsf{eff}} - D_T \nabla I$$

Effective Pumping Velocity:

$$V^{\text{eff}} = -\frac{2D_T \alpha}{\sqrt{3} (B \,\delta_T)^{4/3}} \left[\frac{\pi}{6} + \arctan\left(\frac{2(B \,\delta_T)^{2/3} - 1}{\sqrt{3}}\right) - \frac{\sqrt{3}}{6} \ln \frac{\left[1 + (B \,\delta_T)^{2/3}\right]^3}{1 + (B \,\delta_T)^2} \right] \frac{\nabla T}{T}$$

FIG. 2. Effective velocity V^{eff} measured in the units of the r.m.s turbulent vertical velocity, $u_z^{(\text{rms})}$, versus the particle diameter $d \ (\mu\text{m})$ for atmospheric conditions where the parameter $B/\alpha = 1$ (dashed-dotted) and for laboratory experiments conditions: the oscillating grid turbulence where the parameter $B/\alpha = 30$ (solid) and the multi-fan produced turbulence where the parameter between the parameter $B/\alpha = 18$ (dashed).

$$V^{\text{eff}} = -\alpha D_T \left[1 - \frac{1}{4} (B \,\delta_T)^{2/3} \right] \frac{\nabla T}{T}, \quad B \,\delta_T \ll 1$$

$$V^{\text{eff}} = -\frac{4\pi A D_T}{3^{3/2}} (B \,\delta_T)^{-4/3} \frac{\nabla T}{T}, \quad B \,\delta_T \gg 1$$

$$\alpha^{\text{eff}} \equiv \delta_N / \delta_T \quad \delta_N \equiv \ell_0 |\nabla N| / N \quad \delta_T = \ell_0 \frac{|\nabla T|}{T}$$

Turbulent thermal diffusion: a way to concentrate dust in protoplanetary discs

Alexander Hubbard*

Department of Astrophysics, American Museum of Natural History, New York, NY 10024-5192, USA

Turbulence acting on mixes of gas and particles generally diffuses the latter evenly through the former. However, in the presence of background gas temperature gradients, a phenomenon known as turbulent thermal diffusion appears as a particle drift velocity (rather than a diffusive term). This process moves particles from hot regions to cold ones. We re-derive turbulent thermal diffusion using astrophysical language and demonstrate that it could play a major role in protoplanetary discs by concentrating particles by factors of tens. Such a concentration would set the stage for collective behaviour such as the streaming instability and hence planetesimal formation.

 $lpha - 1 \sim 1.7 rac{St}{lpha_{
m SS}} \ln St^{-1}$

For $St = 3 \times 10^{-3}$ and $\alpha_{SS} = 10^{-3}$, equation (41) estimates $\alpha \sim 30.6$, which through equation (25) would imply extreme con-

For $St = 3 \times 10^{-3}$ and $\alpha_{SS} = 10^{-3}$, this becomes

 $|V_{\rm TTD}| \sim 0.01 c_{\rm s} \simeq 0.3 u_0$

For $St = 3 \times 10^{-3}$ and $\alpha_{SS} = 10^{-3}$, equation (41) estimates $\alpha \sim 30.6$, which through equation (25) would imply extreme concentrations of particles in cold regions through TTD. Indeed, a temperature perturbation with amplitude $f_T T$ over a length ℓ_T has a corresponding $L_T = \ell_T/f_T$, so $f_T = 0.2$, $\ell_T = 0.6H$ satisfies $L_T = 3H \simeq 0.1R \ll R$ and stronger temperature gradients, at quasiconstant pressure, have been seen in simulations of MHD turbulence in protoplanetary discs (McNally et al. 2014). With those values, equation (26) implies a particle concentration by a factor of

$$T^{\alpha-1} \simeq (1+f_T)^{\alpha-1} \simeq (1+0.2)^{30.6-1} \simeq 221$$
: (43)

This is easily large enough to have strong effects on the behaviour of dust in protoplanetary discs and so TTD could act as a trigger for

Inertial Clustering of Small Solid Particles

- Inertia causes particles inside the turbulent eddies to drift out to the boundary regions between the eddies (i.e. regions with low vorticity or high strain rate and maximum of fluid pressure).
- This mechanism acts in a wide range of scales of turbulence.
- Scale-dependent turbulent diffusion causes relaxation of particle clusters.
- In small scales

 Thus, clusters of particles are localized in small scales.

