

Effect of the multi-phase character of the ISM on the dynamo in the Milky Way and other spiral galaxies

Oliver Gressel* The Niels Bohr Institute, Copenhagen

Axel Brandenburg — Nordita, Stockholm —

Abhijit Bendre, Detlef Elstner,

Udo Ziegler & Günther Rüdiger

- Leibniz Institute (AIP), Potsdam -

May 7 - June 2, 2017

* oliver.gressel@nbi.dk

くロット (過) (き) (き) (き) (つ) (つ)

Nordita program on Phase Transitions in Astrophysics

contents

Context The galactic dynamo MF-MHD in a nutshell

Z Turbulent ISM simulations
 Measuring dynamo tensors
 Non-linear quenching

Going global

- Description of disc model
- Some simulation results

<<p>(日本)

contents

- Context
 The galactic dynamo
 MF-MHD in a nutshell
- 2 Turbulent ISM simulations
 - Measuring dynamo tensors
 - Non-linear quenching
- Going global
 - Description of disc model
 - Some simulation results

레이 소리에 소리에 드릴다.

contents

- Context
 The galactic dynamo
 MF-MHD in a nutshell
- 2 Turbulent ISM simulations
 - Measuring dynamo tensors
 - Non-linear quenching
- Going global
 - Description of disc model
 - Some simulation results

1 =

The galactic dynamo MF-MHD in a nutshel

observations

Andrew Fletcher/Rainer Beck, SuW and Hubble Heritage Team, STScI/AURA

- What is the origin of regular galactic magnetic fields?
 - primoridial field, (i.e. frozen-in fossil record of galaxy formation)
 - dynamo-generated field, (i.e. dynamically replenished)

Beck of the envelope

- **galactic rotation winds-up** B_{ϕ} $\tau_{\Omega} \simeq 2\pi/25 \, \text{kpc}^{-1} \, \text{km s}^{-1} \simeq 250 \, \text{Myr}$
- turbulent diffusion $\tau_{\rm d} \simeq (0.5 \, \rm kpc)^2 / 0.5 \, \rm kpc \, \rm km \, s^{-1} \simeq 500 \, \rm Myr$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

large observed pitch angle strongly favours dynamo

The galactic dynamo MF-MHD in a nutshel

observations

Andrew Fletcher/Rainer Beck, SuW and Hubble Heritage Team, STScI/AURA

- What is the origin of regular galactic magnetic fields?
 - primoridial field, (i.e. frozen-in fossil record of galaxy formation)
 - dynamo-generated field, (i.e. dynamically replenished)
- Beck of the envelope
 - galactic rotation winds-up B_{ϕ} $\tau_{\Omega} \simeq 2\pi/25 \, \text{kpc}^{-1} \, \text{km s}^{-1} \simeq 250 \, \text{Myr}$
 - turbulent diffusion $\tau_{\rm d} \simeq (0.5 \, \rm kpc)^2 / 0.5 \, \rm kpc \, \rm km \, s^{-1} \simeq 500 \, \rm Myr$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

large observed pitch angle strongly favours dynamo

The galactic dynamo MF-MHD in a nutshel

supernova-driven turbulence

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

- small-scale dynamo is simple (stretch-twist-fold ...)
- but how amplify regular fields in a turbulent environment? rotation + stratification → mean-field dynamo

The galactic dynamo //F-MHD in a nutshel

the α effect dynamc

- helical \(\alpha\) effect in a single expanding SNR \(\begin{bmatrix} p \alpha\) play
- remnants expanding out of the galactic plane play
- breaking the homogeneity of the turbulence play

- Key mechanisms
 - rotation (and/or shear) → field-line stretching
 - helical flow component → avoid cancellation due to anti-parallel field
 - α effect couples the poloidal and toroidal field components

비는 지민에지는 지민에 지하는 수민에

- reconnection
 - \rightarrow restore original field-line topology

The galactic dynamo //F-MHD in a nutshel

the big picture

encapsulate the effect of the supernovae
 model the evolution of the large-scale field

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

The galactic dynamo MF-MHD in a nutshel

modelling the dynamo process

- Mean-field approach:
 - split into mean + fluctuation
 - $U=\overline{U}+u \text{ and } B=\overline{B}+b$
 - derive mean-field equation

