Neutrino Experiments for Dark Matter Detection

Yue Zhao

MCTP, University of Michigan

Nordita 2017

Junwu Huang , Y.Z. JHEP (2014) Joshua Berger, Yanou Cui , Y. Z. JCAP (2015) On-going collaborations with MicroBooNE & DUNE arXiv: hep-ph 1708.xxxxx

Dark Matter Overview:

Why do we need DM?

• Galaxy rotation curve (Wikipedia)

• Bullet Cluster (Deep Chandra)

• The CMB Anisotropy Power Spectrum (WMAP year 5 data)

Deviations away from conventional searches:

Decades of efforts focused on conventional WIMP DM detections. Time to think out of the box!

Deviations away from conventional searches:

Decades of efforts focused on conventional WIMP DM directions. Time to think out of the box!

Neutrino experiments ~ O(10⁵ ton) Junwu Huang , Y.Z. JHEP (2014) Joshua Berger, Yanou Cui , Y. Z. JCAP (2015)

Unconventional DM:

- Boosted DM is generic.
- DM-SM interaction can be inelastic.

Boosted DM detection strategies:

DM-nucleon scattering cross section can be less constrained!

Large Volume Neutrino Experiments Super-K ~ 50K ton! DUNE ~ 68K ton!

DM IND detection strategies:

DM Induced Nucleon Decay:

DM as initial state is invisible in nucleon decay experiments.

 \implies The signature can be very similar to a nucleon decay process

Looking for proton/neutron decay events. But kinematics is very different!

Similar studies in

Darkogenesis model, J. Shelton, et. al. PRD (2010) Hylogenesis model, H. Davoudiasl, et. al. PRL (2010)

Large Volume Nucleon Decay Experiments Super-K ~ 50K ton! DUNE ~ 68K ton! Neutrino experiments for boosted DM: Multiple choices:

- Super/Hyper-Kamiokande (50~1000K ton) Cherenkov ring detector
 - rightarrow Limited energy range
 - not too low: proton momentum > 1.07 GeV (no signal) not too high: proton momentum < 2 GeV (inelastic scattering, messy final states)
- MicroBooNE/DUNE (0.17~68K ton)
 - Liquid Argon Time Projection Chambers (LArTPCs)
 - Lower energy threshold Better control/identification on hadronic activity Better angular resolution
- IceCube/PINGU/MICA (?) (~1M ton)

Photomultiplier Tube

Energy threshold is 100 GeV But may be lowered in the future. Neutrino experiments for boosted DM:

Lowering energy threshold helps a lot!

It is promising to carry out this search using LArTPCs. May also be useful to study scatterings through a light mediator.

On-going collaborations with MicroBooNE/DUNE: Things to be addressed in MicroBooNE/DUNE:

- Low energy scattering Collision may be partial collective.
- High energy scattering More likely to be inelastic scattering. Multiple particles in final states.

Asaadi, Davenport, (UT-Arlington), Convery (SLAC), Tsai (Fermilab), Russell, Tufanli (Yale) + ...

Neutrino experiments for DM IND:

DM can induce nucleon decay like processes!

Neutrino experiments for DM IND:

The existence of DM in initial/final states modifies kinematics.

$$p + \phi \rightarrow e^+ + \pi^0 + \bar{\phi}$$

• Reconstructed proton momentum < 250 MeV.

• Reconstructed proton inv mass within (800 MeV, 1050 MeV).

Neutrino experiments for DM IND:

Conclusion

The purposes of Neutrino/Proton decay experiments can be extended.

• Boosted DM

Striking signatures can be induced in well-motivated DM models.

A wide range of parameter space has been or can be probed.

Super-K is suitable for particular kinetic regime

→ MicroBooNE/DUNE can extend both high and low energy regimes.

• DM induced nucleon decay

Easy to fake a proton/neutron decay signal.

DM in initial/final states can modify the kinematics.

- \implies The current event selection has coverage in our model.
- \Rightarrow An optimization is necessary to improve signal efficiency.
- → Complimentary channels between Super/Hype-K and Dune.

Detect BDM:

Our studies focus on the Sun as the source and DM-p/n scattering.

Variations on this idea: Galaxy as the source and/or DM-electron scattering

K. Agashe, et. al. JCAP (2014) L. Necib, et. al. arXiv:1610.03486 [hep-ph] H. Alhazmi, et. al. arXiv:1611.09866 [hep-ph]

Concerns:

- More model-dependent parameters are needed.
- Larger SM background for electron channel (NC vs CC interaction rate).
- Neutrino beam induced beta decay as additional background.

(LUX arXiv:1602.03489)

$$\mathcal{O}_{Xq,S} = \frac{1}{\Lambda^2} (Xu^c) (d^c u^c)$$

$$\mathcal{L}_{\Phi_e,S} = v \overline{\phi}^2 \Phi_e^* + \lambda_s \Phi_e (X^c e^c)$$

$$\downarrow$$

$$\downarrow$$

$$\sigma_{\chi,N} = \frac{3m_N^2 m_\chi^2}{\pi M^4 (m_\chi + m_N)^2} \left(\sum_q \Delta_q\right)^2 F(Q^2)$$
$$10^{-38} \text{cm}^2 \implies M \sim 400 \text{ GeV}$$

If $M_{med} \sim 10$ GeV, couplings ~ 0.025.

 \implies Both Z' being off-shell and small couplings are helping.

Mono-jet cross section is too small to be relevant!

Neutrino experiments for boosted DM:

Neutrino experiments for boosted DM:

Results: for a fixed DM IND cross section (only important for turning point)

