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Let’s take it from the beginning…



Large amounts of dust at high 
redshift

Bertoldi et al. (2003, A&A, 406, L55), 
Michalowski et al. (2011) and many others….

Recent observations populate this gap!
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The cosmic matter cycle



Dust destruction
• Destruction may be induced by passage of  SN shocks.
• Fragmentation by passage of SN shocks in combination with 

more efficient destruction of small grains (Slavin, Jones & 
Tielens 2004) may lead to a dust destruction timescale which is 
inversely proportional to the mass density of dust. 

• Hydrodynamic instabilities and magnetic fields play an important 
role also here.

• What happens to the dust grains when a strong shock passes 
without destruction due to sputtering? Where do the grains end 
up due to instabilities and the decoupling between dust and 
gas?



AGB evolution and dust formation



Decin et al. (2010, Nature, 467, 64)

Grain 
nucleation –
difficult!

Grain growth –
easier!

AGB evolution and dust formation



AGB stars? Nope!

(Michalowski et al. 2010)
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SN dust works, but…

SN1987A
A 100% dust efficiency.
All metals are locked up in 

dust – no free metals to 
enter the ISM?

Matsuura et al. 2011

• Very little warm dust 
observed in SNe, < 10–2

Msun (e.g. Wooden et al. 1993; 
Elmhamdi et al. 2003; Kotak et 
al. 2009; Meikle et al. 2011)

• But still some controversy 
over large cold dust 
masses in SNRs…

• Suggest a constant or 
declining dust-to-metals 
ratio, which could be a 
problem (Mattsson 2011).

Gall et al. (2011, A&AR, 19, 43)



SN dust works, but…

SN1987A
• 100% dust 

efficiency?
• All metals are 

locked up in dust –
no free metals to 
enter the ISM?

Matsuura et al. (2011, Science, 333, 1258)



l 0.5 – 0.7 Msun of cold dust if there is C-dust,  
2.4 Msun if only silicates (Matsuura et al. 
2011, Science, 333, 1258).

l The progenitor was a 15 – 20 Msun star.
l An 18 Msun star produces 0.13 Msun of 

silicon. 
l Asilicates = 121.41 → Msilicates < 0.56 Msun

l MC = 0.22 Msun → Mc-dust < 0.22 Msun

SN 1987 A



Anyway…

• Maximum time to build large dust masses:            
< 400 – 500 Myr.

• SNe can produce dust rapidly, but also destroy 
dust – A catch 22!

• The universe have been at least as dusty and 
possibly even more dusty at earlier epochs. But 
how? 

• What source is compensating for the dust 
destruction? We NEED a replenishment 
mechanism!
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The cosmic matter cycle



The cosmic matter cycle

Turbulence!



Epstein drag
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EOM for a particle:

EOM for dust:
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Including a correct decoupling of the gas and dust dynamics 
is crucial!

In ISM simulations one can safely assume the drag is always in the 
Epstein limit. 



Epstein drag

Hopkins & Lee (2016)



Epstein drag

“Swedish compass”



Simulation with PENCIL code

• Central region of cold (T ~10K) molecular gas 
cloud in ISM.

• Non-isothermal: entropy equation & 
temperature structure.

• A range of different grain sizes included in dust 
phase.

• Stochastically forced turbulence.
• “Only” 2563 resolution because non-isothermal 

and spectrum of grain sizes.



Simulation with PENCIL code



Simulation with PENCIL code



Simulation with PENCIL code



Some definitions…

• Stokes number:

• Reynolds number:

• Gas-to-dust ratio:



Turbulence in a box

Slice of log(r) Column density (linear)



Turbulence in a box

Slice of log(r) Mach number



Turbulence in a box

- div(v) Vorticity



Gas-density PDF



Gas-density PDF



Gas-density PDF



Dust-density PDF
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Dust-to-gas PDF



Dust-to-gas PDF



Dust-to-gas PDF



Clustering
Bec et al. (2007, PRL, 98, 084502):



Clustering
Bec et al. (2007, PRL, 98, 084502):



Clustering



The cosmic matter cycle

Coagulation
& 

condensation



Coagulation
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where C is the coagulation kernel and f (m, t) is the GMD. Each subscript i (or j) refers to a
fixed “mass bin”, i.e., particles of a specific masses. The continuous version of the SCE can
be obtained by simply replacing the sums with integrals,
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which is an equation mathematically categorised as a convolution-type integro-di↵erential
equation. Assuming stationarity, i.e., @ f /@t = 0, it is essentially a Volterra equation of the
first kind and as such it has a general class of solutions where C can be expressed in terms of
f and vice versa Dubovskii92. Without simplifying assumptions, the SCE is an analytically
tractable problem only for three specific cases known as the constant, linear and multiplicative
solutions, referring to the mathematical form of the corresponding kernels. Thus, application
of the SCE usually requires numerical methods. Numerical solution of the SCE is tricky
and the best way to avoid discretisation errors (“binning problems”) is to use the method
of moments, which reduces the problem to solving a simple system of ordinary di↵erential
equations (ODEs).

