Effective Theory of Dark Energy

Filippo Vernizzi - IPhT, CEA Saclay

Advances in Theoretical Cosmology in Light of Data Nordita, Stockholm - July 12, 2017

- Gravity only been tested over specials ranges of scales and masses
- Cosmology is a window for testing gravity on very large distances

Gravity only been tested over specials

ranges of scales and masses

Gravity only been tested over specials

ranges of scales and masses

Observations

Many theoretical models of modified gravity, each with their own motivation and phenomenology

Many theoretical models of modified gravity, each with their own motivation and phenomenology

CMB (ISW)

Observations

Models

ETofDE $\alpha_K(t), \alpha_B(t), \alpha_M(t), \alpha_T(t), \alpha_T(t), \ldots$

Effective approach to bridge models with observations in a minimal and systematic way

Observations

ETofDE $\alpha_K(t), \, \alpha_B(t), \, \alpha_M(t), \, \alpha_T(t), \, \alpha_T(t), \, \dots$

Effective approach to bridge models with observations in a minimal and systematic way

Theoretically motivated: locality, causality, diff invariance, unitarity, etc...

ETofDE $\alpha_K(t), \alpha_B(t), \alpha_M(t), \alpha_T(t), \alpha_T(t), \dots$

- Simplest models of modified gravity are base on single scalar field
- Old school theories (Quintessence, Brans-Dicke, K-essence, ...) $\mathcal{L}(\phi, \partial_{\mu}\phi)$

- Simplest models of modified gravity are base on single scalar field
- Old school theories (Quintessence, Brans-Dicke, K-essence, ...) $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories (Galileons) $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$

- Simplest models of modified gravity are base on single scalar field
- Old school theories (Quintessence, Brans-Dicke, K-essence, ...) $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories (Galileons) $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$
- Generally, higher-derivatives lead to extra instable d.o.f. (Ostrogradski ghost)

- Simplest models of modified gravity are base on single scalar field
- Old school theories (Quintessence, Brans-Dicke, K-essence, ...) $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories (Galileons) $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$
- ✦ Generally, higher-derivatives lead to extra instable d.o.f. (Ostrogradski ghost)

- Simplest models of modified gravity are base on single scalar field
- Old school theories (Quintessence, Brans-Dicke, K-essence, ...) $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories (Galileons) $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$
- Generally, higher-derivatives lead to extra instable d.o.f. (Ostrogradski ghost)
- Horndeski theories:

Horndeski '73, see also Deffayet et al.'I I $X\equiv\phi_{;\mu}\phi^{;\mu}\equiv
abla_{\mu}\phi
abla^{\mu}\phi$

 $L_{H} = G_{2}(\phi, X) + G_{3}(\phi, X) \Box \phi +$ + $G_{4}(\phi, X)^{(4)}R - 2G_{4,X}(\phi, X) [(\Box \phi)^{2} - \phi_{;\mu\nu}\phi^{;\mu\nu}]$ + $G_{5}(\phi, X)^{(4)}G^{\mu\nu}\phi_{;\mu\nu} + \frac{1}{3}G_{5,X}(\phi, X) [(\Box \phi)^{3} - 3\Box \phi \phi_{;\mu\nu}\phi^{;\mu\nu} + 2\phi_{;\mu\nu}\phi^{;\nu\lambda}\phi^{;\mu}]$

- Simplest models of modified gravity are base on single scalar field
- Old school theories (Quintessence, Brans-Dicke, K-essence, ...) $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories (Galileons) $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$
- Generally, higher-derivatives lead to extra instable d.o.f. (Ostrogradski ghost)

- Simplest models of modified gravity are base on single scalar field
- Old school theories (Quintessence, Brans-Dicke, K-essence, ...) $\mathcal{L}(\phi, \partial_{\mu}\phi)$
- Generalized theories (Galileons) $\mathcal{L}(\phi, \partial_{\mu}\phi, \nabla_{\mu}\nabla_{\nu}\phi)$
- Generally, higher-derivatives lead to extra instable d.o.f. (Ostrogradski ghost)

