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Redshift distortions 

In a homogeneous and isotropic Universe: light propagates in a 
straight light, we measure r(z).
The Universe is inhomogeneous: 
• redshift is affected by peculiar velocities of galaxies,
• light is lensed by matter between the galaxies and the observer,
• the distribution of galaxies does not trace directly the 

distribution of dark matter (bias).
The observed positions of galaxies are shifted radially and 
transversally and the cross-correlation function is distorted.
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• Isotropic correlation function 
depends only on the scalar 
separation:  

10 A. J. S. HAMILTON

can be tested against observed data, though never proven absolutely. The
distinction between observed data and theoretical models thereof appears
starkly in the maximum likelihood procedure, §5.3.

The most basic statistic that can be constructed from the overdensity
(the mean having been subtracted off) is its variance, its second irreducible
moment, the correlation function ξ(r12) (also known as the 2-point cor-
relation function, or 2-point function, or covariance function, or autocovari-
ance function),

ξ(r12) ≡ ⟨δ(r1)δ(r2)⟩ . (3.2)

Equation (3.2) states that the expectation value of the product of overdensi-
ties at a pair of randomly positioned points separated by r12 in the Universe
is ξ(r12). More physically, the correlation function ξ(r12) is the mean over-
density of neighbours around a random particle (galaxy) (Peebles 1980,
§31). The assumption that the density field is statistically homogeneous
and isotropic means that the correlation function ξ(r12) is a function only
of the scalar separation r12 ≡ |r1 − r2| of the points r1 and r2, not of their
overall location or orientation.

The Fourier transform of the overdensity defines the Fourier modes δ̂(k)
at wavevector k (hats denote Fourier transforms throughout this review)

δ̂(k) ≡
∫

eik.rδ(r) d3r , δ(r) =
∫

e−ik.r δ̂(k) d3k/(2π)3 . (3.3)

The power spectrum is by definition the covariance of Fourier modes,
which from the definitions (3.3) and (3.2) is equal to the Fourier transform
of the correlation function

⟨δ̂(k1) δ̂(k2)⟩ =
∫

eik1.r1+ik2.r2ξ(r12) d3r1d
3r2 . (3.4)

Since the correlation function ξ(r12) is a function only of separation, equa-
tion (3.4) reduces to1

⟨δ̂(k1) δ̂(k2)⟩ = (2π)3δD(k1 + k2)P (k1) , (3.5)

where P (k) is also called the power spectrum,

P (k) ≡
∫

eik.rξ(r) d3r , ξ(r) =
∫

e−ik.rP (k) d3k/(2π)3 . (3.6)

1It is also fine to define the power spectrum as the covariance of modes
with one of the modes taken to be the complex conjugate, in which case
⟨δ̂(k1)δ̂∗(k2)⟩ = (2π)3δD(k1 − k2)P (k1). The equivalence of the two definitions is made
clear in §3.3. The advantage of the symmetric choice (3.5) becomes more apparent
when dealing with higher order correlation functions, such as the 3-point function
⟨δ̂(k1)δ̂(k2)δ̂(k3)⟩.

 

Monopole

• Redshift distortions break the 
isotropy of the correlation 
function but still symmetric  
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r−selected SDSS sample into 19603 early-type galaxies and 9532
late-type galaxies. The mean (g−r) colours are 0.5 and 0.9 respec-
tively. The 2dFGRS is selected using bJ which is close to g, and so
compared to the r selection, the median depth for blue galaxies will
be larger that for red galaxies. The number of early and late types
will roughly scale in proportion to the volumes sampled, and so
the ratio of early-to-late galaxies in the 2dFGRS will be roughly
∼ (19603/9532) × 100.6(0.5−0.9) = 1.18. Note that this colour
split leads to a very different ratio of early-to-late galaxies com-
pared to the η split used by Madgwick et al. (2003). Assuming the
early and late correlation functions trace the same underlying field,
the combined correlation function will be

ξtot =

(

nearlybearly + nlateblate

nearly + nlate

)2

ξmass. (9)

From the power law fits of Zehavi et al., the ratio of bias val-
ues at 1 Mpc is bearly/blate = 4.95. Inserting the different ratios
nearly/nlate appropriate to the red and blue selected samples we
find that the expected ratio of ξ for a red selected sample com-
pared to a blue selected sample is roughly 1.36. Scaling the 2dF-
GRS values of r0 = 5.05 and γr = 1.67 leads to a SDSS value
of r0 = 5.95 for γr = 1.75, within 1σ of the actual SDSS value.
This simple argument indicates that the observed difference in ξ
between the red and blue selected surveys is consistent with the
different population mixes expected in the surveys. The extra sur-
face brightness selection applied to the LCRS may also introduce
significant biases.

Each survey is also likely to have a different effective lumi-
nosity and, as has been shown by Norberg et al. (2001), this will
cause clustering measurements to differ. The relation for 2dFGRS
galaxies found by Norberg et al. (2001) was,

(

r0

r∗0

)
γr
2

= 0.85 + 0.15

(

L
L∗

)

, (10)

which gives, for L = 1.4L∗ (see Section 2.1), r∗0 = 4.71 ± 0.24,
which will allow direct comparisons with other surveys.

4 REDSHIFT-SPACE DISTORTIONS

When analysing redshift surveys it must be remembered that the
distance to each galaxy is estimated from its redshift and is not the
true distance. Each galaxy has, superimposed on its Hubble motion,
a peculiar velocity due to the gravitational potential in its local en-
vironment. These peculiar velocities can be in any direction and,
since this effect distorts the correlation function, it can be used to
measure two important parameters.

The peculiar velocities are caused by two effects. On small
scales, random motions of the galaxies within groups cause a ra-
dial smearing known as the ‘Finger of God’. On large scales gravi-
tational instability leads to coherent infall into overdense regions
and outflow from underdense regions. We analyse the observed
redshift-space distortions by modeling ξ(σ, π). We start with a
model of the real-space correlation function, ξ(r), and include the
effects of large-scale coherent infall, which is parameterized by
β ≈ Ω0.6

m /b, where b is the linear bias parameter. We then con-
volve this with the form of the random pairwise motions.

4.1 Constructing the model

Kaiser (1987) pointed out that, in the linear regime, the coherent in-
fall velocities take a simple form in Fourier space. Hamilton (1992)
translated these results into real space,

ξ′(σ, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) (11)

where Pℓ(µ) are Legendre polynomials, µ = cos(θ) and θ is the
angle between r and π. The relations between ξℓ, ξ(r) and β for a
simple power-law ξ(r) = (r/r0)

−γr are (Hamilton 1992),

ξ0(s) =

(

1 +
2β
3

+
β2

5

)

ξ(r) (12)

ξ2(s) =

(

4β
3

+
4β2

7

) (

γr

γr − 3

)

ξ(r) (13)

ξ4(s) =
8β2

35

(

γr(2 + γr)
(3 − γr)(5 − γr)

)

ξ(r). (14)

The Appendix has more details of this derivation and gives the
equations for the case of non-power law forms of ξ.

We use these relations to create a model ξ′(σ, π) which we
then convolve with the distribution function of random pairwise
motions, f(v), to give the final model ξ(σ, π) (Peebles 1980):

ξ(σ, π) =

∫

∞

−∞

ξ′(σ, π − v/H0)f(v)dv (15)

and we choose to represent the random motions by an exponential
form,

f(v) =
1

a
√

2
exp

(

−
√

2|v|
a

)

(16)

where a is the pairwise peculiar velocity dispersion (often known as
σ12). An exponential form for the random motions has been found
to fit the observed data better than other functional forms (e.g. Rat-
cliffe et al. 1998; Landy 2002; see also Section 6).

4.2 Model assumptions

In this model we make several assumptions. Firstly, we assume a
power-law for the correlation function. The power-law approxima-
tion is a good fit on scales < 20 h−1Mpc but is not so good at
larger scales. This limits the scales which we can probe using this
method. In Section 7, we consider non-power-law models for ξ(r),
and recalculate Eqns. 12 to 14 using numerical integrals (see Ap-
pendix), allowing us to reliably use scales > 20 h−1Mpc. Sec-
ondly, we assume that the linear theory model described above
holds on scales ! 8 h−1Mpc, which is almost certainly not true.
We also consider this in Section 7. Finally, we assume an expo-
nential distribution of peculiar velocities with a constant velocity
dispersion, a, (Eqn. 16) and this is discussed and justified in Sec-
tion 6 and Section 7.4.

4.3 Model plots

To illustrate the effect of redshift-space distortions on the ξ(σ, π)
plot we show four model ξ(σ, π)’s in Fig. 12. If there were no dis-
tortions, then the contours shown would be circular, as in the top
left panel due to the isotropy of the real-space correlation function.
On small σ scales the random peculiar velocities cause an elonga-
tion of the contours in the π direction (the bottom left panel). On
larger scales there is the flattening of the contours (top right panel)
due to the coherent infall. The bottom right panel is a model with

c⃝ 2003 RAS, MNRAS 000, 1–19

10 Hawkins et al. (The 2dFGRS Team)

r−selected SDSS sample into 19603 early-type galaxies and 9532
late-type galaxies. The mean (g−r) colours are 0.5 and 0.9 respec-
tively. The 2dFGRS is selected using bJ which is close to g, and so
compared to the r selection, the median depth for blue galaxies will
be larger that for red galaxies. The number of early and late types
will roughly scale in proportion to the volumes sampled, and so
the ratio of early-to-late galaxies in the 2dFGRS will be roughly
∼ (19603/9532) × 100.6(0.5−0.9) = 1.18. Note that this colour
split leads to a very different ratio of early-to-late galaxies com-
pared to the η split used by Madgwick et al. (2003). Assuming the
early and late correlation functions trace the same underlying field,
the combined correlation function will be

ξtot =

(

nearlybearly + nlateblate

nearly + nlate

)2

ξmass. (9)

From the power law fits of Zehavi et al., the ratio of bias val-
ues at 1 Mpc is bearly/blate = 4.95. Inserting the different ratios
nearly/nlate appropriate to the red and blue selected samples we
find that the expected ratio of ξ for a red selected sample com-
pared to a blue selected sample is roughly 1.36. Scaling the 2dF-
GRS values of r0 = 5.05 and γr = 1.67 leads to a SDSS value
of r0 = 5.95 for γr = 1.75, within 1σ of the actual SDSS value.
This simple argument indicates that the observed difference in ξ
between the red and blue selected surveys is consistent with the
different population mixes expected in the surveys. The extra sur-
face brightness selection applied to the LCRS may also introduce
significant biases.

Each survey is also likely to have a different effective lumi-
nosity and, as has been shown by Norberg et al. (2001), this will
cause clustering measurements to differ. The relation for 2dFGRS
galaxies found by Norberg et al. (2001) was,

(

r0

r∗0

)
γr
2

= 0.85 + 0.15

(

L
L∗

)

, (10)

which gives, for L = 1.4L∗ (see Section 2.1), r∗0 = 4.71 ± 0.24,
which will allow direct comparisons with other surveys.

4 REDSHIFT-SPACE DISTORTIONS

When analysing redshift surveys it must be remembered that the
distance to each galaxy is estimated from its redshift and is not the
true distance. Each galaxy has, superimposed on its Hubble motion,
a peculiar velocity due to the gravitational potential in its local en-
vironment. These peculiar velocities can be in any direction and,
since this effect distorts the correlation function, it can be used to
measure two important parameters.

The peculiar velocities are caused by two effects. On small
scales, random motions of the galaxies within groups cause a ra-
dial smearing known as the ‘Finger of God’. On large scales gravi-
tational instability leads to coherent infall into overdense regions
and outflow from underdense regions. We analyse the observed
redshift-space distortions by modeling ξ(σ, π). We start with a
model of the real-space correlation function, ξ(r), and include the
effects of large-scale coherent infall, which is parameterized by
β ≈ Ω0.6

m /b, where b is the linear bias parameter. We then con-
volve this with the form of the random pairwise motions.

4.1 Constructing the model

Kaiser (1987) pointed out that, in the linear regime, the coherent in-
fall velocities take a simple form in Fourier space. Hamilton (1992)
translated these results into real space,

ξ′(σ, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) (11)

where Pℓ(µ) are Legendre polynomials, µ = cos(θ) and θ is the
angle between r and π. The relations between ξℓ, ξ(r) and β for a
simple power-law ξ(r) = (r/r0)

−γr are (Hamilton 1992),

ξ0(s) =

(

1 +
2β
3

+
β2

5

)

ξ(r) (12)

ξ2(s) =

(

4β
3

+
4β2

7

) (

γr

γr − 3

)

ξ(r) (13)

ξ4(s) =
8β2

35

(

γr(2 + γr)
(3 − γr)(5 − γr)

)

ξ(r). (14)

The Appendix has more details of this derivation and gives the
equations for the case of non-power law forms of ξ.

