The HI turbulence: temperature distribution, buildup of molecular clouds, and ineffective stellar feedback

C. Murray (UW), W. M. Goss (NRAO), Carl Heiles (UC Berkeley), John Dickey (U Tasmania), Brian Babler, David Nestingen-Palm, (UW Madison), Min-Young Lee (Saclay), Patrick Hannebelle (Saclay), Chung-Goo Kim, Eve Ostriker (Princeton)

Simulations: unstable WNM depends on turbulence and its fraction varies greatly

Why do we care? Want to understand galaxy's efficiency to form molecular gas?

Schinnerer+13

- Understand initial conditions for GMC formation: atomic reservoir (e.g. Saury+13)
- Test ISM and GMC
 formation models by
 comparing synthetic with
 observed spectra.
- Drivers and properties of the HI-to-H₂ transition ? What is the role of WNM?

- Role of turbulence?

CNM excitation or spin temperature, ${\rm T_s}$

Puzzle: no evidence for spatial variations of Ts

E.g. <Ts>: (Inner MW) ~ (Outer MW) !

> (VLA + Canadian + Southern) Galactic plane surveys

	Inner Galaxy	Outer Galaxy
<ts></ts>	48 +/- 10 K	38 +/- 10 K
# per kpc	0.03-1	0.02-0.08

4

Puzzle: the CNM fraction ~constant across the MW disk

Contradicts theoretical predictions

Indirect WNM temperature

	Unstable WNM Fraction	
Heiles & Troland03	0.4-0.5	
Roy+13	0.3	
Dickey+77, Kalberla+85, etc		

Direct WNM temperature difficult & rare as optical depth ~ 1/T_s

HI temperature distribution for the Milky Way as of 2003

Questions:

I. Measure WNM temperature and thermally unstable fraction. Constrain ISM models. \rightarrow 21-SPONGE

Claire Murray, Bob Lindner, M. Goss, J. Dickey, C. Heiles, P. Hennebelle, A. Begum, C.-G. Kim, E. Ostriker + UW ugrads

2. Probe the $HI-H_2$ transition in the Perseus molecular cloud. Phase transformation and properties close to GMCs?

Min-Young Lee, M. Wolfire, J. Miller, C. Heiles, L. Knee, J. Di Francesco, A. Leroy, R. Shetty, S. Glover, F. Molina, R. Klessen + GALFA-HI team

3. Test the importance of stellar feedback for driving HI turbulence?

David Nestingen-Palm, D. Gonzales-Casanova, B. Babler, A. Bolatto, K. Jameson

- 52 continuum sources, S >3 Jy, high latitudes
- 571 VLA hours: $\sigma_{\tau} < 0.001$ per 0.4 km/s channels
- Matching HI emission from Arecibo
- High detection rate (49/52)

Murray et al. 2015, ApJ, 804, 89⁹

21-SPONGE in perspective

Goal: high angular resolution, high sensitivity, many sources 10

T_{b,off} = "expected" emission profile = HI emission if the source suddenly turned off

Measure: optical depth and Ts, N(CNM), N(WNM), CNM fraction along the LOS.Ts \rightarrow Tk requires understanding of HI excitation processes

- Marc-Antoine's talk observations are likely not resolving individual CNM/WNM structures
- Fitting Gaussian components

Dickey+77, Taylor+03, Heiles & Troland03, McClure-Griffiths+05, Stil+06, Mohan+04, Kanekar, Braun, Roy 11, SS & Heiles05, Murray+14, etc etc

Understanding Observational Biases

1. Compare with numerical simulations

- 3D hydrodynamic simulation:
 - Supernova feedback
 - Self gravity
 - ISM heating, cooling
 - 2pc spatial resolution
 - Galactic rotation
- \rightarrow Have 10⁴ synthetic HI spectra
- HI excitation: Collisions, radiative, scattering of Lyalpha photons (Wouthuysen-Field effect) Assume n_alpha=10⁻⁶ cm⁻³ (not well constrained observationally).
- → Expect Ts<4000 K

Understanding Observational Biases

1. Develop analysis tools for objective comparisons

Autonomous Gaussian Decomposition (AGD)

- Efficient decomposition of 1D spectral data into Gaussian functions via derivative spectroscopy and machine learning
- Fit parameters are chosen without human interaction
- On the way to fully automate Ts derivation

Accuracy of observational Ts derivation

Issues at low-b: line blending and many components Ts: generally good agreement, at Ts>400K AGD overestimates temp. 15

Thermally-unstable WNM?

Have sensitivity to see full range of Ts yet no detections with Ts>2000 K

Where is the WNM?

Observed vs. Simulated HI Absorption

18

Strong, broad, WNM absorption lines, without CNM, are NOT seen in observations! → clear disagreement btw simulations and observations

WNM temperature depends on turbulence but also detailed physics: Lya scattering

Murray et al. 2017

Without Lya scattering

Omitting the WF effect lowers WNM temperature and exacerbates the difference between synthetic and observed absorption lines.

Another issue: absence of hot phase in the simulation

Murray et al. 2017

To explain WNM temperature need significant Lya radiation field

 Stacked residual absorption Murray et al. 2014

Carilli et al. 1998 Dwarakanath et al. 2002

Controlled by uncertain Galactic Ly α radiation field – usually treated as a constant value in simulations \rightarrow better prescriptions needed in simulations

Turbulence?

Kim et al. 2014

2. Are HI phases different close to GMCs?

- ~30 HI absorption lines in the vicinity of Perseus
- CNM clouds in/around GMCs typical.
- Higher CNM fraction than in a random ISM field.
- 50% WNM \rightarrow lots of warm gas!
- 10% mass increase when cold HI included (SS, Murray, Lee+14; Lee+15)

Summary/future:

I. Importance of turbulence for HI phase structure?

- 21-SPONGE is the highest sensitivity HI absorption-line survey constraining Ts of neutral gas.
- 21-SPONGE: lack of components with Ts>2000 K relative to the simulations. Possible reasons: WNM is hotter than expected as suggested by stacking analysis.
- Detailed physics of HI excitation (Galactic Ly α flux) still need to be understood to match observations with simulations.
- CNM fraction around Perseus higher than in random ISM. Buildup of molecular clouds and geometry of CNM?
- Future: additional sources with more SPONGE, GASKAP, SKA

The sonic Mach number across the SMC

Concerns: isothermal simulations, High-Ms regions close to resolution limit

- Quiescent: ~10%
- 0<Ms<2:~80%
- Ms>2:~10%

Most turbulent regions
trace tidal or shearing flows.
Large-scale tidal flows
→ Shearing instability?

(SMC)

10⁰

Stellar feedback affects the Power spectrum slope:

 10^{7} SMC 10^{6} 10^{5} $\alpha = 1$ 10^{4} no Feedback Feedback no Feedback Break scale $\alpha = 3.0$ 10^{3} Feedback Break scale 10^{2} 10^{3} 10^{4} $\ell[pc]$

Grisdale et al. 2015 Strong feedback (stellar winds + SNe explosions) destroys clouds shifting power from small to large scales \rightarrow steeper power spectra. 30

Summary

• 3. How important is stellar feedback for HI turbulence?

No difference in turbulent properties between high-SFR vs low-SFR regions \rightarrow uniform turbulent properties across the SMC.

Likely large-scale turbulent driving via gravitational instabilities.
Turbulent properties decoupled from initial driving sources or stellar feedback inefficient especially at low metallicity?
SFR is not a good tracer of stellar feedback?
Enhanced turbulent properties only in highly localized regions → need higher resolution observations?