Models Einstein-Dilaton-Tessa Baker Cascading gravity Lorentz violation Hořava-Lifschitz Gauss-Bonnet Conformal gravity Strings & Branes $\left(\frac{R}{\Box}\right) R_{\mu\nu} \Box^{-1} R^{\mu\nu}$ $f\left(G\right)$ Galaxy clustering DGP Some Randall-Sundrum I & II degravitation 2T gravity Higher-order scenarios Higher dimensions Non-local General $R_{\mu\nu}R^{\mu\nu}$, $\Box R$,etc. f(R)ETofDE Kaluza-Klein **Modified Gravity** Vector Einstein-Aether $\alpha_K(t), \, \alpha_B(t), \, \alpha_M(t),$ Generalisations of S_{EH} Teves — Add new field content Massive gravity Bigravity $\alpha_T(t), \alpha_T(t), \ldots$ Gauss-Bonnet Chern-Simons Scalar-tensor & Brans-Dicke Tensor Weak lensing Lovelock gravity Ghost condensates /Cuscuton EBI Galileons Chaplygin gases Bimetric MOND the Fab Four Emergent KGB **Approaches** f(T) Coupled Quintessence Einstein-Cartan-Sciama-Kibble CDT Padmanabhan Horndeski theories Torsion theories thermo.

Observations

Constructing the action

Use metric quantities in uniform scalar field slicing

ADM decomposition

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

Constructing the action

Use metric quantities in uniform scalar field slicing

ADM decomposition

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

 Lagrangian contains all possible scalars under spatial diffs, ordered by number of perturbations and derivatives
 Cheung et al. `07

$$S = \int d^4x \sqrt{-g} L[t; N, K^i_j, {}^{(3)}R^i_j, \ldots]$$

Lapse	N	$\sim \dot{\phi}$	$(\partial \phi)^2 = -\dot{\phi}_0^2(t)/N^2$
Extrinsic curvature	K_{ij}	$\sim \partial_t g_{ij}$	$K_{ij} = \frac{1}{2N} (\dot{h}_{ij} - \nabla_i N_j - \nabla_j N_i)$
Intrinsic curvature	$^{(3)}\!R_{ij}$	$\sim \partial^2 g_{ij}$	

Constructing the action

Use metric quantities in uniform scalar field slicing

ADM decomposition

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

 Lagrangian contains all possible scalars under spatial diffs, ordered by number of perturbations and derivatives
 Cheung et al. `07

$$S = \int d^4x \sqrt{-g} L[t; N, K^i_j, {}^{(3)}R^i_j, \ldots]$$

Expand the action

1

$$\delta N \equiv N - 1 , \qquad \delta K_{ij} \equiv K_{ij} - Hh_{ij} , \qquad {}^{(3)}R_{ij}$$
$$L(N, K_j^i, R_j^i, \dots) = \bar{L} + L_N \delta N + \frac{\partial L}{\partial K_j^i} \delta K_j^i + \frac{\partial L}{\partial R_j^i} \delta R_j^i + L^{(2)} + \dots$$

Building blocks of linear perts

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

with Gleyzes, Langlois, Piazza '13 (see also Bloomfield '13)

Building blocks of linear perts

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

with Gleyzes, Langlois, Piazza '13 (see also Bloomfield '13)

 Deviation from GR (LCDM) parameterized by time-dependent functions independent from background evolution

Notation of Bellini, Sawicki '14 for the alphas

$lpha_{i}$	$lpha_K$	$lpha_B$	$lpha_M$	$lpha_T$	$lpha_H$
$\mathcal{O}_i^{(2)}$	δN^2	$\delta N \delta K$	$\frac{dM^2}{d\ln a}$	$^{(3)}\!R$	$\delta N^{(3)}\!R$
quintessence, k-essence	\checkmark				
Cubic Galileon	\checkmark	\checkmark			
Brans-Dicke, f(R)	\checkmark	\checkmark	\checkmark		
Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	
Beyond Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

5 functions of time instead of 5 functions of ϕ , $(\partial \phi)^2$; minimal number of parameters

Building blocks of linear perts

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

with Gleyzes, Langlois, Piazza '13 (see also Bloomfield '13)

- Deviation from GR (LCDM) parameterized by time-dependent functions independent from background evolution
- ✦ Locality, diff invariance preserved. Stability:

	Scalar	Tensor
No ghosts	$\alpha_K + 6\alpha_B^2$	$M^2 > 0$
No gradient instability	$c_s^2(\alpha_i) \ge 0$	$\alpha_T \ge -1$