 $\partial_t \overline{\mathbf{B}} = \nabla \times \left(\overline{\mathbf{U}} \times \overline{\mathbf{B}} + \bar{\mathcal{E}} - \eta \, \nabla \times \overline{\mathbf{B}} \right)$

turbulent EMF $\bar{\mathcal{E}} = \overline{u \times b}$

- Parametrise small-scale effects $\overline{\mathcal{E}}$ as a functional of $\overline{\mathbf{U}}, \overline{\mathbf{B}}, \overline{f(\mathbf{u})}$
 - for sufficient scale separation

 $\bar{\mathcal{E}}_i = \alpha_{ij}\bar{B}_j - \tilde{\eta}_{ij}\,\varepsilon_{jkl}\partial_k\bar{B}_l$

Andrew Fletcher/Rainer Beck, SuW / Hubble Heritage Team, STScI/AURA

The galactic dynamo MF-MHD in a nutshel

modelling the dynamo process

- Mean-field approach:
 - split into mean + fluctuation

 $U=\overline{U}+u \text{ and } B=\overline{B}+b$

derive mean-field equation

 $\partial_t \overline{\mathbf{B}} = \nabla \times \left(\overline{\mathbf{U}} \times \overline{\mathbf{B}} + \bar{\mathcal{E}} - \eta \, \nabla \times \overline{\mathbf{B}} \right)$

turbulent EMF $\bar{\mathcal{E}} = \overline{u \times b}$

- Parametrise small-scale effects $\overline{\mathcal{E}}$ as a functional of $\overline{\mathbf{U}}, \overline{\mathbf{B}}, \overline{f(\mathbf{u})}$
 - for sufficient scale separation

 $\bar{\mathcal{E}}_i = \alpha_{ij}\bar{B}_j - \tilde{\eta}_{ij}\,\varepsilon_{jkl}\partial_k\bar{B}_l$

Andrew Fletcher/Rainer Beck, SuW / Hubble Heritage Team, STScI/AURA

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Measuring dynamo tensors Non-linear quenching

Context

The galactic dynamo
 MF-MHD in a nutshell

Turbulent ISM simulations Measuring dynamo tensors

Non-linear quenching

Going global

- Description of disc model
- Some simulation results

Measuring dynamo tensors Non-linear quenching

local box simulations

Model geometry:

- local patch of interstellar medium, up to 1.6 kpc on edge ($\Delta \simeq 10 \text{ pc}$)
- vertical stratification up to ±6 kpc
- sheared galactic rotation

Physical ingredients:

- non-ideal MHD (+ heat conduction)
- optically thin radiative heating/cooling
- localised thermal energy input modelling the supernovae

Korpi, Brandenburg, Shukurov, Tuominen & Nordlund (1999)

Measuring dynamo tensors Non-linear quenching

local box simulations

Model geometry:

- local patch of interstellar medium, up to 1.6 kpc on edge ($\Delta \simeq$ 10 pc)
- vertical stratification up to ±6 kpc
- sheared galactic rotation

Physical ingredients:

- non-ideal MHD (+ heat conduction)
- optically thin radiative heating/cooling
- localised thermal energy input modelling the supernovae

▶ play

Korpi, Brandenburg, Shukurov, Tuominen & Nordlund (1999)

イロト イポト イヨト イヨト ヨ

1 =

Measuring dynamo tensors Non-linear quenching

lpha-profiles

- dynamo effect $|\alpha_R|, |\alpha_{\phi}| \simeq 3 \,\mathrm{km \, s^{-1}}$
- diamagn. pumping $|\gamma_z| \simeq 7 \, \mathrm{km \, s^{-1}}$ directed inward
- |α|: |γ| consistent w/ SOCA results
- effect of galactic wind u
 _z balanced by turb. pumping

Measuring dynamo tensors Non-linear quenching

$ilde\eta$ -profiles

- turb. diffusivity $\simeq 2 \,\mathrm{kpc}\,\mathrm{km}\,\mathrm{s}^{-1}$
 - coherence time $\tau \simeq 3 \,\mathrm{Myr}$

- non-vanishing $\Omega \times J$ effect
 - $\delta_z \simeq 0.5 \, {\rm kpc} \, {\rm km} \, {\rm s}^{-1}$

→ ∃ → < ∃</p>

■ add shear → dynamo

-

Measuring dynamo tensors Non-linear quenching

it really works!

Figure 4.10: Same as Fig. 4.9, but additionally including a mixed (anti-)symmetric contribution in the off-diagonal elements of $\tilde{\eta}$ (upper panels). Now the lopsided dipolar symmetry in the field reversals persists and closely resembles the features seen in the *direct* simulation H4 (lower panels).

