Daniel Lenz Advances in Theoretical Cosmology in Light of Data July 19

HI emission as a tracer of interstellar reddening

in collaboration with B. Hensley & O. Doré

arXiv:1706.00011

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Which foregrounds do we care about?

"(...) the name of the game is component separation, not noise reduction"

H.K. Eriksen

- Dust and synchrotron foregrounds in CMB data
- * De-lensing of CMB data for primordial gravitational waves
- * CIB measurements
- Extinction for cosmological galaxy surveys

Reddening

E(B-V)

- * E(B-V) = Extinction in B band Extinction in V band
- * More dust => larger E(B-V)
- **E(B-V)** maps essential for correcting observations for Galactic reddening

Mapping E(B-V): Direct approach

- Find many sources with known spectrum (e.g. stars, passive galaxies)
- * Measure spectra, attribute differences to dust
- E.g. Schlafly+ 2014 used
 500 million stars from
 Pan-STARRS to measure
 reddening to 4.5 kpc

- * Direct measurements are hard!
 - Photometric/ spectroscopic errors
 - Ensuring sources lie behind full dust column
 - Ensuring adequate number of sources have been measured

Dust emission as measure of E(B-V)

- * E(B-V) is proportional to the dust column, so can convert dust column tracer to E(B-V)
- * SFD used dust emission from IRAS to derive a calibration factor from FIR emission to E(B-V)
- * Full-sky, high sensitivity measurements

Reddening map of Schlegel, Finkbeiner, and Davis (1998)

The SFD reddening map

- Requires a temperature correction to go from dust emission to a dust column density
- FIR emission may have contributions from Zodiacal Light and unresolved galaxies

Reddening map of Schlegel, Finkbeiner, and Davis (1998)

The SFD reddening map

Requires a to correction to emission to density

FIR emissio contributionLight and u

References in the article

· Citations to the Article (10169) (Citation History)

Refereed Citations to the Article

SIMBAD Objects (57)

Also-Read Articles (Reads History)

HEP/Spires Information

Translate This Page

Title: Maps of Dust Infrared Emission for Use in Estimation of Re

Authors: Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc

and Davis (1998)

HI emission as basis for E(B-V)

- * Gas and dust are well-coupled in the ISM
- * Perform an SFD-like analysis to convert HI emission to E(B-V)
- * Resulting maps free from errors due to dust temperature, Zodi, and extragalactic emission
- * Limited by non-HI gas along the line of sight

HI4PI Survey

- Merges data from Effelsberg and Parkes
- Replaces LAB as state-of-the-art full-sky HI survey
- * Higher sensitivity & resolution, fewer systematics, full sampling

The E(B-V)/N_{HI} ratio

Pan-STARRS E(B-V), Schlafly+ (2014)

SFD E(B-V)

The E(B-V)/N_{HI} ratio

The E(B-V) map

40% sky coverage, 16.1' resolution

Dust systematics

- * Peek & Graves (2010) used SDSS passively evolving galaxies as "standard crayons"
- * Correction to the SFD map at 4.5 deg

Dust systematics

Based on galactic HI

-0.01

0.01

HI systematics

Investigate systematics due to complex ISM physics

Model extensions

- * Several large-scale data sets available, all of which do not significantly improve the model
- A future work would need to combine multiphase gaseous data, FIR dust data, and Pan-STARRS/Gaia data

When and why to use this extinction map

- New HI based extinction map
- * In line with independent corrections, but much higher resolution and better sky coverage
- * Yahata+ (2007) find correlation of SFD with large-scale structure
- * For high latitudes, our map overcomes many of the SFD problems and is much more sensitive than stellar databased E(B-V) maps