Higher-Order theories

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

✦ All operators up to two derivatives

with Langlois, Mancarella, Noui '17

$lpha_i$	$lpha_K$	$lpha_B$	$lpha_M$	$lpha_T$	$lpha_H$	$lpha_L$	eta_1	eta_2	eta_3
${\cal O}_i^{(2)}$	δN^2	$\delta N \delta K$	$\frac{dM^2}{d\ln a}$	$^{(3)}\!R$	$\delta N^{(3)}\!R$	δK^2	$\delta \dot{N}^2$	$\delta \dot{N} \delta K$	$(\partial_i \delta N)^2$
quintessence, k-essence	\checkmark								
Cubic Galileon	\checkmark	\checkmark							
Brans-Dicke, f(R)	\checkmark	\checkmark	\checkmark						
Horndeski	\checkmark	\checkmark	\checkmark	\checkmark					
Beyond Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
DHOST/EST theries	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Higher-Order theories

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

✦ All operators up to two derivatives

with Langlois, Mancarella, Noui '17

$lpha_i$	$lpha_K$	$lpha_B$	$lpha_M$	$lpha_T$	$lpha_H$	$lpha_L$	eta_1	β_2	eta_3
$\mathcal{O}_i^{(2)}$	δN^2	$\delta N \delta K$	$\frac{dM^2}{d\ln a}$	$^{(3)}\!R$	$\delta N^{(3)}\!R$	δK^2	$\delta \dot{N}^2$	$\delta \dot{N} \delta K$	$(\partial_i \delta N)^2$

- Generic scalar dispersion relation: $\mathcal{E}_1 \omega^4 + \mathcal{E}_2 \omega^2 k^2 + \mathcal{E}_3 \omega^2 + \mathcal{E}_4 k^4 + \mathcal{E}_5 k^2 = 0$
- Two types of degeneracy conditions lead to $\omega^2 c_s^2 k^2 = 0$
 - $C_{I}: \quad \alpha_{L} = 0 , \qquad \beta_{2} = f_{2}(\beta_{1}) , \qquad \beta_{3} = f_{3}(\beta_{1})$

related to Horndeski by metric redefinitions (that change the matter couplings)

$$\begin{split} \mathcal{C}_{\mathrm{II}}: \quad \beta_1 = f_1(\alpha_T, \alpha_H, \alpha_L) , \quad \beta_2 = f_2(\alpha_T, \alpha_H, \alpha_L) , \quad \beta_3 = f_3(\alpha_T, \alpha_H, \alpha_L) \\ c_s^2 \propto -c_T^2 \qquad \text{ruled out!} \end{split}$$

Models

ETofDE $\alpha_K(t), \alpha_B(t), \alpha_M(t),$

 $\alpha_{T}(t), \alpha_{B}(t), \alpha_{M}(t)$ $\alpha_{T}(t), \alpha_{T}(t), \ldots$

Phenomenology

- Undo unitary gauge: $t \to t + \pi(t, \vec{x})$
- Newtonian gauge (scalar flucts): $dt^2 = -(1+2\Phi)dt^2 + a^2(t)(1-2\Psi)d\vec{x}^2$

$$\begin{split} f &\to f + \dot{f}\pi + \frac{1}{2}\ddot{f}\pi^2 , \\ g^{00} &\to g^{00} + 2g^{0\mu}\pi + g^{\mu\nu}\partial_{\mu}\pi\partial_{\nu}\pi , \\ \delta K_{ij} &\to \delta K_{ij} - \dot{H}\pi h_{ij} - \partial_i\partial_j\pi , \\ \delta K &\to \delta K - 3\dot{H}\pi - \frac{1}{a^2}\partial^2\pi , \\ ^{(3)}\!R_{ij} &\to {}^{(3)}\!R_{ij} + H(\partial_i\partial_j\pi + \delta_{ij}\partial^2\pi) , \\ ^{(3)}\!R &\to {}^{(3)}\!R + \frac{4}{a^2}H\partial^2\pi . \end{split}$$

Phenomenology

Phenomenology

Fisher matrix analysis

Euclid specifications (LCDM fiducial) Quasi-static approximation

✦ Background parametrization:

$$H^{2} = H_{0}^{2} \left[\Omega_{m0} a^{-3} + (1 - \Omega_{m0}) a^{-3(1+w)} \right]$$

Free functions parametrization:

$$\alpha_I(t) = \alpha_{I,0} \, \frac{1 - \Omega_{\rm m}(t)}{1 - \Omega_{\rm m,0}}$$

Piazza et al. '13, Bellini, Sawicki '14 see also Alonso et al. '16

Fisher matrix analysis

Euclid specifications (LCDM fiducial) Quasi-static approximation

✦ Background parametrization:

$$H^{2} = H_{0}^{2} \left[\Omega_{m0} a^{-3} + (1 - \Omega_{m0}) a^{-3(1+w)} \right]$$