M. R. Maxey, J. Fluid Mech. 174, 441 (1987). J.K. Eaton and J.R. Fessler, Int. J. Multiphase Flow 20, 169 (1994).

Experimental Set-up for Tangling Clustering

Parameters of Turbulence and Solid Particles in Experimental Study of Tangling Clustering in Air

 $|u_0=\sqrt{\langle {f u}^2
angle}=12\,{
m cm/s}\,$ is the r.m.s. velocity;

 $\tau_{\rm s} = 10^{-3} \, {\rm s}$

 $\mathrm{St} = \tau_s / \tau_\eta = 6 \times 10$

 $\operatorname{Pe} = u_0 \ell_0 / D_m = 3 \times 10$

- $\ell_0 = 3.2 \,\mathrm{cm}$ is the integral (maximum) scale of turbulence;
- $\operatorname{Re} = u_0 \ell_0 / \nu = 250$ is the Reynolds numbers;
- $\ell_{\eta} = \ell_0 / \text{Re}^{3/4} = 510 \,\mu\text{m}$ is the Kolmogorov length scale;
- $au_{\eta} = au_{0}/\text{Re}^{1/2} = 1.7 \times 10^{-2} \text{ s}$ is the Kolmogorov time scale; $d_{p} = 10 \,\mu\text{m}$ is the particle diameter;
 - is the Stokes time for the particles;
 - is the Stokes number for the particles;
 - is the Peclet number for the particles;
 - is the coefficient of molecular diffusion;

Experimental Study of Tangling Clustering \succ Two-point correlation function of particle number density: $|\Phi(t,\mathbf{R}) = \langle n'(t,\mathbf{x}) n'(t,\mathbf{x}+\mathbf{R}) \rangle = N^2 [G(t,\mathbf{R})-1]$ Radial distribution function can be estimated as follows: n = N + n' $N = \langle n \rangle$ is the number of particle pairs separated by a distance: $R \pm \frac{1}{2} \Delta R$ is the area of the annular domain located between: $R \pm \frac{1}{2} \Delta R$ is the area of the part of the image with the radius: $R_{max} = 0.8 \text{ cm}$ M(M-1) is the total number of pairs in the area: is the total number of particles in the area: We perform the double averaging (i) over all particles in the image and (ii) over ensemble of 50 images.

Normalized second-order correlation function determined in our experiments for (i) inertial clustering (isothermal turbulence, circles) (ii) tangling clustering (non-isothermal turbulence, squares)

A. Eidelman, T. Elperin, N. Kleeorin, B. Melnik, I. Rogachevskii, Physical Review E 81, 056313 (2010)

Particle Inertia Effect

Normalized second-order correlation function determined in our experiments (filled squares) and from our theoretical model (solid line)

Normalized second-order correlation function determined in our experiments for (i) inertial clustering (isothermal turbulence, circles) (ii) tangling clustering (non-isothermal turbulence, squares)

Tangling Clustering Instability in Temperature Stratified Turbulence T. Elperin, N. Kleeorin, M. Liberman, L. Regachevskii, Phys. Fluids 25, 085104 (2013)

 $\gamma_m = \frac{1}{3(1+3\sigma_T)} \left[\frac{200\sigma_v(\sigma_T - \sigma_v)}{(1+\sigma_v)^2} - \frac{(3-\sigma_T)^2}{2(1+\sigma_T)} - \frac{2\pi^2 m^2 (1+3\sigma_T)^2}{(1+\sigma_T) \ln^2 \text{Sc}} \right],$

FIG. 1. The growth rate γ_1 of the tangling clustering instability (in units of $1/\tau_\eta$) of the first mode (m = 1) versus the particle radius a_p for different values of parameter Γ , and $\sigma_T = 1$, Sc = $10^6 a_p$. The particle radius a_p is given in μ m. The dashed line corresponds to the inertial clustering instability ($\Gamma = 1$).

FIG. 2. The growth rate γ_1 of the tangling clustering instability of the first mode (m = 1) versus the particle radius a_p for larger values of parameter Γ , and $\sigma_T = 1$, Sc = $10^6 a_p$. The particle radius a_p is given in μ m.

$$\sigma_{\rm v} \equiv \frac{\langle (\boldsymbol{\nabla} \boldsymbol{\cdot} \boldsymbol{v})^2 \rangle}{\langle (\boldsymbol{\nabla} \times \boldsymbol{v})^2 \rangle} = \frac{8}{3} \operatorname{St}_{\rm eff}^2$$

$$\sigma_T \equiv \frac{\nabla_i \nabla_j D_{ij}^{\mathrm{T}}(\boldsymbol{R})}{\nabla_i \nabla_j D_{mn}^{\mathrm{T}}(\boldsymbol{R}) \epsilon_{imp} \epsilon_{jnp}} \approx \frac{\langle (\boldsymbol{\nabla} \cdot \tilde{\boldsymbol{\xi}})^2 \rangle}{\langle (\boldsymbol{\nabla} \times \tilde{\boldsymbol{\xi}})^2 \rangle}$$

$$St_{eff} = St \Gamma$$
,

$$\Gamma(\mathrm{Ma}, \mathrm{Re}, \ell_0/L_T) = \left[1 + \frac{\mathrm{Re}^{1/2}}{81 \,\mathrm{Ma}^4} \left(\frac{\ell_0 \boldsymbol{\nabla} T}{T}\right)^2\right]^{1/2}$$