We use these relations to create a model ξ′(σ, π) which we
then convolve with the distribution function of random pairwise
motions, f(v), to give the final model ξ(σ, π) (Peebles 1980):

ξ(σ, π) =

∫

∞

−∞

ξ′(σ, π − v/H0)f(v)dv (15)

and we choose to represent the random motions by an exponential
form,

f(v) =
1

a
√

2
exp

(

−
√

2|v|
a

)

(16)

where a is the pairwise peculiar velocity dispersion (often known as
σ12). An exponential form for the random motions has been found
to fit the observed data better than other functional forms (e.g. Rat-
cliffe et al. 1998; Landy 2002; see also Section 6).

4.2 Model assumptions

In this model we make several assumptions. Firstly, we assume a
power-law for the correlation function. The power-law approxima-
tion is a good fit on scales < 20 h−1Mpc but is not so good at
larger scales. This limits the scales which we can probe using this
method. In Section 7, we consider non-power-law models for ξ(r),
and recalculate Eqns. 12 to 14 using numerical integrals (see Ap-
pendix), allowing us to reliably use scales > 20 h−1Mpc. Sec-
ondly, we assume that the linear theory model described above
holds on scales ! 8 h−1Mpc, which is almost certainly not true.
We also consider this in Section 7. Finally, we assume an expo-
nential distribution of peculiar velocities with a constant velocity
dispersion, a, (Eqn. 16) and this is discussed and justified in Sec-
tion 6 and Section 7.4.

4.3 Model plots

To illustrate the effect of redshift-space distortions on the ξ(σ, π)
plot we show four model ξ(σ, π)’s in Fig. 12. If there were no dis-
tortions, then the contours shown would be circular, as in the top
left panel due to the isotropy of the real-space correlation function.
On small σ scales the random peculiar velocities cause an elonga-
tion of the contours in the π direction (the bottom left panel). On
larger scales there is the flattening of the contours (top right panel)
due to the coherent infall. The bottom right panel is a model with

c⃝ 2003 RAS, MNRAS 000, 1–19

10 Hawkins et al. (The 2dFGRS Team)

r−selected SDSS sample into 19603 early-type galaxies and 9532
late-type galaxies. The mean (g−r) colours are 0.5 and 0.9 respec-
tively. The 2dFGRS is selected using bJ which is close to g, and so
compared to the r selection, the median depth for blue galaxies will
be larger that for red galaxies. The number of early and late types
will roughly scale in proportion to the volumes sampled, and so
the ratio of early-to-late galaxies in the 2dFGRS will be roughly
∼ (19603/9532) × 100.6(0.5−0.9) = 1.18. Note that this colour
split leads to a very different ratio of early-to-late galaxies com-
pared to the η split used by Madgwick et al. (2003). Assuming the
early and late correlation functions trace the same underlying field,
the combined correlation function will be

ξtot =

(

nearlybearly + nlateblate

nearly + nlate

)2

ξmass. (9)

From the power law fits of Zehavi et al., the ratio of bias val-
ues at 1 Mpc is bearly/blate = 4.95. Inserting the different ratios
nearly/nlate appropriate to the red and blue selected samples we
find that the expected ratio of ξ for a red selected sample com-
pared to a blue selected sample is roughly 1.36. Scaling the 2dF-
GRS values of r0 = 5.05 and γr = 1.67 leads to a SDSS value
of r0 = 5.95 for γr = 1.75, within 1σ of the actual SDSS value.
This simple argument indicates that the observed difference in ξ
between the red and blue selected surveys is consistent with the
different population mixes expected in the surveys. The extra sur-
face brightness selection applied to the LCRS may also introduce
significant biases.

Each survey is also likely to have a different effective lumi-
nosity and, as has been shown by Norberg et al. (2001), this will
cause clustering measurements to differ. The relation for 2dFGRS
galaxies found by Norberg et al. (2001) was,

(

r0

r∗0

)
γr
2

= 0.85 + 0.15

(

L
L∗

)

, (10)

which gives, for L = 1.4L∗ (see Section 2.1), r∗0 = 4.71 ± 0.24,
which will allow direct comparisons with other surveys.

4 REDSHIFT-SPACE DISTORTIONS

When analysing redshift surveys it must be remembered that the
distance to each galaxy is estimated from its redshift and is not the
true distance. Each galaxy has, superimposed on its Hubble motion,
a peculiar velocity due to the gravitational potential in its local en-
vironment. These peculiar velocities can be in any direction and,
since this effect distorts the correlation function, it can be used to
measure two important parameters.

The peculiar velocities are caused by two effects. On small
scales, random motions of the galaxies within groups cause a ra-
dial smearing known as the ‘Finger of God’. On large scales gravi-
tational instability leads to coherent infall into overdense regions
and outflow from underdense regions. We analyse the observed
redshift-space distortions by modeling ξ(σ, π). We start with a
model of the real-space correlation function, ξ(r), and include the
effects of large-scale coherent infall, which is parameterized by
β ≈ Ω0.6

m /b, where b is the linear bias parameter. We then con-
volve this with the form of the random pairwise motions.

4.1 Constructing the model

Kaiser (1987) pointed out that, in the linear regime, the coherent in-
fall velocities take a simple form in Fourier space. Hamilton (1992)
translated these results into real space,

ξ′(σ, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) (11)

where Pℓ(µ) are Legendre polynomials, µ = cos(θ) and θ is the
angle between r and π. The relations between ξℓ, ξ(r) and β for a
simple power-law ξ(r) = (r/r0)

−γr are (Hamilton 1992),

ξ0(s) =

(

1 +
2β
3

+
β2

5

)

ξ(r) (12)

ξ2(s) =

(

4β
3

+
4β2

7

) (

γr

γr − 3

)

ξ(r) (13)

ξ4(s) =
8β2

35

(

γr(2 + γr)
(3 − γr)(5 − γr)

)

ξ(r). (14)

The Appendix has more details of this derivation and gives the
equations for the case of non-power law forms of ξ.

We use these relations to create a model ξ′(σ, π) which we
then convolve with the distribution function of random pairwise
motions, f(v), to give the final model ξ(σ, π) (Peebles 1980):

ξ(σ, π) =

∫

∞

−∞

ξ′(σ, π − v/H0)f(v)dv (15)

and we choose to represent the random motions by an exponential
form,

f(v) =
1

a
√

2
exp

(

−
√

2|v|
a

)

(16)

where a is the pairwise peculiar velocity dispersion (often known as
σ12). An exponential form for the random motions has been found
to fit the observed data better than other functional forms (e.g. Rat-
cliffe et al. 1998; Landy 2002; see also Section 6).

4.2 Model assumptions

In this model we make several assumptions. Firstly, we assume a
power-law for the correlation function. The power-law approxima-
tion is a good fit on scales < 20 h−1Mpc but is not so good at
larger scales. This limits the scales which we can probe using this
method. In Section 7, we consider non-power-law models for ξ(r),
and recalculate Eqns. 12 to 14 using numerical integrals (see Ap-
pendix), allowing us to reliably use scales > 20 h−1Mpc. Sec-
ondly, we assume that the linear theory model described above
holds on scales ! 8 h−1Mpc, which is almost certainly not true.
We also consider this in Section 7. Finally, we assume an expo-
nential distribution of peculiar velocities with a constant velocity
dispersion, a, (Eqn. 16) and this is discussed and justified in Sec-
tion 6 and Section 7.4.

4.3 Model plots

To illustrate the effect of redshift-space distortions on the ξ(σ, π)
plot we show four model ξ(σ, π)’s in Fig. 12. If there were no dis-
tortions, then the contours shown would be circular, as in the top
left panel due to the isotropy of the real-space correlation function.
On small σ scales the random peculiar velocities cause an elonga-
tion of the contours in the π direction (the bottom left panel). On
larger scales there is the flattening of the contours (top right panel)
due to the coherent infall. The bottom right panel is a model with

c⃝ 2003 RAS, MNRAS 000, 1–19

10 Hawkins et al. (The 2dFGRS Team)

r−selected SDSS sample into 19603 early-type galaxies and 9532
late-type galaxies. The mean (g−r) colours are 0.5 and 0.9 respec-
tively. The 2dFGRS is selected using bJ which is close to g, and so
compared to the r selection, the median depth for blue galaxies will
be larger that for red galaxies. The number of early and late types
will roughly scale in proportion to the volumes sampled, and so
the ratio of early-to-late galaxies in the 2dFGRS will be roughly
∼ (19603/9532) × 100.6(0.5−0.9) = 1.18. Note that this colour
split leads to a very different ratio of early-to-late galaxies com-
pared to the η split used by Madgwick et al. (2003). Assuming the
early and late correlation functions trace the same underlying field,
the combined correlation function will be

ξtot =

(

nearlybearly + nlateblate

nearly + nlate

)2

ξmass. (9)

From the power law fits of Zehavi et al., the ratio of bias val-
ues at 1 Mpc is bearly/blate = 4.95. Inserting the different ratios
nearly/nlate appropriate to the red and blue selected samples we
find that the expected ratio of ξ for a red selected sample com-
pared to a blue selected sample is roughly 1.36. Scaling the 2dF-
GRS values of r0 = 5.05 and γr = 1.67 leads to a SDSS value
of r0 = 5.95 for γr = 1.75, within 1σ of the actual SDSS value.
This simple argument indicates that the observed difference in ξ
between the red and blue selected surveys is consistent with the
different population mixes expected in the surveys. The extra sur-
face brightness selection applied to the LCRS may also introduce
significant biases.

Each survey is also likely to have a different effective lumi-
nosity and, as has been shown by Norberg et al. (2001), this will
cause clustering measurements to differ. The relation for 2dFGRS
galaxies found by Norberg et al. (2001) was,

(

r0

r∗0

)
γr
2

= 0.85 + 0.15

(

L
L∗

)

, (10)

which gives, for L = 1.4L∗ (see Section 2.1), r∗0 = 4.71 ± 0.24,
which will allow direct comparisons with other surveys.

4 REDSHIFT-SPACE DISTORTIONS

When analysing redshift surveys it must be remembered that the
distance to each galaxy is estimated from its redshift and is not the
true distance. Each galaxy has, superimposed on its Hubble motion,
a peculiar velocity due to the gravitational potential in its local en-
vironment. These peculiar velocities can be in any direction and,
since this effect distorts the correlation function, it can be used to
measure two important parameters.

The peculiar velocities are caused by two effects. On small
scales, random motions of the galaxies within groups cause a ra-
dial smearing known as the ‘Finger of God’. On large scales gravi-
tational instability leads to coherent infall into overdense regions
and outflow from underdense regions. We analyse the observed
redshift-space distortions by modeling ξ(σ, π). We start with a
model of the real-space correlation function, ξ(r), and include the
effects of large-scale coherent infall, which is parameterized by
β ≈ Ω0.6

m /b, where b is the linear bias parameter. We then con-
volve this with the form of the random pairwise motions.

4.1 Constructing the model

Kaiser (1987) pointed out that, in the linear regime, the coherent in-
fall velocities take a simple form in Fourier space. Hamilton (1992)
translated these results into real space,

ξ′(σ, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) (11)

where Pℓ(µ) are Legendre polynomials, µ = cos(θ) and θ is the
angle between r and π. The relations between ξℓ, ξ(r) and β for a
simple power-law ξ(r) = (r/r0)

−γr are (Hamilton 1992),

ξ0(s) =

(

1 +
2β
3

+
β2

5

)

ξ(r) (12)

ξ2(s) =

(

4β
3

+
4β2

7

) (

γr

γr − 3

)

ξ(r) (13)

ξ4(s) =
8β2

35

(

γr(2 + γr)
(3 − γr)(5 − γr)

)

ξ(r). (14)

The Appendix has more details of this derivation and gives the
equations for the case of non-power law forms of ξ.
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where a is the pairwise peculiar velocity dispersion (often known as
σ12). An exponential form for the random motions has been found
to fit the observed data better than other functional forms (e.g. Rat-
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tion to predict the gravitational redshift signal at small-scales and
we found a significance for the gravitational redshift effect around
several Mpc/h. Moreover in Alam et al. (2016) we measure the dis-
tortions induced by various relativistic effect using the SDSS III
BOSS CMASS sample. Specifically we estimate the shall estima-
tor by fitting the theoretical model described in Zhu et al. (2016) to
the CMASS Data Release 12 using the different photometric bands,
and we find a significant detection of the amplitude of gravitational
redshift of 2.9�, 2.5� and 1.7� in the r, i and z bands respectively,
showing that it is possible to measure the gravitational redshift in
large scale structure. We can conclude this section affirming that
the linear perturbation theory seems to fail at small-scales because
of the presence of non-linear effects that need of a more accurate
approach to be explained.

