Characterization of exoplanets



> Definition

— An exoplanet is a planet that does not orbit around the Sun but
around another star (well sort of...)
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> Definition

— An exoplanet is a planet that does not orbit around the Sun but
around another star (well sort of...)

— Quite hard to find in the sky...



» A bit of history...

Astronomers have imagined an undirect detection method: the radial-
velocity method

~Radial Velocrty Method
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» A bit of history...

— In the end of 80’s early 90’s, astronomers knew that their detectors
were sensitive enough to detect this kind of signal.

— Many teams around the world started to collect data and look for
planets. But no robust detection has been made in the beginning...

— Why?



» A bit of history...

— In the end of 80’s early 90’s, astronomers knew that their detectors
were sensitive enough to detect this kind of signal.

— Many teams around the world started to collect data and look for
planets. But no robust detection has been in the beginning...

— Why ? You need the big guy, like Jupiter for the star to move




» A bit of history...

— In 94/95, Didier Queloz and Michel Mayor were actually analysing
their data on the fly with the Elodie spectrograph at Observatoire de
Haute Provence.

— ... and found a tiny signal in their data...



» A bit of history...

— After almost one year checking their data, they extract this signal from
the star 51 Pegasus

— ... and found that an object (51 peg b) is orbiting with a period of only
4.2 days
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» A bit of history...

— How do we get the orbit of the object?

— How do we get the mass of the object?



» A bit of history...

— Minimum mass of 0.5 mass of Jupiter orbiting at 0.05 au of the star...
— Strongly irradiated by the star: Hot Jupiter
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» A bit of history...

— Nobody has ever predicted this kind of planets to exist: a huge part
of the astrophysics community (and the press) was not ready to
accept this detection:

* Instrumental error? (the signal around 51 peg was immediatly
confirmed by competitors, Marcy’s group)

* Astrophysical artifact? E.g. from the atmosphere of the star?
star spots ?

* A binary star?



» A bit of history... part 2

— Astronmers have imagined a second undirect detection technique: the
transit method

You get the radius of the
exoplanet

0.99

relative flux

0.98 -
L [ S S | § I S (I R T 1 f ELN P EL A | L1

time (hours)



» A bit of history... part 2

— Astronomers had to wait until 1999 for the first detection by this
method, a 0.7 Jupiter-mass hot jupiter called HD209458b
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— Finally confirming the existence of exoplanets !
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» A bit of history... part 2

— Since then astronomers have observed up to 3500 exoplanets with an
important diversity in terms of mass, radius, orbits, etc... with a few
rocky planets in the habitable zone of their parent stars:
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» But a big challenge: the inflated radius of hot jupiter

— Astronomers had to wait until 1999 for the first detection by this
method, a 0.7 Jupiter-mass hot jupiter called HD209458b
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» Why is it a challenge?

— We know very well what the radius of ball of gas should be:
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» Why is it a challenge?

— We know very well what the radius of ball of gas should be

— And we do not know why irradiated hot jupiters are bigger with
increasing irradiation
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» Why is it a challenge?

— We do not know why irradiated hot jupiters are bigger with increasing

irradiation
— 1D atmospheric models

What you want to get: What you need to solve (steady state):
- Pressure P - Hydrostatic balance
- Temperature T - Energy conservation
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» Why is it a challenge?

— We do not know why irradiated hot jup
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» Why is it a challenge?

— We do not know why irradiated hot jupiters are bigger with increasing
irradiation

— 1D atmospheric models do not work, too cold in the deep atmosphere
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» Asymetric irradiation of tidally locked hot jupiter

— A hot dayside and a cold nightside implies pressure gradients and winds
— 3D atmospheric models to study the circulation
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> Asymetric irradiation of tidally locked hot jupiter

— A hot dayside and a cold nightside implies pressure gradients and winds

— 3D atmospheric models to study the circulation: time-dependent Euler
equations in spherical coordinates)
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Asymetric irradiation of tidally locked hot jupiter

— 3D atmospheric models to study the circulation, evolution in time to get
the steady state
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» Asymetric irradiation of tidally locked hot jupiter

— Does it work ? No...
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» Why is it a challenge?

— We do not know why irradiated hot jupiters are bigger with increasing
irradiation

— 1D atmospheric models do not work, too cold in the deep atmosphere
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» Asymetric irradiation of tidally locked hot jupiter

— The deep atmosphere is not converged in time because of computation
limitation
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» Asymetric irradiation of tidally locked hot jupiter

— Need to construct a 2D steady state circulation model at the equator
* Keep the steady state nature of the 1D model

e Can take into account the asymetric irradiation as a 3D model

— Problems:

* The meridional wind i is zero at the equator by north/south
symetry but not its derivative ou/d¢

* The meridional momentum equation vanishes at the equator and we
lack one equation to close the system...
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» Asymetric irradiation of tidally locked hot jupiter

— Need to construct a 2D steady state circulation model at the equator
* Keep the steady state nature of the 1D model
e Can take into account the asymetric irradiation as a 3D model

— Problems:

* The meridional wind i is zero at the equator by north/south
symetry but not its derivative ou/d¢

* The meridional momentum equation vanishes at the equator and we
lack one equation to close the system...