Free functions parametrization:

$$\alpha_I(t) = \alpha_{I,0} \, \frac{1 - \Omega_{\rm m}(t)}{1 - \Omega_{\rm m,0}}$$

Piazza et al. '13, Bellini, Sawicki '14 see also Alonso et al. '16

+ Time dependence of free functions α 's still critical issue

see e.g. Linder '16, Gleyzes '17, Kennedy et al. '17

Boltzmann codes

- ✦ We want to go beyond the quasi-static approximation:
- Full Boltzmann solver: $\begin{aligned} \frac{df_I}{d\eta} &= C_I[f_I] , \quad I = \gamma, \nu, b, \text{CDM} \\ \frac{\delta S^{(2)}}{\delta \pi} &= 0 \qquad \& \qquad G_{ij}^{\text{modified}} = 8\pi G \sum_I T_{ij}^{(I)} \end{aligned}$
- EFTCAMB (Hu, Raveri, Frusciante, Silvestri et al.)
- hi_class (Zumalacarregui, Bellini, Sawicki, Lesgourgues et al.)
- COOP (Zhiqi Huang) (with D'Amico, Huang and Mancarella)

Boltzmann codes

- ✦ We want to go beyond the quasi-static approximation:
- Full Boltzmann solver: $\frac{df_I}{d\eta} = C_I[f_I], \quad I = \gamma, \nu, b, \text{CDM}$ $\frac{\delta S^{(2)}}{\delta \pi} = 0 \qquad \& \qquad G_{ij}^{\text{modified}} = 8\pi G \sum_I T_{ij}^{(I)}$
- EFTCAMB (Hu, Raveri, Frusciante, Silvestri et al.)
- hi_class (Zumalacarregui, Bellini, Sawicki, Lesgourgues et al.)
- COOP (Zhiqi Huang) (with D'Amico, Huang and Mancarella)

Nonlinear ET of DE

$$S = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t)\mathcal{O}_i^{(2)} + \sum_i \alpha_i(t)\mathcal{O}_i^{(3)} \right]$$

In the Newtonian limit, a finite number of operators dominate
 Example: Horndeski has only 3 cubic operators and nothing more Bellini, Jimenez, Verde '15

Nonlinear ET of DE

$$S = \int d^4x \sqrt{h} \frac{M^2}{2} \left[\delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t)\mathcal{O}_i^{(2)} + \sum_i \alpha_i(t)\mathcal{O}_i^{(3)} \right]$$

- In the Newtonian limit, a finite number of operators dominate
 Example: Horndeski has only 3 cubic operators and nothing more Bellini, Jimenez, Verde '15
- Standard Perturbation Theory

$$\dot{\delta}_m + \nabla \left[(1 + \delta_m) \vec{v}_m \right] = 0$$
$$\dot{\vec{v}}_m + H \vec{v}_m + \vec{v}_m \cdot \nabla \vec{v}_m = -\nabla \Phi$$

Modifications of gravity encoded in Poisson-like equation

$$k^{2}\Phi = -\frac{3}{2}a^{2}H^{2}\Omega_{\mathrm{m}}\mu_{\Phi,1}\delta_{\mathrm{m}} - \frac{9}{4}a^{2}H^{2}\Omega_{\mathrm{m}}^{2}\mu_{\Phi,2}(\vec{k}_{1},\vec{k}_{2})\delta_{\mathrm{m}}(\vec{k}_{1})\star\delta_{\mathrm{m}}(\vec{k}_{2}) + \dots$$

large nonlinearities, screening, ...

mildly NL scales

 H_{0}^{-1}

$$\delta_m \sim 1$$

EFT of DE and LSS combined

Naturally incorporated into the Effective Field Theory of Large Scale Structures

$$\dot{v}_m^i + Hv_m^i + v_m^j \nabla_j v_m^i + \nabla^i \Phi = \frac{1}{\rho_m} \partial_j \tau^{ji} \sim \frac{c_{m,s}^2}{k_{\rm NL}^2} \nabla^i \delta_m$$

Baumann et al. '10, Senatore et al. '12, etc...

Example: 1-loop Power Spectrum with IR resummation. Comparison with Fabian Schmidt '09 simulations of nDGP, 3 realizations, from 400 to 128 Mpc/h box size:

Conclusions

- * Unifying description for scalar-tensor theories, including higher-order ones (and more)
- * Analysis of (degenerate higher-order) theories highly simplified
- * Linear regime worked out! Issue of time dependence of α 's
- * Straightforward connection to mildly nonlinear and fully nonlinear regime