4 NEWTONIAN PERTURBATION THEORY APPROACH

In the previous section we computed the dipole and the shell esti-
mator generated by the relativistic and and wide-angle effects us-
ing General Relativity perturbation theory and we showed that,
at small-scales, all the effects are canceled out. In this section
we study the effects of redshift distortions in two points cross-
correlation function using the Newtonian linear perturbation the-
ory. In particular we examine how the cross-correlation function of
the two populations of galaxies is distorted by only gravitational
redshifts or peculiar velocities and the sum of them. We follow the
procedure introduced by Croft (2013),

4.1 Defining the model

We construct a model to describe the mean gravitational redshift
difference, �zg , between two galaxy populations, g1 and g2, and
we study how this quantity, together with peculiar velocities, dis-
tort the two points correlation function. We then calculate the shell
estimator using equation 11 and we compare the results with those
obtained using General Relativity perturbation theory.

According to General Relativity, the mean gravitational red-
shift difference between g1 and g2 is given by Croft (2013):

�zg = zg1(0)� zg2(r) =
G
c
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1
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is the difference in mass, ⇢̄ is the mean density of the Universe,
G is the Newtonian constant of gravitation and c is the speed of
light. In eq. 13, ⇠g1⇢ and ⇠g2⇢ are the g1 and g2 galaxy-mass cross-
correlation functions defined as:

⇠g⇢(r) = b⇠(r) , (14)

where b is the bright or the faint faint bias of the two populations
of galaxies and ⇠(r) is the linear ⇤CDM correlation function.

Figure 4 shows the mean gravitational redshift as a function
of the separation between g1 and g2 obtained using eq. 12.

The additional distortion term is due to the peculiar velocities
which are caused by two effects: large-scale coherent flows due
to the gravitational instability and small-scales random velocity of
each galaxy within the cluster.
We model the distortion of large-scale cross-correlation function,

Figure 4. Mean gravitational redshift calculated using eq. 12 and consid-
ering bB = 2.25 and bF = 2.03.

⇠g1g2(r?, rk), where r? and rk are the g1 � g2 pairs separation
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Here �B = ⌦

0.6/bB and �F = ⌦

0.6/bF are the redshift space
distortion factors that includes the large-scale coherent infall.
We then convolve our model ⇠0g1g2(r?, rk) with the pairwise dis-
tribution of random velocities, f(v), in order to obtain the redshift-
space cross-correlation function:
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We assume that the random peculiar velocity distribution has an
exponential form:
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where �
12

is pairwise peculiar velocity dispersion of g1-g2 galax-
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Relativistic distortions 
• Contribution of different effects: gravitational redshift, 

Doppler, special relativistic beaming, light cone effects…
• Break the symmetry of the correlation function.
• Effects are small: we need to look at large-scale structures.
• In order to isolate the relativistic effects we can study anti-

symmetries in the correlation function. 
• We need two populations of galaxies: faint and bright. 
• They generate an odd moment namely dipole (l=1).
• We can quantify the asymmetry with the dipole!
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ABSTRACT
The recent measurement of the gravitational redshifts of galaxies in galaxy clusters by Wojtak
et al. has opened a new observational window on dark matter and modified gravity. By stacking
clusters this determination effectively used the line-of-sight distortion of the cross-correlation
function of massive galaxies and lower mass galaxies to estimate the gravitational redshift
profile of clusters out to 4 h−1 Mpc. Here we use a halo model of clustering to predict the
distortion due to gravitational redshifts of the cross-correlation function on scales from 1 to
100 h−1 Mpc. We compare our predictions to simulations and use the simulations to make
mock catalogues relevant to current and future galaxy redshift surveys. Without formulating
an optimal estimator, we find that the full Baryonic Oscillation Spectroscopic Survey (BOSS)
survey should be able to detect gravitational redshifts from large-scale structure at the ∼4σ

level. Upcoming redshift surveys will greatly increase the number of galaxies useable in
such studies and the BigBOSS and Euclid experiments should be capable of measurements
with precision at the few per cent level. As has been recently pointed out by McDonald,
Kaiser and Zhao et al., other interesting effects including relativistic beaming and transverse
Doppler shift can add additional asymmetric distortions to the correlation function. While
these contributions are subdominant to the gravitational redshift on large scales, they represent
additional opportunities to probe gravitational physics and indicate that many qualitatively
new measurements should soon be possible using large redshift surveys.

Key words: cosmology: observations.

1 IN T RO D U C T I O N

In the weak field limit, the gravitational redshift, zg, of photons with
wavelength λ emitted in a gravitational potential φ and observed
at infinity is given by zg = $λ

λ
≃ $φ

c2 . Measurement of zg is one of
the fundamental tests of General Relativity (GR). First measured
more that 50 years ago for the Earth’s gravity in a laboratory setting
(Pound & Rebka 1959), subsequent determinations have been made
in the Solar system (Lopresto, Schrader & Pierce 1991) and from
spectral line shifts in white dwarf stars (e.g. Greenstein, Oke &
Shipman 1971). In this paper we will examine how well the gravi-
tational redshifts caused by the largest potential fluctuations in the
Universe can be measured using galaxy redshift surveys.

Predictions for the gravitational redshifts of galaxies in clusters
were computed using analytic models by Cappi (1995, see also
Nottale 1990). Cappi found that in the most massive
(!1015 h−1 M⊙) clusters the central galaxy is expected to have
a redshift of a few tens of km s−1 with respect to other cluster
members. Kim & Croft (2004, hereafter KC04) showed that instead

⋆ E-mail: rcroft@cmu.edu

of using single extremely massive clusters, large galaxy surveys
could be used to make a statistical measurement of the gravitational
redshift profile. McDonald (2009, hereafter M09) examined the is-
sue in Fourier space and perturbation theory, studying the effect of
gravitational redshifts on the large-scale cross-power spectrum of
different populations of galaxies.

The first observational determination of galaxy gravitational red-
shifts due to their large-scale environment was made by Wojtak,
Hansen & Hjorth (2011, hereafter W11) using galaxy redshift data
from the Sloan Digital Sky Survey (SDSS). W11 used 125 000
galaxies in 7800 galaxy clusters to make statistical measurement of
zg versus brightest cluster galaxy (BCG) distance out to a radius of
4 h−1 Mpc (h = H0/100 km s−1 Mpc−1). Their 2.6 σ measurement
was compared to modelling of the mass distribution from galaxy
velocity dispersions and used to put constraints on modified gravity
models. Domı́nguez Romero (2012) also used SDSS data to carry
out such a test and also found good agreement with GR.

The redshift of a galaxy is a sum of three components, the Hubble
redshift, the Doppler redshift from the line-of-sight peculiar velocity
and the gravitational redshift:

cz = H (z)r + vpec + czg, (1)
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ABSTRACT
The recent measurement of the gravitational redshifts of galaxies in galaxy clusters by Wojtak
et al. has opened a new observational window on dark matter and modified gravity. By stacking
clusters this determination effectively used the line-of-sight distortion of the cross-correlation
function of massive galaxies and lower mass galaxies to estimate the gravitational redshift
profile of clusters out to 4 h−1 Mpc. Here we use a halo model of clustering to predict the
distortion due to gravitational redshifts of the cross-correlation function on scales from 1 to
100 h−1 Mpc. We compare our predictions to simulations and use the simulations to make
mock catalogues relevant to current and future galaxy redshift surveys. Without formulating
an optimal estimator, we find that the full Baryonic Oscillation Spectroscopic Survey (BOSS)
survey should be able to detect gravitational redshifts from large-scale structure at the ∼4σ

level. Upcoming redshift surveys will greatly increase the number of galaxies useable in
such studies and the BigBOSS and Euclid experiments should be capable of measurements
with precision at the few per cent level. As has been recently pointed out by McDonald,
Kaiser and Zhao et al., other interesting effects including relativistic beaming and transverse
Doppler shift can add additional asymmetric distortions to the correlation function. While
these contributions are subdominant to the gravitational redshift on large scales, they represent
additional opportunities to probe gravitational physics and indicate that many qualitatively
new measurements should soon be possible using large redshift surveys.

Key words: cosmology: observations.

1 IN T RO D U C T I O N

In the weak field limit, the gravitational redshift, zg, of photons with
wavelength λ emitted in a gravitational potential φ and observed
at infinity is given by zg = $λ

λ
≃ $φ

c2 . Measurement of zg is one of
the fundamental tests of General Relativity (GR). First measured
more that 50 years ago for the Earth’s gravity in a laboratory setting
(Pound & Rebka 1959), subsequent determinations have been made
in the Solar system (Lopresto, Schrader & Pierce 1991) and from
spectral line shifts in white dwarf stars (e.g. Greenstein, Oke &
Shipman 1971). In this paper we will examine how well the gravi-
tational redshifts caused by the largest potential fluctuations in the
Universe can be measured using galaxy redshift surveys.

Predictions for the gravitational redshifts of galaxies in clusters
were computed using analytic models by Cappi (1995, see also
Nottale 1990). Cappi found that in the most massive
(!1015 h−1 M⊙) clusters the central galaxy is expected to have
a redshift of a few tens of km s−1 with respect to other cluster
members. Kim & Croft (2004, hereafter KC04) showed that instead

⋆ E-mail: rcroft@cmu.edu

of using single extremely massive clusters, large galaxy surveys
could be used to make a statistical measurement of the gravitational
redshift profile. McDonald (2009, hereafter M09) examined the is-
sue in Fourier space and perturbation theory, studying the effect of
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ABSTRACT
The cross-correlations between a bright and a faint population of galaxies contain also a
dipole........
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1 INTRODUCTION

The galaxy two-point correlation function is the most commonly
statistical method used to study large scale structure. In the linear
regime the correlation function of a galaxy population is symmetric
under the interchange of the two galaxies but if we consider galax-
ies in different populations, for example with different luminosities
or masses, the correlation function assume an anti-symmetric part.

There are three types of effects that generate an anti-symmetry
in the correlation function . The first contribution is due to rela-
tivistic distortions in the number count of galaxies. In particular the
anti-symmetry in the correlation function is generated by the grav-
itational redshift and Doppler term. The second contribution is due
to the evolution arises from the evolution term of the bias and of
the growth function.

The last contribution generating an anti-symmetry in the two-
point correlation function is the wide-angle effect due the fact that
we are observing on our past light cone and therefore there is a
difference in the line of sight between the two population of galax-
ies. On large scales, where linear perturbation theory is applica-
ble, the Kaiser formula provides a simple relation between the real-
space and the redshift-space galaxy fluctuations, and its two-point
correlation function can be computed. This relation depend on the
approximation in which the observer is far away from galaxies in
observation and the position angles of those galaxies are virtually
identical on the sky. The wide-angle effect breaks this configura-
tion and the two lines-of-sight directions to the galaxy pair result
not parallels.

Gravitational redshift, small and large scales. References
The outline of this paper is as follows. In Section 2 we de-

scribe the formalism to derive the dipole in the two-point cor-
relation function and we introduce the shell estimator presented
in Croft (2013). In Section 3 we compute the dipole and the shell
estimator for the different contributions and considering different
bias of galaxies populations. In Section 4 we study the distortion of
the galaxy cross-correlation function induced by gravitational red-
shift and peculiar velocities at large scale. Finally, we summarise
and we discuss tour results in Section 5.

2 ANTI-SYMMETRIC CORRELATION FUNCTION

To extract the anti-symmetric term in the two-point correlation
function we follow the approach adopted by Gaztanaga et al. (2015)
to split the galaxies into two populations according to their lumi-
nosity and mass, separated by a distance r. We indicate as g1 the
bright (B) population with higher mass and as g2 the faint (F) pop-
ulation with lower mass.

The cross-correlation function between these two populations
is given by:

⇠
g1g2

(z, z0) = h�
g1

(x, z)�
g2

(x

0, z0)i 6= ⇠
g2g1

(z0, z) , (1)

in which z (z0) and x (x0) are the redshift and the position of
the bright (faint) galaxy and �

g1

(x, z) and �
g2

(x

0, z0) are the re-
spective over-densities. We are interested in the antisymmetric part
⇠
g2g1

(z0, z) that is the sum of three different contributions: the rel-
ativistic distortion, the evolution of the bias and the growth rate,
and the wide-angle effect. As shown in Gaztanaga et al. (2015)
and Bonvin et al. (2015) these terms depend on the choice of kernel
W

xi,xj ,Li,Lj which must be anti-symmetric under the exchange
of i and j, where i and j are the cells in which the survey is pix-
elized and in which the galaxy over-densities are defined. Moreover
it must depend on the luminosity of each pixel , L

i

and L
j

and on
the cosine of the angle ↵

i,j

which the pair of pixels makes with the
line of sight of the observer. Following Gaztanaga et al. (2015) we
can write the expression of kernel as:

W
xi,xj ,Li,Lj = N cos(↵

i,j,Li,Lj )�
K

(r
ij

� r) , (2)

where r
ij

is the pair separation, �K is the Kronecker delta and

↵
i,j,Li,Lj =

⇢
↵
ij

if L
i

> L
j

↵
ji

if L
i

< L
j

.
(3)

The term N in eq. 2 is a normalization factor and it can be written
as:

N =

3

8⇡
(N

tot

L
p

r2n̄n̄
B

n̄
F

)

�1 , (4)

in which N
tot

is the total number of galaxies, L
p

is the length of the

c� 2015 The Authors

g1= bright (B) population with higher mass 

g2 = faint (F) population with lower mass. 