Measuring dynamo tensors Non-linear quenching

the role of the multi-phase flow

Measuring dynamo tensors Non-linear quenching

the role of the multi-phase flow

Measuring dynamo tensors Non-linear quenching

the role of the multi-phase flow

O. Gressel

Measuring dynamo tensors Non-linear quenching

scaling relations (brute force)

dynamo effect as function of

- Supernova rate $\hat{\sigma} = \sigma / \sigma_0$
- **rotation frequency** $\hat{\Omega} = \Omega / \Omega_0$
- midplane density $\hat{\rho} = \rho/\rho_0$

scaling relations:

$$\begin{split} &\alpha = 2 \text{ km s}^{-1} \ \hat{\sigma}^{0.4} \ \hat{\Omega}^{0.5} \ \hat{\rho}^{-0.1} \\ &\gamma_z = 12 \text{ km s}^{-1} \ \hat{\sigma}^{0.5} \ \hat{\Omega}^{-0.2} \ \hat{\rho}^{0.3} \\ &\eta = 2 \text{ kpc km s}^{-1} \ \hat{\sigma}^{0.4} \ \hat{\Omega}^{0.25} \ \hat{\rho}^{0.4} \end{split}$$

where
$$\sigma_0 = 30 \text{Myr}^{-1} \text{kpc}^{-2}$$
,
 $\Omega_0 = 25 \text{Gyr}^{-1}$, $\rho_0 = 1 \text{ cm}^{-3}$

-

Veasuring dynamo tensors Non-linear quenching

Context

The galactic dynamo
 MF-MHD in a nutshell

Turbulent ISM simulations
 Measuring dynamo tensors
 Non linear guapphing

Non-linear quenching

Going global

- Description of disc model
- Some simulation results

<<p>(日本)

Measuring dynamo tensors Non-linear guenching

magnetic field saturation

Measuring dynamo tensors Non-linear quenching

beyond the kinematic phase

- Dynamical quenching
 - non-linear effects in the EMF

$$\partial_t \bar{\mathcal{E}} = \overline{u \times (\partial_t b)} + \overline{(\partial_t u) \times b}$$

$$\rightarrow \qquad \alpha = \alpha_{\rm K} + \alpha_{\rm M} = -\frac{1}{3}\tau_{\rm K}\left\langle \,\omega \cdot u \,\right\rangle + \frac{1}{3}\tau_{\rm M}\left\langle j \cdot b \,\right\rangle / \rho$$

magnetic helicity evolution

$$\partial_t \left\langle \bar{A} \cdot \bar{B} \right\rangle = +2 \left\langle \bar{\mathcal{E}} \cdot \bar{B} \right\rangle - 2\eta \left\langle \bar{J} \cdot \bar{B} \right\rangle$$

$$\partial_t \left\langle a \cdot b \right\rangle = -2 \left\langle \bar{\mathcal{E}} \cdot \bar{B} \right\rangle - 2\eta \left\langle j \cdot b \right\rangle$$

time evolution for effective α effect

$$\partial_t \alpha \; = \; -2\eta_{\rm t} \, k_{\rm f}^2 \left(\frac{\alpha \langle \bar{B}^2 \rangle - \eta_{\rm t} \langle \bar{J} \cdot \bar{B} \rangle + \, {\rm fluxes}}{B_{\rm eq}^2} + \frac{\alpha - \alpha_{\rm K}}{\eta_t / \eta} \right)$$

(new notation: $a = A', b = B', \ldots$)

Blackman (2014)

using
$$\alpha_{\rm K} = {\rm const.}$$
, $\langle \bar{\mathcal{E}} \cdot \bar{B} \rangle = \langle \alpha \bar{B} \cdot \bar{B} \rangle - \langle \eta_{\rm t} \bar{J} \cdot \bar{B} \rangle$ and $\langle a \cdot b \rangle \simeq k_{\rm f}^{-2} \langle j \cdot b \rangle$

Blackman & Field (2000)
 Vishniac & Cho (2001)
 Blackman & Brandenburg (2002)
 Vishniac & Shapovalov (2014)
 Squire & Bhattacharjee (2015a/b)