Tangling Clustering Instability in Temperature Stratified Turbulence

T. Elperin, N. Kleeorin, M. Liberman, I. Rogachevskii, Phys. Fluids 25, 085104 (2013)

FIG. 1. The growth rate γ_1 of the tangling clustering instability (in units of $1/\tau_\eta$) of the first mode (m = 1) versus the particle radius a_p for different values of parameter Γ , and $\sigma_T = 1$, Sc = $10^6 a_p$. The particle radius a_p is given in μ m. The dashed line corresponds to the inertial clustering instability ($\Gamma = 1$).

$$\sigma_{\mathrm{v}} \equiv \frac{\langle (\boldsymbol{\nabla} \cdot \boldsymbol{v})^2 \rangle}{\langle (\boldsymbol{\nabla} \times \boldsymbol{v})^2 \rangle} = \frac{8}{3} \operatorname{St}_{\mathrm{eff}}^2$$

$$B(\mathbf{R}) = \frac{20\,\sigma_{\rm v}}{\tau_{\eta}\,(1+\sigma_{\rm v})} \approx \frac{20\,\sigma_{\rm v}}{\tau_{\eta}} \approx \frac{160\,{\rm St}_{\rm eff}^2}{3\tau_{\eta}}$$

St_{eff} = St
$$\Gamma$$
, Γ (Ma, Re, ℓ_0/L_T) = $\left[1 + \frac{\text{Re}^{1/2}}{81 \text{ Ma}^4} \left(\frac{\ell_0 \nabla T}{T}\right)^2\right]^{1/2}$
Re = 10⁷, u_0 = 1 m/s and ℓ_0 = 100m $\Gamma \approx 2.5 \times 10^3$
Re = 10⁶, u_0 = 0.3 m/s ℓ_0 = 30 m $\Gamma \approx 5 \times 10^3$.

Saturation of the Tangling Clustering Instability $\frac{\partial \Phi}{\partial t} = [B(\mathbf{R}) + 2\mathbf{U}^{(A)}(\mathbf{R}) \cdot \nabla + D_{ij}(\mathbf{R}) \nabla_i \nabla_j] \Phi(t, \mathbf{R}) + I(\mathbf{R})$

FIG. 5. The particle number density inside the cluster n_{max}/N as a function of time for different values of the particle radius a_p and $\Gamma = 10^4$, $\sigma_T = 1$, Sc = $10^6 a_p$. The particle radius a_p is given in μ m. The dashed line is for $a_p \geq 3\mu$ m.

FIG. 3. The particle number density inside the cluster n_{max}/N versus the particle radius a_p for different values of parameter Γ , and $\sigma_T = 1$, Sc = $10^6 a_p$. The particle radius a_p is given in μ m.

 $\Phi(t, \mathbf{R}) = \langle n'(t, \mathbf{x}) n'(t, \mathbf{y}) \rangle$

$$\Gamma(\mathrm{Ma}, \mathrm{Re}, \ell_0/L_T) = \left[1 + \frac{\mathrm{Re}^{1/2}}{81 \,\mathrm{Ma}^4} \left(\frac{\ell_0 \nabla T}{T}\right)^2\right]^{1/2}$$

$$\frac{n_p^{\max}}{N} = \left(1 + \frac{e\,\lambda}{\pi}\,\mathrm{Sc}^{\lambda/2}\,\ln\mathrm{Sc}\right)^{1/2}$$

FIG. 4. The exponent λ versus the particle radius a_p for different values of parameter Γ and $\sigma_T = 1$. The particle radius a_p is given in μ m.

Conclusions

- We have predicted theoretically and detected in laboratory
 experiments a new type of particle clustering (namely, tangling
 clustering of inertial particles) in a stably stratified turbulence with
 imposed mean vertical temperature gradient. The tangling clustering
 is much more effective than a pure inertial clustering that has been
 observed in isothermal turbulence. Our theoretical predictions are in a
 good agreement with the obtained experimental results.
- Tangling clustering can be significant in various industrial multiphase turbulent flows (e.g. internal combustion engines), can also elucidate the mechanism of rain formation in turbulent clouds.
- We demonstrated a strong modification of turbulent transport in fluid flows with chemical reactions or phase transitions: turbulent diffusion of the reacting species can be strongly depleted by a large factor that is the ratio of turbulent and chemical times. This result is in a good agreement with that obtained in the numerical modelling of a reactive front propagating in a turbulent flow.

Conclusions

- A phenomenon of turbulent thermal diffusion associated with turbulent transport of particles, has been predicted theoretically and detected in laboratory experiments, in the atmosphere and in DNS.
- The essence of this phenomenon is the appearance of a non-diffusive mean flux of particles in the direction of the mean heat flux, which results in the formation of large-scale inhomogeneous structures in the spatial distribution of particles.
 - Turbulent thermal diffusion is important in turbulent combustion systems, and it can also explain the largescale aerosol layers that form inside atmospheric temperature inversions.

THE END