Among all the physical processes associated with galaxy properties, dynamics 
and environment which can lead to a non-zero dipole moment in cross-correlation 
function, we consider:  

•  Relativistic effect: 

• Wide-angle effect:

2

Solar, atmospheric, reactor, and accelerator neutrinos have
provided compelling evidence for the existence of neutrino oscil-
lations, implying non-zero neutrino masses. However, oscillation
experiments are not sensitive to the absolute neutrino mass scale,
they only provide information on the squared mass differences. In
the minimal three neutrino scenario, the allowed region for the solar
mass splitting is �m2

12

' 7.5⇥10�5 eV2 and for the atmospheric
mass splitting is |�m2

23

|' 2.45⇥ 10�3 eV2. Thus we have to two
possible hierarchical scenarios, normal and inverted. In the normal
hierarchy the minimum sum of neutrino mass is

P
m⌫ & 0.06 eV

and in the inverted hierarchy is
P

m⌫ & 0.10 eV.
Cosmology provides a tool to test the absolute scale of neu-

trino masses. In particular, current cosmological upper bounds onP
m⌫ combining CMB with different observations of the large

scale structure of the Universe range from 0.12 eV to 0.13 eV at
95% CL . These limits are extremely close to the predictions from
neutrino oscillation experiments in the inverted hierarchical spec-
trum.

In this work we focus on the effect of the neutrino masses in
galaxy clustering, combining the full Planck CMB mission 2015
temperature and polarization data with the full 3D galaxy power
spectrum shape from the Baryon Oscillation Spectroscopic Survey
(BOSS) Data Release 9 (DR9). We assume a ⇤CDM model with
two massless neutrino state and a massive one. We compare our
bounds to the limits obtained when considering two massive neu-
trino and three degenerate massive neutrino scenario. We also study
the neutrino mass splitting implied by the neutrino oscillations to
estimate if current cosmological data can help to distinguish the
neutrino mass hierarchy.

h⇠̂
rel

(r)i = (bB�bF )
f
2⇡2

✓ Ḣ
H2

+
2

�H
◆ H

H
0

Z
dkkH

0

P (k, z̄)j
1

(kr) ,

(1)

h⇠̂
evol

(r)i = r
6

⇥
(bB � bF )f

0 � f(b0B � b0F )
⇤✓

⌫
0

(r)� 4
5
⌫
2

(r)

◆
+
r
2
(bBb

0
F�b0BbF )⌫0(r) ,

(2)
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cubic pixels, n̄ is the mean number density of galaxies and n̄
B

and
n̄
F

are the fractional number of the bright and faint galaxies. Using
eq. 2 for the kernel, the general expression for the dipole reads:

ˆ⇠ =

X

i,j

X

B,F

W
xi,xj ,B,F

�n
B

(x

i

)�n
F

(x

j

) , (5)

where L
i

, L
j

= B,F and �n
B

(x

i

) and �n
F

(x

j

) denote the over-
density of galaxies for each pixel.

We now extract the dipole for the different contributions that
generate the anti-simmetry in the two-point correlation function.

2.1 Contributions to the dipole

In the continuous limit, the expressions of dipole due to the rela-
tivistic and evolution effect are given by:

hˆ⇠
rel
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B
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H2

+
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0
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1

(kr) , (6)
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� b
F

)f 0 � f(b0
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� b0
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)
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(r)� 4
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2

(r)

◆

+

r
2

(b
B

b0
F

� b0
B

b
F

)⌫
0

(r) , (7)

in which � is the comoving distance, b
B

and b
F

are the magnifica-
tion bias of bright and faint populations, f ⌘ d lnD/d ln a is the
logarithmic derivation of the linear growth factor, D, with respect
to the scale factor, a, P (k, z̄) is the linear matter power spectrum
at the mean redshift of the survey and ⌫

`

(r) are defined as:

⌫
`

(r) =
1

2⇡2

Z
dkk2P (k, z̄)j

`

(kr) , ` = 0, 2 . (8)

In eq. 8 , j
`

(kr) are the spherical Bessel functions. Notice that
the evolution term depends on the evolution of the bright and faint
galaxies (the prime in eq. 7 denotes a derivative with respect to �)
for which a model is required. However, as shown in Fig.11 of Bon-
vin et al. (2014), the contribution of this term to the standard dipole
is negligible compared to the other ones, in particular to the wide-
angle effect. For this reason we will neglect the evolution term in
our analysis.

The wide-angle effect depends of the choice of angle that the
pair of pixels makes with the line of sight (Reimberg et al. (2016);
Raccanelli et al. (2010); Hamilton (1997)). We can analyze the
problem within a plane formed by the two pair of pixels, i and j,
and the observer O, see Fig. 1. We indicate as d

i

and d
j

the distance
of pixel i and pixel j from the observer and with r

ij

the separation
between the pair of pixels. In this plane we can considerate two dif-
ferent choices for the angle ↵

ij

: the angle between the median and
r
ij

, denoted as �
ij

, and the angle between the direction of pixel
i and r

ij

, denoted as �
ij

. Using the �
ij

angle, the expression for
the dipole due to the wide-angle is (see Gaztanaga et al. (2015) for
more details):

hˆ⇠�
wide

(r)i = �2f
5

(b
B

� b
F

)

r
�
⌫
2

(r) . (9)

While if we use the �
ij

angle, the wide-angle term is given by:

hˆ⇠�
wide

(r)i = hˆ⇠�
wide

(r)i+ hˆ⇠
large

(r)i , (10)

Figure 1. Cordinate system for the choice of the angle between the pair of
pixels and the line of sight of the observer.

where:

hˆ⇠
large

(r)i = r
�


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+ (b
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+ b
F
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+

f2
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7

�
⌫
2

(d) . (11)

In this work we will only consider the wide-angle term obtained
using the �

ij

angle, for a complete explanation of the large-angle
effect see Gaztanaga et al. (2015).

2.2 Shell estimator

The shell estimator can be used to measure the asymmetry in
the galaxy correlation function due to gravitational redshift. Croft
(2013) first constructed an estimator z

shell

considering the effect of
gravitational redshift in N -body simulation. A general form for the
shell estimator is:

zshell
g

(r) =

R
1

�1

dµ
R

r+�r

r

µH [1 + ⇠(r0, µ)] r03dr0

R
1

�1

dµ
R

r+�r

r

[1 + ⇠(r0, µ)]r02dr0
, (12)

where µ = cos ✓, with ✓ angle between the pair separation r and
the line of sight, H is the Hubble parameter and ⇠(r0, µ) is the two
point correlation function of galaxies. Introducing the definition of
monopole ⇠

0

(r0) and dipole ⇠
1

(r0) we can rewrite eq. 12 as fol-
lows:

zshell
g

(r) =
1

3

R
r+�r

r

H⇠
1

(r0)r03dr0
R

r+�r

r

[1 + ⇠
0

(r0)]r02dr0
. (13)

As shown in Gaztanaga et al. (2015), assuming very small differ-
ence separation, we can approximate the previous equation as:

zshell
g

(r) ' rH(z̄)
3

⇠
1

(r)
[1 + ⇠

0

(r)]
. (14)

In the following section we will evaluate the shell estimator using
this approximation.
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(kr) are the spherical Bessel functions. Notice that
the evolution term depends on the evolution of the bright and faint
galaxies (the prime in eq. 7 denotes a derivative with respect to �)
for which a model is required. However, as shown in Fig.11 of Bon-
vin et al. (2014), the contribution of this term to the standard dipole
is negligible compared to the other ones, in particular to the wide-
angle effect. For this reason we will neglect the evolution term in
our analysis.

The wide-angle effect depends of the choice of angle that the
pair of pixels makes with the line of sight (Reimberg et al. (2016);
Raccanelli et al. (2010); Hamilton (1997)). We can analyze the
problem within a plane formed by the two pair of pixels, i and j,
and the observer O, see Fig. 1. We indicate as d

i

and d
j

the distance
of pixel i and pixel j from the observer and with r

ij

the separation
between the pair of pixels. In this plane we can considerate two dif-
ferent choices for the angle ↵

ij

: the angle between the median and
r
ij

, denoted as �
ij

, and the angle between the direction of pixel
i and r

ij

, denoted as �
ij

. Using the �
ij

angle, the expression for
the dipole due to the wide-angle is (see Gaztanaga et al. (2015) for
more details):
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)
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�
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(r) . (9)

While if we use the �
ij

angle, the wide-angle term is given by:

hˆ⇠�
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(r)i = hˆ⇠�
wide

(r)i+ hˆ⇠
large

(r)i , (10)

Figure 1. Cordinate system for the choice of the angle between the pair of
pixels and the line of sight of the observer.

where:
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
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�
⌫
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In this work we will only consider the wide-angle term obtained
using the �

ij

angle, for a complete explanation of the large-angle
effect see Gaztanaga et al. (2015).

2.2 Shell estimator

The shell estimator can be used to measure the asymmetry in
the galaxy correlation function due to gravitational redshift. Croft
(2013) first constructed an estimator z

shell

considering the effect of
gravitational redshift in N -body simulation. A general form for the
shell estimator is:
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(r) =

R
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dµ
R

r+�r

r

µH [1 + ⇠(r0, µ)] r03dr0

R
1

�1

dµ
R

r+�r

r

[1 + ⇠(r0, µ)]r02dr0
, (12)

where µ = cos ✓, with ✓ angle between the pair separation r and
the line of sight, H is the Hubble parameter and ⇠(r0, µ) is the two
point correlation function of galaxies. Introducing the definition of
monopole ⇠

0

(r0) and dipole ⇠
1

(r0) we can rewrite eq. 12 as fol-
lows:
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3

R
r+�r

r

H⇠
1

(r0)r03dr0
R

r+�r

r

[1 + ⇠
0

(r0)]r02dr0
. (13)

As shown in Gaztanaga et al. (2015), assuming very small differ-
ence separation, we can approximate the previous equation as:

zshell
g

(r) ' rH(z̄)
3

⇠
1

(r)
[1 + ⇠

0

(r)]
. (14)

In the following section we will evaluate the shell estimator using
this approximation.

MNRAS 000, 1–7 (2015)

where                                    and
Bonvin et al. Phys. Rev. D89 2014
Bonvin Class. Quant. Grav. 2014
Gaztanaga et al. JCAP 2017
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Dipole contributions (relativistic and wide-angle) as a function of the comoving 
separation, r , computed at redshift z=0.57 and for different values of the bias.

On the treatment of the anti-symmetric correlation function at small scales 3

Figure 2. Dipole estimations (multiplied by r2) at redshift z̄ = 0.57 as a
function of separation r: the blue and red lines refer to the relativistic and
wide-angle contributions respectively. The different linestyles are obtained
assuming different values of the bias of the bright and faint populations. In
particular the solid line corresponds to b

B

= 2.25 and b
F

= 2.03, the
dotted line to b

B

= 2.7 and b
F

= 2.3 and the dashed line to b
B

= 2.3
and b

F

= 1.7.

3 COMPUTING DIPOLE AND SHELL ESTIMATOR

In this section we will compute the dipole and the shell estimator
for a bright and faint population of galaxies and using the effective
redshift of the CMASS sample of galaxies (Bolton et al. (2012);
Ahn et al. (2012)) from the Baryon Oscillation Spectroscopic Sur-
vey (BOSS) Data Release 12 ( Alam et al. (2015)), z

e↵

= 0.57.
We evaluate the different contributions to the dipole and shell

estimator in a flat ⇤CDM model considering the best-fit parameters
from Planck 2015 data of temperature combined with large scale
polarization measurements Adam & et al. (2015) (⌦

b

h2

= 0.0222,
⌦

c

h2

= 0.1197, h = 0.673, n
s

= 0.965, �
8

= 0.83). We com-
pute the linear matter power spectrum at redshift z̄ = z

e↵

using the
Boltzmann code CAMB Lewis et al. (2000).

To study the effect of the bias on the dipole and z
shell

, we
assume three different values of the magnification bias of the bright
and faint galaxies. In particular we consider b

B

= 2.3 and b
F

=

1.7, b
B

= 2.7 and b
F

= 2.3 and b
B

= 2.25 and b
F

= 2.03.
The two last values are the linear bias of low and high mass sample
from SDSS CMASS DR12 calculated in cite Alam et al 2016 using
the monopole.

Moreover since we are interested in studying the effect of
the different contribution to the dipole and shell estimator at small
scales, we consider a pair separation between 0 and 120 Mpc/h.

3.1 Comparison of the dipoles

In Figure 7 we show the different dipole contributions (relativistic
and wide-angle) as a function of the comoving separation r and
using the angle �. The different linestyles of the curves represent
different bias values: the solid line refers to b

B

= 2.25 and b
F

=

2.03, the dotted line to b
B

= 2.7 and b
F

= 2.3 and the dashed line
to b

B

= 2.3 and b
F

= 1.7. Notice that the relativistic contribution

Figure 3. Shell estimations at redshift z̄ = 0.57 as a function of separation
r: the relativistic contribution (blue line) and the wide-angle contribution
(red line). Also in this case the different linestyles refer to the different
values of the bias of the bright and faint populations. See text for more
detaills.

is dominant at all scales and that all contributions depend on the
value of the bright and faint bias we assume.