Just assume that transverse mass
vertical fluxes are proportional with a
constant
1 Or?pu, 1 Opuy
r2 or  ra [0

a — 0 Zonal, vertical wind
a — oo Zonal, meridional wir;gl




» Asymetric irradiation of tidally locked hot jupiter
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» Asymetric irradiation of tidally locked hot jupiter

— Get a hot deep interior because of vertical mass flows !
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» Asymetric irradiation of tidally locked hot jupiter

— Get a hot deep interior because of vertical mass flows !
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» Asymetric irradiation of tidally locked hot jupiter

— But the solution is only 2D at the equator... what happen at other
latitudes ?? Still need 3D simulations but need efficient HPC to reach the
steady state

— Efficient new dynamical core for atmospheric circulation: Dynamico
* Developped at LMD and LSCE by T. Dubos and Y. Meurtdesoif
* |cosahedral grid instead of spherical grid to avoid small polar cells

 Efficient MPl/open MP parallelization and vectorisation
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> Characterization of molecular abundances

— Use 1D model to get the abundances of molecules in transmission spectra
— Wakeford et al. 2017: low-metallicity hot neptune
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> Characterization of molecular abundances

— Use 1D model to get the abundances of molecules in Emission spectra
— Evans et al. 2017 (in press): detection of a stratosphere in a hot Jupiter
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»Brown dwarfs: many observations with good-quality
spectra

Kruger 60

Groombridge 34
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Many isolated close objects:
good data ! Can test
atmospheres from T=3000K
down to T=300K
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ENERGY FLUX
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Magnetically active, only the
youngest brown dwarfs are
classified as M-type.
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Molecule-rich atmospheres
contain clouds of “hot dirt”
and other condensates.

T dwarfs (1300-6007? K)
Coldest known brown dwarfs,
atmospheres contain H,O,
CH,, and NH; gases.

Y dwarfs (<600? K)
Hypothesized class of very
cold brown dwarfs, may have
H,O0 clouds.
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» Reddening -> clouds ?

10

12

Dupuy et al. (2012) + Faherty et al. (2012)
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» Reddening -> clouds ? Allard et al. (2001) Saumon et al. (2008) Marley et al. (2010)
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Why water clouds do not work well? (2012)

Why silicate clouds disappear?

Why does it correlate with the trangition between CO and CH4 in the
objects?
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» Y dwarfs, no need for clouds -> out-of-equilibrium chemistry Tremblin et al. (2015)
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» T dwarfs, no need for clouds -> cooler deep layers Tremblin et al. (2015)
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» L dwarfs, no need for clouds ! -> cooler deep layers with CH4 quenching Tremblin et al. (2016)
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» Cooler deep layers + out-of-eq Tremblin et al. (2016) Rosenblum et al. (2011)
chemistry -> fingering convection ?

couilibrivm mege

\. Created by gradients of

mean molecular weight

Thermohaline convection Fingering convection

In Earth oceans in Stars atmosphere
(Stern 1960) (Théado et al. 2009)
Salt-poor Salt-rich Iron-poor Iron-rich

water water gas gas
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» Cooler deep layers + out-of-eq Tremblin et al. (2016) Rosenblum et al. (2011)
chemistry -> fingering convection ?

couilibrivm mege

\. Created by gradients of

mean molecular weight

Fingering convection
in Exoplanets Brown dwarfs

CO + 3H, - CH4 + H,O (Tremblin et al. 2015,2016)
N, + 3H, — 2NHj3 CO+3H2 CH4+H20
gas gas

Phase transition of molecules !
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» Cooler deep layers + out-of-eq Tremblin et al. (2016) Rosenblum et al. (2011)
chemistry -> fingering convection ?
The CO/CH4 transition and N2/NH3 transition introduce
destabilizing mean-molecular-weight gradients in the
atmosphere that triggers fingering convection and turbulence

When the transition is deep enough the chemical timescale is

fast and the instability disappear -> sharp transition to a full CH4
stable state of NH3 stable state explalnlng the L/T transition

CO+3H2 &

\ Created by gradients of
mean molecular weight

Phase transition of molecules !

CO + 3H, - CH4 + H,O
N>, + 3H, — 2NH3

Predicted by equilibrium chemistry
CH4+H20 | CO+3H2 in brown dwarfs and isolated
unds exoplanets 6



» A whole new picture b
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» Do we care for exoplanets? Tremblin et al. (2016)
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Thanks!
?