Veasuring dynamo tensors Non-linear quenching

quenching scenarios

Stationary-state, dynamical quenching

general form $(d\alpha/dt = 0)$:

$$\alpha = \frac{\alpha_{\rm K} + \eta_{\rm t} {\rm Rm} \langle \bar{J} \cdot \bar{B} / B_{\rm eq}^2 \rangle + {\rm fluxes}}{1 + {\rm Rm} \langle \bar{B}^2 \rangle / B_{\rm eq}^2}$$

catastrophic quenching ($\overline{J} = 0$, no fluxes):

$$\alpha = \frac{\alpha_{\rm K}}{1 + {\rm Rm} \langle \bar{B}^2 \rangle / B_{\rm eq}^2}$$

fully helical large-scale field $(\langle \bar{J} \cdot \bar{B} \rangle = k_m \bar{B}^2)$:

$$\alpha \; = \; \tfrac{\alpha_{\mathrm{K}} \; + \; \eta_{\mathrm{t}} \; k_{\mathrm{m}} \; \mathrm{Rm} \langle \bar{B}^2 \rangle / B_{\mathrm{eq}}^2}{1 \; + \; \mathrm{Rm} \; \langle \bar{B}^2 \rangle / B_{\mathrm{eq}}^2} \to k_{\mathrm{m}} \; \eta_{\mathrm{t}}$$

Compared to the kinematic value $\alpha_{\rm K} \simeq k_{\rm f} \eta_{\rm t}$, α is quenched by the scale-separation ratio $k_{\rm m}/k_{\rm f}$.

Measuring dynamo tensors Non-linear quenching

a lingering catastrophe

Quenching scenarios:

- (a) classic: flow quenching due to Lorentz force
- (b) catastrophic: helicity conservation inhibits growth
- (c) similar to scenario (b) but alleviated by small-scale helicity removal
- Test possible realisations:
 - quenching sets-in ...
 - (a) . . . at $B \simeq B_{eq}$
 - (b) . . . at $B \simeq B_{\rm eq}/{\rm Rm}$
 - (c) . . . at $B \simeq B_{\rm eq} l_0/L_0$
- Suppression of wind: (c) \rightarrow (b)

1 =

Measuring dynamo tensors Non-linear quenching

extracting quenching functions

- quenching quadratic in $\beta \equiv \bar{B}/B_{eq}$
- magnetic Reynolds number, $\text{Rm} \equiv u_{\text{rms}}(k_{\text{f}} \eta)^{-1} \simeq 75-125$
- scale separation ratio, $l_0/L_0 \simeq 0.1 \text{ kpc}/1 \text{ kpc} = 10$

Gressel, Bendre & Elstner (2013), MNRAS 429, 967

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ = ・ ○ < ○

Description of disc model Some simulation results

Context

The galactic dynamo
 MF-MHD in a nutshell

2 Turbulent ISM simulations

- Measuring dynamo tensors
- Non-linear quenching

Going global

- Description of disc model
- Some simulation results

Description of disc model Some simulation results

the disc model

- Based on flaring HI disc Kalberla & Dedes (2008)
 - expon. + power-law density profile
 - NFW-type DM halo
 + stellar disc / bulge
 - → self-consistent rotation curve

- Goal: perform fully-dynamical MHD + MFD simulations
 - momentum equation with turbulent viscosity
 - will capture Parker / Tayler / MRI on long wavelengths

ъ

Description of disc model Some simulation results

Context

The galactic dynamo
 MF-MHD in a nutshell

2 Turbulent ISM simulations

- Measuring dynamo tensors
- Non-linear quenching

Going global

- Description of disc model
- Some simulation results

Description of disc model Some simulation results

emerging dynamo mode

■ initial NVF leads to transient A0, → S0 mode
 ■ S0+A0 produces one-sided vertical field Mao, Gaensler et al. (2010)

Description of disc model Some simulation results

model overview

Table 2. Simulation parameters and results.