In particular the relativistic term depends on the sign of the
bias difference b

B

� b
F

(see eq. 6). A positive value for the bias
difference means that the cross-correlation function is predominant
for faint galaxies behind the bright galaxy respect to the ones in
front. This occurs because the bias of bright galaxy is larger then
the bias of faint galaxies and the asymmetry along the line of sight
is related to the difference in the cross-correlation between the
bright galaxy and the faint galaxies behind or in front of it. This
effect lead the relativistic dipole to be positive.

As we can also see from eq. 9, the wide-angle term depend on
the difference b

B

�b
F

but, being this difference negative, is always
smaller than the relativistic contribution.

At small scale (for r < 18 Mpc/h), we can see that the two
contributions are canceled. In particular a cancellation of the rela-
tivistic contribution induces no evidence for gravitational redshift
effect. In Figure 8 of a companion paper, Alam et al 2016, we
measure the relativistic effect on dipole moment using the cross-
correlation function of sub-samples obtained by splitting the sam-
ple into two equal parts for each of the five photometric bands and
we show a non-zero signal at small scales. This effect could be
explained as if the linear perturbation theory cannot appropriately
treat different contributions to the dipole at small scales.

3.2 Comparison of shell estimator

Figure 3 shows the shell estimator for the relativistic (blue line) and
wide-angle (red line) contribution calculated at redshift z̄ = 0.57
using eq. 12 . As for the dipole, the different linestyles refer to
the different values of the bias. Also for the zshell

g estimator all the
contributions depend on the bias difference of the bright and faint
galaxies.

Notice that the contribution of wide-angle effect to the shell
estimator is always smaller compared to the relativistic contribu-
tion.
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On small scales (r < 15 Mpc/h), the two contributions are canceled out. In particular 
a cancellation of the relativistic contribution induces no evidence for gravitational 
redshift effect. 
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G = 4.30071⇥10�9 (Mpc km)/(sec M�) is the Newtonian constant of gravitation
in solar mass, c = 299792.458 km/sec is the speed of light and:

H(z) = 100
p
⌦M(1 + z)2 + ⌦⇤ (4)
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where ns = 0.96, k? = 0.05h/Mpc, As = 2.19910�9, and:

T (q) =
ln[1 + 2.34q]

2.34q

⇥
1 + 3.89q + (16.2q)2 + (5.47q)3 + (6.71q)4

⇤�0.25
, (9)

in which q = k/� h Mpc�1 and � = ⌦Mh. Moreover D1(a) is the growth factor
defined as follow:
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3⌦MH(a)
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da0
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, (10)

in which a = 1/(1 + z) and H(a) is given by eq. 4.
To verify if everything works:

• The plot for D1(a)shouldbe :

czg = v ⇡ gh

c
= 7.5⇥ 10�7 m/s (11)

bB = 2.57 and bF = 1.91
bB = 2.36 and bF = 1.46
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Dipole contribution
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On the treatment of the anti-symmetric correlation function at small scales 3

Figure 2. Dipole estimations (multiplied by r2) at redshift z̄ = 0.57 as a
function of separation r: the blue and red lines refer to the relativistic and
wide-angle contributions respectively. The different linestyles are obtained
assuming different values of the bias of the bright and faint populations. In
particular the solid line corresponds to b

B

= 2.25 and b
F

= 2.03, the
dotted line to b

B

= 2.7 and b
F

= 2.3 and the dashed line to b
B

= 2.3
and b

F

= 1.7.

3 COMPUTING DIPOLE AND SHELL ESTIMATOR

In this section we will compute the dipole and the shell estimator
for a bright and faint population of galaxies and using the effective
redshift of the CMASS sample of galaxies (Bolton et al. (2012);
Ahn et al. (2012)) from the Baryon Oscillation Spectroscopic Sur-
vey (BOSS) Data Release 12 ( Alam et al. (2015)), z
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We evaluate the different contributions to the dipole and shell

estimator in a flat ⇤CDM model considering the best-fit parameters
from Planck 2015 data of temperature combined with large scale
polarization measurements Adam & et al. (2015) (⌦
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s

= 0.965, �
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= 0.83). We com-
pute the linear matter power spectrum at redshift z̄ = z
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using the
Boltzmann code CAMB Lewis et al. (2000).

To study the effect of the bias on the dipole and z
shell

, we
assume three different values of the magnification bias of the bright
and faint galaxies. In particular we consider b

B

= 2.3 and b
F

=

1.7, b
B

= 2.7 and b
F

= 2.3 and b
B

= 2.25 and b
F

= 2.03.
The two last values are the linear bias of low and high mass sample
from SDSS CMASS DR12 calculated in cite Alam et al 2016 using
the monopole.

Moreover since we are interested in studying the effect of
the different contribution to the dipole and shell estimator at small
scales, we consider a pair separation between 0 and 120 Mpc/h.

3.1 Comparison of the dipoles

In Figure 7 we show the different dipole contributions (relativistic
and wide-angle) as a function of the comoving separation r and
using the angle �. The different linestyles of the curves represent
different bias values: the solid line refers to b

B

= 2.25 and b
F

=

2.03, the dotted line to b
B

= 2.7 and b
F

= 2.3 and the dashed line
to b

B

= 2.3 and b
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Figure 3. Shell estimations at redshift z̄ = 0.57 as a function of separation
r: the relativistic contribution (blue line) and the wide-angle contribution
(red line). Also in this case the different linestyles refer to the different
values of the bias of the bright and faint populations. See text for more
detaills.

is dominant at all scales and that all contributions depend on the
value of the bright and faint bias we assume.

In particular the relativistic term depends on the sign of the
bias difference b

B

� b
F

(see eq. 6). A positive value for the bias
difference means that the cross-correlation function is predominant
for faint galaxies behind the bright galaxy respect to the ones in
front. This occurs because the bias of bright galaxy is larger then
the bias of faint galaxies and the asymmetry along the line of sight
is related to the difference in the cross-correlation between the
bright galaxy and the faint galaxies behind or in front of it. This
effect lead the relativistic dipole to be positive.

As we can also see from eq. 9, the wide-angle term depend on
the difference b

B

�b
F

but, being this difference negative, is always
smaller than the relativistic contribution.

At small scale (for r < 18 Mpc/h), we can see that the two
contributions are canceled. In particular a cancellation of the rela-
tivistic contribution induces no evidence for gravitational redshift
effect. In Figure 8 of a companion paper, Alam et al 2016, we
measure the relativistic effect on dipole moment using the cross-
correlation function of sub-samples obtained by splitting the sam-
ple into two equal parts for each of the five photometric bands and
we show a non-zero signal at small scales. This effect could be
explained as if the linear perturbation theory cannot appropriately
treat different contributions to the dipole at small scales.

3.2 Comparison of shell estimator

Figure 3 shows the shell estimator for the relativistic (blue line) and
wide-angle (red line) contribution calculated at redshift z̄ = 0.57
using eq. 12 . As for the dipole, the different linestyles refer to
the different values of the bias. Also for the zshell

g estimator all the
contributions depend on the bias difference of the bright and faint
galaxies.

Notice that the contribution of wide-angle effect to the shell
estimator is always smaller compared to the relativistic contribu-
tion.
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Shell estimator 

2 Giusarma et al.

We now define the dipole for the different contributions that
generate the anti-simmetry in the two-point correlation function.

2.1 Contributions to the dipole

In the continuous limit, the dipole contribution due to the relativis-
tic effect is given by (see Bonvin et al. (2014) for a complete deriva-
tion) :

hˆ⇠
rel

(r)i = (bB � bF )
f
2⇡2

✓
˙H

H2

+

2

�H
◆ H

H
0

⇥
Z

dkkH
0

P (k, z̄)j
1

(kr) ,

(3)

in which � is the comoving distance, bB and bF are the bias of
bright and faint population of galaxies, f ⌘ d lnD/d ln a is the
logarithmic derivation of the linear growth factor, D, with respect
to the scale factor, a, P (k, z̄) is the linear matter power spectrum at
the mean redshift of the survey and j

1

(kr) is the spherical Bessel
function for ` = 1. Eq. 3 includes a combination of gravitational
redshift, light-cone and Doppler effects. We can see that the rela-
tivistic contribution depends on the bias difference bB � bF and it
vanishes when bB = bF . Thus if the bias of bright galaxies is larger
then the bias of faint galaxies, the dipole is always positive.

The dipole due to the evolution effect can be written as:

hˆ⇠
evol

(r)i = r
6

⇥
(bB � bF )f

0 � f(b0B � b0F )
⇤✓

⌫
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(bBb
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(4)

where ⌫`(r) are defined as:

⌫`(r) =
1

2⇡2

Z
dkk2P (k, z̄)j`(kr) , ` = 0, 2 . (5)

and j`(kr) are the spherical Bessel functions. Notice that the evo-
lution term depends on the evolution of the bright and faint galaxies
(the prime in eq. 4 denotes a derivative with respect to �). However,
as shown in Fig.11 of Bonvin et al. (2014), its contribution is neg-
ligible compared to the other ones, in particular to the wide-angle
effect. For this reason we decide to neglect the evolution term in
our analysis.

The wide-angle effect depends on the choice of angle that the
pair of pixels makes with the line of sight (Reimberg et al. (2016);
Raccanelli et al. (2010); Hamilton (1997)). We can analyze the
problem within a plane formed by the two pair of pixels, i and j,
and the observer O, see Fig. 1. We indicate as di and dj the distance
of pixel i and pixel j from the observer and with rij the separation
between the pair of pixels. In this plane we can considerate two dif-
ferent choices for the angle ↵ij : the angle between the median and
rij , denoted as �ij , and the angle between the direction of pixel i
and rij , denoted as �ij . Using the �ij angle, the expression for the
dipole due to the wide-angle is:

hˆ⇠�
wide

(r)i = �2f
5

(bB � bF )
r
�
⌫
2

(r) . (6)

While if we use the �ij angle, the wide-angle term is given by:

hˆ⇠�
wide

(r)i = hˆ⇠�
wide

(r)i+ hˆ⇠
large

(r)i , (7)

where:

hˆ⇠
large

(r)i = r
�
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bBbF + (bB + bF )
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3

+

f2

5

�
⌫
0

(d)

+

r
5�


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3

+

4f2
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�
⌫
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Figure 1. Cordinate system for the choice of the angle between the pair of
pixels and the line of sight of the observer.

In this work we will only consider the wide-angle term obtained
using the �ij angle. For a complete escription of the large-angle
effect see Gaztanaga et al. (2017).

2.2 Shell estimator

The shell estimator, z
shell

, can be used to measure the line-of-sight
asymmetry in the galaxy correlation function due to gravitational
redshift. It was introduced by Croft (2013) in order to study the ef-
fect of gravitational redshift in N -body simulation. The procedure
consists in binning the pairs in spherical shells and calculating the
displacement of the centroid of the cross-correlation function as a
function of pairs separation (or the mean rk weighted by the cross
correlation function ). A general form for the shell estimator is:

zshell
g

(r) =

R r0+�r0

r0 µH
⇥
1 + ⇠(r?, rk)

⇤
rkr

2dr
R r0+�r0

r0 [1 + ⇠(r?, rk)]r2dr
, (9)

in which rk and r? are the parallel and perpendicular separation
between galaxies, ⇠(r?, rk) is the two point correlation function of
galaxies and H is the Hubble parameter. Defining rk as rµ, where
µ is the cosine of the angle between the pair separation r and the
line of sight, and integrating over µ, we can rewrite eq. 9 as follow:

zshell
g

(r) =

R
1

�1

dµ
R r0+�r0

r0 µH [1 + ⇠(r, µ)] r3dr
R

1

�1

dµ
R r0+�r0

r0 [1 + ⇠(r, µ)]r2dr
, (10)

Moreover, introducing the definition of monopole ⇠
0

(r) and dipole
⇠
1

(r), eq. 10 becomes:

zshell
g

(r) =
1

3

R r0+�r0

r0 H⇠
1

(r)r3dr0
R r0+�r0

r0 [1 + ⇠
0

(r)]r2dr
. (11)

In the next section we will focus on the dipole and the shell esti-
mator of two population of galaxies at small and large scale and
we compare the results of the different contributions considering
different values for the bias of bright and faint galaxy.
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Figure 2. Dipole estimations (multiplied by r2) at redshift z̄ = 0.57 as a
function of separation r: the blue and red lines refer to the relativistic and
wide-angle contributions respectively. The different linestyles are obtained
assuming different values of the bias of the bright and faint populations. In
particular the solid line corresponds to b

B

= 2.25 and b
F

= 2.03, the
dotted line to b

B

= 2.7 and b
F

= 2.3 and the dashed line to b
B

= 2.3
and b

F

= 1.7.