Using the definition of moments (0.12) one obtains equations of the general form
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By reversal of the integration order in eq. (0.9) and substitution of µ = m�m0 and then letting
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Because m / a3, this equation can be rewritten in terms of the grain radii a, a0 and thus provide
equations for the moments K`,

 

dK`
dt

!

coag
=

1
2

Z 1

0

Z 1

0
C(a, a0) f (a, t) f (a0, t)

n

[a3 + (a0)3]`/3 � a` � (a0)`
o

da0da.

2

@ f
@t
=

1
2

i�1
X

j=1

C(mi � mj,mj) f (mi � mj, t) f (mj, t) �
1
X

j=1

C(mi,mj) f (mi, t) f (mj, t),

where C is the coagulation kernel and f (m, t) is the GMD. Each subscript i (or j) refers to a
fixed “mass bin”, i.e., particles of a specific masses. The continuous version of the SCE can
be obtained by simply replacing the sums with integrals,

@ f
@t
=

1
2

Z m

0
C(m � m0,m0) f (m � m0, t) f (m0, t) dm0 � f (m, t)

Z 1

0
C(m,m0) f (m0, t) dm0,

which is an equation mathematically categorised as a convolution-type integro-di↵erential
equation. Assuming stationarity, i.e., @ f /@t = 0, it is essentially a Volterra equation of the
first kind and as such it has a general class of solutions where C can be expressed in terms of
f and vice versa Dubovskii92. Without simplifying assumptions, the SCE is an analytically
tractable problem only for three specific cases known as the constant, linear and multiplicative
solutions, referring to the mathematical form of the corresponding kernels. Thus, application
of the SCE usually requires numerical methods. Numerical solution of the SCE is tricky
and the best way to avoid discretisation errors (“binning problems”) is to use the method
of moments, which reduces the problem to solving a simple system of ordinary di↵erential
equations (ODEs).

Using the definition of moments (0.12) one obtains equations of the general form
 

dMn

dt

!

coag
=

Z 1

0
mn@ f
@t

dm = I" � I#, (0.8)

where the “source integral” is

I" =
1
2

Z 1

0
mn

Z m

0
C(m � m0,m0) ⇥

f (m � m0, t) f (m0, t) dm0dm, (0.9)

and the “sink integral” is

I# =
Z 1

0
mn f (m, t)

Z 1

0
C(m,m0) f (m0, t) dm0dm. (0.10)

By reversal of the integration order in eq. (0.9) and substitution of µ = m�m0 and then letting
µ! m, one arrives at

 

dMn

dt

!

coag
=

1
2

Z 1

0

Z 1

0
C(m,m0) f (m, t) f (m0, t) [(m + m0)n � mn � (m0)n] dm0dm.

Because m / a3, this equation can be rewritten in terms of the grain radii a, a0 and thus provide
equations for the moments K`,

 

dK`
dt

!

coag
=

1
2

Z 1

0

Z 1

0
C(a, a0) f (a, t) f (a0, t)

n

[a3 + (a0)3]`/3 � a` � (a0)`
o

da0da.

2

Smoluchowski (coagulation) equation:

( + fragmentation as a “reverse process”)



Condensation

Nordic Institute for Theoretical Physics (Nordita)
Royal Institute of Technology and Stockholm University, Stockholm, Sweden

Solving the Smoluchowski coagulation
equation using the method of moments

Lars Mattsson & Joakim D. Munkhammar

January 25, 2016
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Condensation equation:



Condensation

Lagrangian frame:



Condensation

With dynamics (Lagrangian, dust-gas velocity coupling):



Condensation

Results in the following averaged equations:



Condensation



Condensation

> 0



Conclusions

• Stars produced the first dust grains, but most of the 
interstellar dust may have condensed in MCs.

• Under all circumstances, interstellar dust 
condensation is needed as a replenishment 
mechanism.

• Compressible turbulence leads to gas-dust separation 
and clustering of grains:
• Coagulation rate increases due to the clustering.
• Condensation rate can be affected in various ways and 

may effectively decrease due to the separation.