model	dim	MF	NS	halo	$M_{\rm gas}$ [10 ¹⁰ M _{\odot}]	seed	parity	<i>P</i> in [°]	Pout [°]	τ _e [Gyr]	$ \overline{\mathbf{B}}_{sat} $ [μ G]	comments
X1s-0.5	2D	•	0	0	0.57	WN	S0/A0	-31.2	-4.7	0.374	1.44	see Fig. 3
X1s	2D	•	0	0	1.14	WN	S0 ^a	-28.7	-4.6	0.503	3.75	see Figs. 4,5
X1s-1.5	2D	•	0	0	1.70	WN	S0 ^a	-32.7	-4.6	0.547	6.34	
X1s-2.0	2D	•	0	0	2.27	WN	S0	-35.8	-4.3	0.593	9.07	
X2s-halo	2D	•	0	•	1.14	WN	S0 ^a	-25.2	-4.8	0.358	4.05	
X3s-VF	2D	•	0	0	1.14	NVF	A0→S0	-28.9	-4.5	0.539	3.75	
N1s/d-HF	3D	•	0	0	1.14	NHF	S0	-28.7	-3.2	-	3.75	
	3D	•	•	0	1.14		S0	-17.7	-2.6	-	2.52	
N1s/d-VF	3D	•	0	0	1.14	NVF, B_{ϕ}	S0	-29.0	-6.1	0.409	3.75	
	3D	•	•	0	1.14		S0	-17.8	-2.7	0.407	2.65	see Fig. 8
N2d	3D	0 ^b	•	0	1.14	HF+VF	A0	-5.3	-1.6	-	0.82 ^c	see Fig. 6
N2d-MRI	3D	0	•	0	1.14	HF+VF	A0	-6.0	-0.5	-	4.25	see Fig. 7

^{*a*} sub-dominant A0 outside $R \simeq 10$ kpc, ^{*b*} includes η_t , and ν_t , ^{*c*} obtained outside $R \simeq 15$ kpc.

All 2D runs are axisymmetric; mean-field (MF) effects include the ones described in Sect. 2.2; runs including 'NS' evolve the Navier-Stokes equation. The 'halo' dynamo is shown as a dashed line in Fig. 2. The column labelled M_{gas} gives the normalisation for the disc mass. For seed fields we use white noise (WN), net-vertical field (NVF), net-horizontal field (NHF). Pitch angles are given for the inner disc (peak value) and for the outer disc average for R > 10 kpc separately. Growth rates are for the magnetic field $|\vec{B}|$, during an interval for which exponential growth can be identified.

Gressel, Elstner & Ziegler (2013) A&A 560, 93

Description of disc model Some simulation results

radial pitch angle

radial fall-off in pitch angle (agrees with observations)

 \rightarrow explained conveniently by flaring disc Fletcher (2010)

A = A = B
 A = B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1 =

Description of disc mode Some simulation results

saturated field profile

radial scale length $\sim 4 \, \rm kpc$ for saturated $\overline{\bf B}$ outer disc essentially unmagnetised

Description of disc mode Some simulation results

MHD w/o mean-field dynamo

-

Description of disc mode Some simulation results

MHD w/o mean-field dynamo

O. Gressel

Description of disc mode Some simulation results

combined MHD / mean-field dynamo

- Parker modes & MRI in outer disc → pronounced loop structures
 undulating mode with m = 3
- radial scale length $\sim 10 \, \rm kpc$
- inner disc dominated by m = 0

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Description of disc model Some simulation results

Do magnetic fields influence rotation in galaxies?

prediction from Lorentz force

actual result from simulation

Elstner, Beck & Gressel (2014) A&A 568, A104

イロト イポト イヨト イヨト 注

Description of disc mode Some simulation results

Do magnetic fields influence rotation in galaxies?

prediction from Lorentz force

actual result from simulation

Elstner, Beck & Gressel (2014) A&A 568, A104

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Description of disc mode Some simulation results

synthetic polarisation maps

summary of results

Measuring dynamo coefficients

1D mean-field model matches simulations

 $\blacksquare \rightarrow$ quantitative scaling relations for sub-grid physics

Non-linear saturation

- quenching functions obtained
- indications for the presence of helicity constraints
- suppression of wind threatens saturation level

Global mean-field models

- first fully quantitative global dynamo models
- parametrisation of small-scale effects is essential

summary of results

Measuring dynamo coefficients

- 1D mean-field model matches simulations
- $\blacksquare \rightarrow$ quantitative scaling relations for sub-grid physics

Non-linear saturation

- quenching functions obtained
- indications for the presence of helicity constraints
- suppression of wind threatens saturation level

Global mean-field models

- first fully quantitative global dynamo models
- dynamic momentum equation → MRI / Parker / Tayler
- parametrisation of small-scale effects is essential

イロト 不得 トイヨト イヨト 正言 ろくの

summary of results

Measuring dynamo coefficients

- 1D mean-field model matches simulations
- $\blacksquare \rightarrow$ quantitative scaling relations for sub-grid physics

Non-linear saturation

- quenching functions obtained
- indications for the presence of helicity constraints
- suppression of wind threatens saturation level

Global mean-field models

- first fully quantitative global dynamo models
- parametrisation of small-scale effects is essential

ヘロト 人間 ト イヨト イヨト 三日 うえつ