3 COMPUTING DIPOLE AND SHELL ESTIMATOR

In this section we will compute the dipole and the shell estimator
for a bright and faint population of galaxies and using the effective
redshift of the CMASS sample of galaxies (Bolton et al. (2012);
Ahn et al. (2012)) from the Baryon Oscillation Spectroscopic Sur-
vey (BOSS) Data Release 12 ( Alam et al. (2015)), z

e↵

= 0.57.
We evaluate the different contributions to the dipole and shell

estimator in a flat ⇤CDM model considering the best-fit parameters
from Planck 2015 data of temperature combined with large scale
polarization measurements Adam & et al. (2015) (⌦

b

h2

= 0.0222,
⌦

c

h2

= 0.1197, h = 0.673, n
s

= 0.965, �
8

= 0.83). We com-
pute the linear matter power spectrum at redshift z̄ = z

e↵

using the
Boltzmann code CAMB Lewis et al. (2000).

To study the effect of the bias on the dipole and z
shell

, we
assume three different values of the magnification bias of the bright
and faint galaxies. In particular we consider b

B

= 2.3 and b
F

=

1.7, b
B

= 2.7 and b
F

= 2.3 and b
B

= 2.25 and b
F

= 2.03.
The two last values are the linear bias of low and high mass sample
from SDSS CMASS DR12 calculated in cite Alam et al 2016 using
the monopole.

Moreover since we are interested in studying the effect of
the different contribution to the dipole and shell estimator at small
scales, we consider a pair separation between 0 and 120 Mpc/h.

3.1 Comparison of the dipoles

In Figure 7 we show the different dipole contributions (relativistic
and wide-angle) as a function of the comoving separation r and
using the angle �. The different linestyles of the curves represent
different bias values: the solid line refers to b

B

= 2.25 and b
F

=

2.03, the dotted line to b
B

= 2.7 and b
F

= 2.3 and the dashed line
to b

B

= 2.3 and b
F

= 1.7. Notice that the relativistic contribution

Figure 3. Shell estimations at redshift z̄ = 0.57 as a function of separation
r: the relativistic contribution (blue line) and the wide-angle contribution
(red line). Also in this case the different linestyles refer to the different
values of the bias of the bright and faint populations. See text for more
detaills.

is dominant at all scales and that all contributions depend on the
value of the bright and faint bias we assume.

In particular the relativistic term depends on the sign of the
bias difference b

B

� b
F

(see eq. 6). A positive value for the bias
difference means that the cross-correlation function is predominant
for faint galaxies behind the bright galaxy respect to the ones in
front. This occurs because the bias of bright galaxy is larger then
the bias of faint galaxies and the asymmetry along the line of sight
is related to the difference in the cross-correlation between the
bright galaxy and the faint galaxies behind or in front of it. This
effect lead the relativistic dipole to be positive.

As we can also see from eq. 9, the wide-angle term depend on
the difference b

B

�b
F

but, being this difference negative, is always
smaller than the relativistic contribution.

At small scale (for r < 18 Mpc/h), we can see that the two
contributions are canceled. In particular a cancellation of the rela-
tivistic contribution induces no evidence for gravitational redshift
effect. In Figure 8 of a companion paper, Alam et al 2016, we
measure the relativistic effect on dipole moment using the cross-
correlation function of sub-samples obtained by splitting the sam-
ple into two equal parts for each of the five photometric bands and
we show a non-zero signal at small scales. This effect could be
explained as if the linear perturbation theory cannot appropriately
treat different contributions to the dipole at small scales.

3.2 Comparison of shell estimator

Figure 3 shows the shell estimator for the relativistic (blue line) and
wide-angle (red line) contribution calculated at redshift z̄ = 0.57
using eq. 12 . As for the dipole, the different linestyles refer to
the different values of the bias. Also for the zshell

g estimator all the
contributions depend on the bias difference of the bright and faint
galaxies.

Notice that the contribution of wide-angle effect to the shell
estimator is always smaller compared to the relativistic contribu-
tion.
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G = 4.30071⇥10�9 (Mpc km)/(sec M�) is the Newtonian constant of gravitation
in solar mass, c = 299792.458 km/sec is the speed of light and:

H(z) = 100
p
⌦M(1 + z)2 + ⌦⇤ (4)

where z=0.57, ⌦M = 0.3149 and ⌦⇤ = 0.6851. In eq. 2, ⇠g1⇢ and ⇠g2⇢ are the g1
and g2 galaxy-mass cross-correlation functions defined as:

⇠g1⇢(x)� ⇠g2⇢(x) = (bB � bF )⇠0(r) , (5)

where ⇠0(r) is (for ` = 0):
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P (k) comes from the file wmap pk 0.57.dat , �B = ⌦0.6
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We now define the dipole for the different contributions that
generate the anti-simmetry in the two-point correlation function.

2.1 Contributions to the dipole

In the continuous limit, the dipole contribution due to the relativis-
tic effect is given by (see Bonvin et al. (2014) for a complete deriva-
tion) :

hˆ⇠
rel

(r)i = (bB � bF )
f
2⇡2

✓
˙H

H2

+

2

�H
◆ H

H
0

⇥
Z

dkkH
0

P (k, z̄)j
1

(kr) ,

(3)

in which � is the comoving distance, bB and bF are the bias of
bright and faint population of galaxies, f ⌘ d lnD/d ln a is the
logarithmic derivation of the linear growth factor, D, with respect
to the scale factor, a, P (k, z̄) is the linear matter power spectrum at
the mean redshift of the survey and j

1

(kr) is the spherical Bessel
function for ` = 1. Eq. 3 includes a combination of gravitational
redshift, light-cone and Doppler effects. We can see that the rela-
tivistic contribution depends on the bias difference bB � bF and it
vanishes when bB = bF . Thus if the bias of bright galaxies is larger
then the bias of faint galaxies, the dipole is always positive.

The dipole due to the evolution effect can be written as:

hˆ⇠
evol

(r)i = r
6

⇥
(bB � bF )f

0 � f(b0B � b0F )
⇤✓

⌫
0

(r)� 4

5

⌫
2

(r)

◆

+

r
2

(bBb
0
F � b0BbF )⌫0(r) ,

(4)

where ⌫`(r) are defined as:

⌫`(r) =
1

2⇡2

Z
dkk2P (k, z̄)j`(kr) , ` = 0, 2 . (5)

and j`(kr) are the spherical Bessel functions. Notice that the evo-
lution term depends on the evolution of the bright and faint galaxies
(the prime in eq. 4 denotes a derivative with respect to �). However,
as shown in Fig.11 of Bonvin et al. (2014), its contribution is neg-
ligible compared to the other ones, in particular to the wide-angle
effect. For this reason we decide to neglect the evolution term in
our analysis.

The wide-angle effect depends on the choice of angle that the
pair of pixels makes with the line of sight (Reimberg et al. (2016);
Raccanelli et al. (2010); Hamilton (1997)). We can analyze the
problem within a plane formed by the two pair of pixels, i and j,
and the observer O, see Fig. 1. We indicate as di and dj the distance
of pixel i and pixel j from the observer and with rij the separation
between the pair of pixels. In this plane we can considerate two dif-
ferent choices for the angle ↵ij : the angle between the median and
rij , denoted as �ij , and the angle between the direction of pixel i
and rij , denoted as �ij . Using the �ij angle, the expression for the
dipole due to the wide-angle is:

hˆ⇠�
wide

(r)i = �2f
5

(bB � bF )
r
�
⌫
2

(r) . (6)

While if we use the �ij angle, the wide-angle term is given by:
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(r)i , (7)

where:
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Figure 1. Cordinate system for the choice of the angle between the pair of
pixels and the line of sight of the observer.

In this work we will only consider the wide-angle term obtained
using the �ij angle. For a complete escription of the large-angle
effect see Gaztanaga et al. (2017).

2.2 Shell estimator

The shell estimator, z
shell

, can be used to measure the line-of-sight
asymmetry in the galaxy correlation function due to gravitational
redshift. It was introduced by Croft (2013) in order to study the ef-
fect of gravitational redshift in N -body simulation. The procedure
consists in binning the pairs in spherical shells and calculating the
displacement of the centroid of the cross-correlation function as a
function of pairs separation (or the mean rk weighted by the cross
correlation function ). A general form for the shell estimator is:

zshell
g

(r) =

R r0+�r0

r0 µH
⇥
1 + ⇠(r?, rk)

⇤
rkr

2dr
R r0+�r0

r0 [1 + ⇠(r?, rk)]r2dr
, (9)

in which rk and r? are the parallel and perpendicular separation
between galaxies, ⇠(r?, rk) is the two point correlation function of
galaxies and H is the Hubble parameter. Defining rk as rµ, where
µ is the cosine of the angle between the pair separation r and the
line of sight, and integrating over µ, we can rewrite eq. 9 as follow:

zshell
g

(r) =

R
1

�1

dµ
R r0+�r0

r0 µH [1 + ⇠(r, µ)] r3dr
R

1

�1

dµ
R r0+�r0

r0 [1 + ⇠(r, µ)]r2dr
, (10)

Moreover, introducing the definition of monopole ⇠
0

(r) and dipole
⇠
1

(r), eq. 10 becomes:

zshell
g

(r) =
1

3

R r0+�r0

r0 H⇠
1

(r)r3dr0
R r0+�r0

r0 [1 + ⇠
0

(r)]r2dr
. (11)

In the next section we will focus on the dipole and the shell esti-
mator of two population of galaxies at small and large scale and
we compare the results of the different contributions considering
different values for the bias of bright and faint galaxy.
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General Relativity perturbation theory 
is able to predict relativistic and wide-
angle effects on large linear scales      
(> 10 Mpc/h) but on small non-linear 
scales this approach is less accurate.
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Newtonian Perturbation theory
1) Mean gravitational redshift difference between two populations of galaxies:

We use δzg to distort the cross-correlation function of g1 and g2  galaxies in 
redshift space.

2) Additional distortion due to peculiar velocities: standard linear infall for 
large-scale flows (Kaiser 1987) + small-scale random velocity dispersion 
(Davis & Peebles 1983)

4 Giusarma et al.

The wide-angle effect generate a redshift difference in zshell
g of

-0.1 km/s between r = 25 Mpc/h and r = 90 Mpc/h and of -0.06
km/s at r = 108 Mpc/h considering the larger values of bias (b

B

=

2.3 and b
F

= 1.7). If we consider the two bias calculated by Alam
et al 2016, the redshift difference drops to -0.04 km/s between r =

25 Mpc/h and r = 90 Mpc/h and to -0.02 km/s at r = 108 Mpc/h .
While at very small scale the wide-angle contribution is null for al
the values of the magnification bias.

The relativistic contribution generate a redshift difference of
the order of 0.80 km/s (b

B

= 2.25 and b
F

= 2.03), 0.14 km/s
(b

B

= 2.7 and b
F

= 2.3) and 0.23 km/s (b
B

= 2.3 and b
F

= 1.7)
for r = 25 Mpc/h and of 0 km/s at very small scales. As shown also
in Bonvin et al. (2015) we can see that the gravitational redshift
effect, included in the relativistic contribution, is cancelled out by
the linear perturbation theory at small scales.

In our companion papers, Alam et al 2016 and Zhu et al 2016,
we use N body simulation to predict the gravitational redshift sig-
nal at small scales and we found a significance for the gravitational
redshift effect around several Mpc/h. Moreover in Alam et al 2016
we measure the shall estimator by fitting the theoretical model de-
scribed in Zhu et al 2016 to the CMASS Data Release 12 and using
the different photometric bands, and we also found a significant de-
tection of the amplitude of gravitational redshift of 2.4�, 5.8� and
2.8� at the r, i and z bands respectively, showing that it is possible
to measure the gravitational redshift in large scale structure. We can
conclude this section affirming that the linear perturbation theory
seems to fail at small scales because of the presence of non-linear
effects that need of a more accurate approach to be explained.

4 DISTORTIONS IN GALAXY CORRELATION
FUNCTION

In the previous section we computed the anti-simmetric part in
the correlation function generated by the relativistic, evolution and
wide-angle effects and we compared it with the estimator zshell

g . In
this section we study the effects of redshift distortions in two points
cross-correlation function using the Newtonian linear perturbation
theory. In particular we examine how the cross-correlation function
of the two populations of galaxies is distorted by only gravitational
redshifts or peculiar velocities and the sum of them.

4.1 Constructing the model

We consider the two populations of galaxies, g1 and g2, described
in the previous section. According to General Relativity, the mean
gravitational redshift difference between g1 and g2 is given by:

z
g

(r) =
G
c

Z
r

1
M

12

(x)x�2dx , (15)

in which:

M
12

(r) = 4⇡⇢̄

Z
r

0

(⇠
g1⇢

(x)� ⇠
g2⇢

(x))x2dx , (16)

is the difference in mass, ⇢̄ is the mean density of the Universe,
G is the Newtonian constant of gravitation and c is the speed of
light. In eq. 16, ⇠

g1⇢

and ⇠
g2⇢

are the g1 and g2 galaxy-mass cross-
correlation functions defined as:

⇠
g⇢

(r) = b⇠(r) , (17)

where b is the magnification bias of the two populations of galaxies
on large scales that increases with the galaxy mass and ⇠(r) is the

Figure 4. Mean gravitational redshift calculated using eq. 15 and consid-
ering b

B

= 2.25 and b
F

= 2.03.

Figure 5. Peculiar velocity distribution for the two populations of galaxies.

linear ⇤CDM correlation function.
We first use eq. 15 to distort the cross-correlation function of g1 and
g2 galaxies in redshift space. Figure 4 shows the mean gravitational
resdshift as a function of the separation between g1 and g2 obtained
using eq. 15. We can see that the gravitational redshift tend to zero
when r tend to infinity.

An additional distortion term of the cross-correlation function,
is due to peculiar velocity. To compute the model for ⇠

g1g2

(r?, rk),
where r? and rk are the g1� g2 pairs separation along and across
the line of sight, we consider the effects of standard linear infall for
large scale flows ( Kaiser (1987)) and we then convolve this with
the small scale random velocity dispersion.

Hamilton ( Hamilton (1997)) translates the Kaiser formula for
the coherent infall velocities, Kaiser (1987), from Fourier space
into real space. Following Hawkins et al. (2003) and Croft et al.
(Croft et al.), the distorted g1 and g2 cross-correlation function is
given by:

⇠0
g1g2

(r?, rk) = b
B

b
F

[⇠
0

(s)P
0

(µ)+ ⇠
2

(s)P
2

(µ)+ ⇠
4

(s)P
4

(µ)] ,
(18)

where b
B

and b
F

are the two bias factor of g1 and g2 galaxies,
µ = cos ✓, ✓ is the angle between the pair separation r and the
line of sight and P

`

(µ) are the Legendre Polynomials [P
0

= 0,
P
2

= (3µ2�1)/2 and P
4

= (35µ4�30µ2

+3)/8]. The relations
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Figure 6. Effect of different redshift distortions on cross-correlation function of the two populations of galaxies, g1- g2, calculated using Newtonian linear
perturbation theory. The top left panel shows the isotropic correlation function, the top right panel represents the effect of gravitational redshift, the bottom left
panel illustrates the effect of peculiar velocities and the bottom right panel shows the sum of the two.
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`
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with

⇠(r) =
3

r3

Z
r

0

⇠(r0)r02dr0,

⇠(r) =
5

r5

Z
r

0

⇠(r0)r04dr0 .

Here �
B

= ⌦

0.6/b
B

and �
F

= ⌦

0.6/b
F

are the redshift space
distortion factors.
Using the previous equations, we convolve our model
⇠0
g1g2

(r?, rk) with the distribution function of random pair-
wise motions, f(v), in order to obtain the redshift-space
cross-correlation function:

⇠
g1g2

(r?, rk) =

Z 1

1
f(v)dv⇠0

g1g2

✓
r?, rk � cz

g

(r)� (1 + z)v
H(z)

◆
.

(22)
We assume that the random peculiar velocity distribution has an
exponential form (see Figure 5):

f(v) =
1

�
12

p
2

exp

✓
�
p
2|v|
�
12

◆
, (23)

where �
12

is pairwise peculiar velocity dispersion of g1-g2 galax-
ies, which we assume to be independent of pair separation. Based
on simulation results, we choose to set �

12

= 400 km/s.
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Figure 2. Dipole estimations (multiplied by r2) at redshift z̄ = 0.57 as a
function of separation r: the blue and red lines refer to the relativistic and
wide-angle contributions respectively. The different linestyles are obtained
assuming different values of the bias of the bright and faint populations. In
particular the solid line corresponds to b

B

= 2.25 and b
F

= 2.03, the
dotted line to b

B

= 2.7 and b
F

= 2.3 and the dashed line to b
B

= 2.3
and b

F

= 1.7.

3 COMPUTING DIPOLE AND SHELL ESTIMATOR

In this section we will compute the dipole and the shell estimator
for a bright and faint population of galaxies and using the effective
redshift of the CMASS sample of galaxies (Bolton et al. (2012);
Ahn et al. (2012)) from the Baryon Oscillation Spectroscopic Sur-
vey (BOSS) Data Release 12 ( Alam et al. (2015)), z

e↵

= 0.57.
We evaluate the different contributions to the dipole and shell

estimator in a flat ⇤CDM model considering the best-fit parameters
from Planck 2015 data of temperature combined with large scale
polarization measurements Adam & et al. (2015) (⌦

b

h2

= 0.0222,
⌦

c

h2

= 0.1197, h = 0.673, n
s

= 0.965, �
8

= 0.83). We com-
pute the linear matter power spectrum at redshift z̄ = z

e↵

using the
Boltzmann code CAMB Lewis et al. (2000).

To study the effect of the bias on the dipole and z
shell

, we
assume three different values of the magnification bias of the bright
and faint galaxies. In particular we consider b

B

= 2.3 and b
F

=

1.7, b
B

= 2.7 and b
F

= 2.3 and b
B

= 2.25 and b
F

= 2.03.
The two last values are the linear bias of low and high mass sample
from SDSS CMASS DR12 calculated in cite Alam et al 2016 using
the monopole.

Moreover since we are interested in studying the effect of
the different contribution to the dipole and shell estimator at small
scales, we consider a pair separation between 0 and 120 Mpc/h.

3.1 Comparison of the dipoles

In Figure 7 we show the different dipole contributions (relativistic
and wide-angle) as a function of the comoving separation r and
using the angle �. The different linestyles of the curves represent
different bias values: the solid line refers to b

B

= 2.25 and b
F

=

2.03, the dotted line to b
B

= 2.7 and b
F

= 2.3 and the dashed line
to b

B

= 2.3 and b
F

= 1.7. Notice that the relativistic contribution

Figure 3. Shell estimations at redshift z̄ = 0.57 as a function of separation
r: the relativistic contribution (blue line) and the wide-angle contribution
(red line). Also in this case the different linestyles refer to the different
values of the bias of the bright and faint populations. See text for more
detaills.

is dominant at all scales and that all contributions depend on the
value of the bright and faint bias we assume.

In particular the relativistic term depends on the sign of the
bias difference b

B

� b
F

(see eq. 6). A positive value for the bias
difference means that the cross-correlation function is predominant
for faint galaxies behind the bright galaxy respect to the ones in
front. This occurs because the bias of bright galaxy is larger then
the bias of faint galaxies and the asymmetry along the line of sight
is related to the difference in the cross-correlation between the
bright galaxy and the faint galaxies behind or in front of it. This
effect lead the relativistic dipole to be positive.

As we can also see from eq. 9, the wide-angle term depend on
the difference b

B

�b
F

but, being this difference negative, is always
smaller than the relativistic contribution.

At small scale (for r < 18 Mpc/h), we can see that the two
contributions are canceled. In particular a cancellation of the rela-
tivistic contribution induces no evidence for gravitational redshift
effect. In Figure 8 of a companion paper, Alam et al 2016, we
measure the relativistic effect on dipole moment using the cross-
correlation function of sub-samples obtained by splitting the sam-
ple into two equal parts for each of the five photometric bands and
we show a non-zero signal at small scales. This effect could be
explained as if the linear perturbation theory cannot appropriately
treat different contributions to the dipole at small scales.

3.2 Comparison of shell estimator

Figure 3 shows the shell estimator for the relativistic (blue line) and
wide-angle (red line) contribution calculated at redshift z̄ = 0.57
using eq. 12 . As for the dipole, the different linestyles refer to
the different values of the bias. Also for the zshell

g estimator all the
contributions depend on the bias difference of the bright and faint
galaxies.

Notice that the contribution of wide-angle effect to the shell
estimator is always smaller compared to the relativistic contribu-
tion.
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(bB = 2.25 and bF = 2.03) respectively. Also in this case, on
very small scales (r < 5 Mpc/h) the contribution of the relativistic
effect to the zshell

g

drops to 0 km/s. As pointed out by Bonvin et al.
(2016), a cancellation of the relativistic term means that it could be
very difficult to detect the effect of gravitational redshift in large
scale structures.

In our two companion papers Zhu et al. (2017) and Alam et al.
(2017b), we have studied all the relativistic effects that could cause
asymmetries in the two-point correlation function of two galaxies
populations. In particular in Zhu et al. (2017) we use N-body sim-
ulation in order to predict the gravitational redshift signal on small
scales and we have found a significance for the gravitational red-
shift effect around several Mpc/h. Moreover in Alam et al. (2017b)
we have measured the distortions induced by various relativistic
effects using the SDSS III BOSS CMASS sample. Specifically we
have estimated the shall estimator by fitting the theoretical model
described in Zhu et al. (2017) to the CMASS Data Release 12 using
the different photometric bands, and we have found a significant de-
tection of the amplitude of gravitational redshift of 2.9�, 2.5� and
1.7� in the r, i and z bands respectively. This shows that it is pos-
sible to measure the gravitational redshift in large-scale structure.
We can conclude this section affirming that the linear perturbation
theory seems to fail on small scales because the presence of non-
linear structure formation which requires a more accurate approach
in order to be explained.

4 NEWTONIAN PERTURBATION THEORY APPROACH

In the previous section we computed the dipole and the shell es-
timator generated by the relativistic and wide-angle effects using
General Relativity perturbation theory and we showed that, on
small scales, all the effects are canceled out. In this section we study
the effect of redshift distortions in two-point cross-correlation func-
tion using the Newtonian perturbation theory. In particular we ex-
amine how the cross-correlation function of the two populations of
galaxies is distorted by only gravitational redshifts or peculiar ve-
locities and the sum of them. We follow the procedure introduced
by Croft (2013).

4.1 Defining the model

We construct a model to describe the mean gravitational redshift
difference, �zg , between two galaxy populations, g1 and g2, and
we study how this quantity, together with peculiar velocities, dis-
torts the two-point correlation function. Finally we calculate the
shell estimator using equation 11 and we compare the results with
those obtained using General Relativity perturbation theory.

According to General Relativity, the mean gravitational red-
shift difference between g1 and g2 is given by Croft (2013):

�zg = zg1(0)� zg2(r) =
G
c

Z r

1
M

12

(x)x�2dx , (12)

in which

M
12

(r) = 4⇡⇢̄

Z r

0

(⇠g1⇢(x)� ⇠g2⇢(x))x
2dx , (13)

is the difference in mass, ⇢̄ is the mean density of the Universe, G
is the Newton’s gravitational constant and c is the speed of light.
In eq. 13, ⇠g1⇢ and ⇠g2⇢ are the g1 and g2 galaxy-mass cross-
correlation functions defined as:

⇠g⇢(r) = b⇠(r) , (14)

Figure 4. Mean gravitational redshift calculated using eq. 12 and consider-
ing bB = 2.25 and bF = 2.03.

where b is the bright or faint bias of the two populations of galaxies
and ⇠(r) is the linear ⇤CDM correlation function.

Figure 4 shows the mean gravitational redshift as a function
of the separation between g1 and g2 obtained using eq. 12.

The additional distortion term of the cross-correlation function
is due to the peculiar velocities which are caused by two effects:
large-scale coherent flows, due to the gravitational instability, and
small-scales random velocity of each galaxy within the cluster.
We model the distortion of large-scale cross-correlation function,
⇠g1g2(r?, rk), where r? and rk are the g1-g2 pairs separation
along and across the line-of-sight, as described by Kaiser (1987)
and Hamilton (1997):

⇠0g1g2(r?, rk) = bBbF [⇠0(s)P0

(µ)+ ⇠
2

(s)P
2

(µ)+ ⇠
4

(s)P
4

(µ)] .
(15)

In the previous equation: µ = cos ✓, with ✓ angle between the pair
separation r and the line-of-sight while P`(µ) are the Legendre
Polynomials [P

0

= 0, P
2

= (3µ2 � 1)/2 and P
4

= (35µ4 �
30µ2

+ 3)/8]. The relations between ⇠`(s) and ⇠(r) are given by:

⇠
0

(s) =


1 +

1

3

(�B + �F ) +
1

5

�B�F

�
⇠(r) , (16)

⇠
2

(s) =


2

3

(�B + �F ) +
4

7

�B�F

�
[⇠(r)� ⇠(r)] , (17)

⇠
4

(s) =
8

35

�B�F


⇠(r) +

5

2

⇠(r)� 7

2

⇠(r)

�
, (18)

with

⇠(r) =
3

r3

Z r

0

⇠(r0)r02dr0,

⇠(r) =
5

r5

Z r

0

⇠(r0)r04dr0 .

Here �B = ⌦

0.6/bB and �F = ⌦

0.6/bF are the redshift space
distortion factors that include the large-scale coherent infall.
We then convolve our model ⇠0g1g2(r?, rk) with the pairwise dis-
tribution of random velocities, f(v), in order to obtain the redshift-
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Figure 6. Effect of different redshift distortions on cross-correlation function of the two populations of galaxies, g1- g2, calculated using Newtonian linear
perturbation theory. The top left panel shows the isotropic correlation function, the top right panel represents the effect of gravitational redshift, the bottom left
panel illustrates the effect of peculiar velocities and the bottom right panel shows the sum of the two.

between ⇠
`

(s) and ⇠(r) are:

⇠
0

(s) =


1 +

1

3

(�
B

+ �
F

) +

1

5

�
B

�
F

�
⇠(r) , (19)

⇠
2

(s) =


2

3

(�
B

+ �
F

) +

4

7

�
B

�
F

�
[⇠(r)� ⇠(r)] , (20)

⇠
4

(s) =
8

35

�
B

�
F


⇠(r) +

5

2

⇠(r)� 7

2

⇠(r)

�
, (21)

with

⇠(r) =
3

r3

Z
r

0

⇠(r0)r02dr0,

⇠(r) =
5

r5

Z
r

0

⇠(r0)r04dr0 .

Here �
B

= ⌦

0.6/b
B

and �
F

= ⌦

0.6/b
F

are the redshift space
distortion factors.
Using the previous equations, we convolve our model
⇠0
g1g2

(r?, rk) with the distribution function of random pair-
wise motions, f(v), in order to obtain the redshift-space
cross-correlation function:

⇠
g1g2

(r?, rk) =

Z 1

1
f(v)dv⇠0

g1g2

✓
r?, rk � cz

g

(r)� (1 + z)v
H(z)

◆
.

(22)
We assume that the random peculiar velocity distribution has an
exponential form (see Figure 5):

f(v) =
1

�
12

p
2

exp

✓
�
p
2|v|
�
12

◆
, (23)

MNRAS 000, 1–8 (2015)

On the treatment of the asymmetry in the galaxy correlation function 5

Figure 6. Effect of different redshift distortions on cross-correlation function of the two populations of galaxies, g1- g2, calculated using Newtonian linear
perturbation theory. The top left panel shows the isotropic correlation function, the top right panel represents the effect of gravitational redshift, the bottom left
panel illustrates the effect of peculiar velocities and the bottom right panel shows the sum of the two.
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with
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3

r3

Z
r

0

⇠(r0)r02dr0,
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Here �
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= ⌦

0.6/b
B

and �
F
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0.6/b
F

are the redshift space
distortion factors.
Using the previous equations, we convolve our model
⇠0
g1g2

(r?, rk) with the distribution function of random pair-
wise motions, f(v), in order to obtain the redshift-space
cross-correlation function:

⇠
g1g2

(r?, rk) =

Z 1

1
f(v)dv⇠0

g1g2
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We assume that the random peculiar velocity distribution has an
exponential form (see Figure 5):

f(v) =
1

�
12

p
2

exp

✓
�
p
2|v|
�
12

◆
, (23)
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Solar, atmospheric, reactor, and accelerator neutrinos have
provided compelling evidence for the existence of neutrino oscil-
lations, implying non-zero neutrino masses. However, oscillation
experiments are not sensitive to the absolute neutrino mass scale,
they only provide information on the squared mass differences. In
the minimal three neutrino scenario, the allowed region for the solar
mass splitting is �m2

12

' 7.5⇥10�5 eV2 and for the atmospheric
mass splitting is |�m2
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|' 2.45⇥ 10�3 eV2. Thus we have to two
possible hierarchical scenarios, normal and inverted. In the normal
hierarchy the minimum sum of neutrino mass is
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m⌫ & 0.06 eV

and in the inverted hierarchy is
P

m⌫ & 0.10 eV.
Cosmology provides a tool to test the absolute scale of neu-

trino masses. In particular, current cosmological upper bounds onP
m⌫ combining CMB with different observations of the large

scale structure of the Universe range from 0.12 eV to 0.13 eV at
95% CL . These limits are extremely close to the predictions from
neutrino oscillation experiments in the inverted hierarchical spec-
trum.

In this work we focus on the effect of the neutrino masses in
galaxy clustering, combining the full Planck CMB mission 2015
temperature and polarization data with the full 3D galaxy power
spectrum shape from the Baryon Oscillation Spectroscopic Survey
(BOSS) Data Release 9 (DR9). We assume a ⇤CDM model with
two massless neutrino state and a massive one. We compare our
bounds to the limits obtained when considering two massive neu-
trino and three degenerate massive neutrino scenario. We also study
the neutrino mass splitting implied by the neutrino oscillations to
estimate if current cosmological data can help to distinguish the
neutrino mass hierarchy.
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Figure 5. Effect of different redshift distortions on cross-correlation function of the two populations of galaxies, g1 � g2, calculated using Newtonian
perturbation theory. The top left panel shows the isotropic correlation function, the top right panel represents the effect of gravitational redshift, the bottom left
panel illustrates the effect of peculiar velocities and the bottom right panel shows the sum of the two.

ies, which we assume to be independent of pair separation. Based
on simulation results, we choose to set �

12

= 300 km/s.
For our model we consider the two populations of galaxies

of previous section with bB = 2.25 and bF = 2.03 for g1 and
g2 galaxies respectively. We first use eq. 12 to distort the cross-
correlation function of g1 and g2 galaxies without considering the
effect of redshift space distortion. We then apply only the pecu-
liar velocities term and finally we combine the two terms to study
the distortions in ⇠g1g2(r?, rk). Figure 5 shows the redshift dis-
tortions on the cross-correlation function, ⇠(r?, rk), of the g1 and
g2 galaxies as a function of pairs separation along and across the
line-of-sight.

Notice that in the absence of distortions (top left panel), the
contours appear circular due to the isotropy of the cross-correlation

function. The top right panel shows the effect of gravitational red-
shifts multiplied by a factor of 300 for illustrative purpose since this
effect is extremely small. We can see that the gravitational redshift
leads to a downward displacement of the cross-correlation func-
tion contours introducing an asymmetry about the r? axis. In the
bottom left panel we consider only the effect of peculiar velocities
and we can note a stretching of the contours at small-scales in the
direction of rk (the Finger of God effect) and a squashing of the
contours at large scale due to the linear infall (the Kaiser effect).
Notice that, unlike the gravitational redshift effect, peculiar veloc-
ities distortion result symmetric with respect the r? axis. Finally
the bottom right panel shows the effect of the inclusion of both the
distortions terms that consists in a flattening of the contour due to
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In order to study the dipole and shell estimator, we decompose the 2d cross-correlation 
functions into different moments using Legendre polynomials: 
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Figure 7. Correlation function for ` = 0, 2, 4 calculated using b
B

= 2.25
and b

F

= 2.03. REPLACE IT, put monopole, dipole, quadrupole.

For our model we consider the two populations of galaxies
of previous section with a magnification bias of b

B

= 2.25 and
b
F

= 2.03 for g1 and g2 galaxies respectively. Figure 6 shows the
redshift distortions on the cross-correlation function, ⇠(r?, rk), of
the g1 and g2 galaxies as a function of pairs separation along and
across the line of sight.

Notice that in the absence of distortions (top left panel), the
contours appear circular due to the isotropy of the cross-correlation
function. The top right panel shows the effect of gravitational red-
shifts multiplied by a factor of 2000 for illustrative purpose since it
is extremely small. We can see that the gravitational redshift leads
to a downward displacement of the cross-correlation function con-
tours resulting in a blue shift of the galaxies with low-mass, g2,
with respect to the galaxies with high-mass, g1 . In the bottom left
panel we consider only the effect of peculiar velocities and we can
note a stretching of the contours at small scales in the direction of
rk and a squashing of the contours at large scale due to the linear
infall (the Kaiser effect). Finally the bottom right panel shows the
effect of the inclusion of both the distortions terms that consists in a
flattening of the contour due to the Kaiser effect and in an increase
of asymmetry due to gravitational redshifts.

We now use eq. 22 in order to obtain the dipole and the
shell estimator. We first decompose the cross-correlation function
⇠
g1g2

(r?, rk), into different modes as follows:

⇠
`

(r) =
2`+ 1

2

Z
1

0

⇠
g1g2

(r?, rk)P`

(cos ✓)d cos ✓ , (24)

in which P
`

(cos ✓) are the Legendre polynomials and ` = 0, 1, 2
correspond to the monopole,dipole and quadrupole.
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the g1 and g2 galaxies as a function of pairs separation along and
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shifts multiplied by a factor of 2000 for illustrative purpose since it
is extremely small. We can see that the gravitational redshift leads
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tours resulting in a blue shift of the galaxies with low-mass, g2,
with respect to the galaxies with high-mass, g1 . In the bottom left
panel we consider only the effect of peculiar velocities and we can
note a stretching of the contours at small scales in the direction of
rk and a squashing of the contours at large scale due to the linear
infall (the Kaiser effect). Finally the bottom right panel shows the
effect of the inclusion of both the distortions terms that consists in a
flattening of the contour due to the Kaiser effect and in an increase
of asymmetry due to gravitational redshifts.

We now use eq. 22 in order to obtain the dipole and the
shell estimator. We first decompose the cross-correlation function
⇠
g1g2

(r?, rk), into different modes as follows:

⇠
`

(r) =
2`+ 1

2

Z
1

0

⇠
g1g2

(r?, rk)P`

(cos ✓)d cos ✓ , (24)
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correspond to the monopole,dipole and quadrupole.
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Figure 6. Amplitude of the monopole (blue lines), quadrupole (green lines),
hexadecapole (magenta line) and dipole (red line) as a function of the sep-
aration r. The solid lines correspond to the Kaiser effect only while the
dashed lines refer to the combination of redshift-space distortion and grav-
itational redshift effect. The dipole is multiplied by a factor of 300 to make
it visible. Notice that all the multipoles show a second peak due to the BAO
signal.

the redshift space distortion effect and in an increase of asymmetry
due to gravitational redshifts.

4.2 Extracting Multipoles

We now estimate multipoles of order ` by decomposing the cross
correlation function, ⇠g1g2(r?, rk), into different modes using Leg-
endre polynomials and integrating over all values of µ:
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⇠g1g2(r?, rk)P`(cos ✓)d cos ✓ . (21)

In this equation P`(cos ✓) are the Legendre polynomials with ` =

0, 1, 2. In Figure 6 we plot the amplitude of different multipoles as
a function of the pair separation r calculated at redshift z = 0.57
and for bB = 2.25 and bF = 2.03. The solid lines show the
redshift-space distortion effect and the dashed lines illustrate the
combination of redshift space distortion and gravitational redshift
effect. Moreover the blue lines refer to the monopole, the green
lines to the quadrupole, the magenta lines to the hexeadecapole
and and the red line to the dipole. If there are no distortions, the
cross-correlation function results isotropic and it is described by the
monopole. Redshift-space distortions introduce an anisotropy in
the correlation function which is sensitive to the orientation of the
galaxies in the pair with respect to the observer. This leads the cor-
relation function to contain a monopole, a quadrupole and an hex-
adecapole. Finally the gravitational redshift breaks the symmetry of
the cross-correlation function and generate a dipole. This asymme-
try has already been discussed by different authors, see McDonald
(2009), Yoo et al. (2012), Croft (2013), Bonvin (2014) and Bonvin
et al. (2014). We multiply the dipole by a factor of 300 to better
see this effect in comparison to the other ones. As we can see from
the figure the amplitude of the dipole is smaller compared to the
other multipoles. This means that a measurement of the asymme-
try in the correlation faction could be difficult. Unlike the dipole
calculated using General Relativity perturbation theory, the dipole
computed using Newtonian perturbation theory results positive at
small-scales r < 10 Mpc/h.

Figure 7. The shell estimator zshell
g

(eq. 11) as a function of the separation r
obtained using Newtonian perturbation theory with (green line) and without
(blue line) considering peculiar velocities.

Figure 8. The shell estimator as a function of r computed after subtracting
an offset of 0.5, 1 and 2 km/s to the zg component of the redshift.

.

4.3 Estimating the shell estimator

We use equation 11 to compute the asymmetry induced by the grav-
itational redshift. Figure 7 shows the shell estimator as a function
of the pair separation without and with the inclusion of peculiar
velocities. We can see that the results without peculiar velocities
are very small but in both of cases the curve is positive at small-
scales (r < 20 Mpc/h) and at scales larger than 100 Mpc/h. If we
subtract an offset of 0.5, 1 and 2 km/s to the zg component of the
redshift before using it to compute the shell estimator, we can note
from Figure 8 that zshell

g

becomes negative at small-scales showing
the blueshift of galaxy pairs at small-scales that becomes smaller
at large-scales. Figure 9 shows a comparison ofzshell

g

using the two
different approaches and considering a bias difference of 0.22. The
blue curve includes only the gravitational redshift and RSD effects
while the red line includes all the relativistic effects that distort the
cross-correlation function, such as light cone and beaming effect.
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Figure 9. The shell estimator computed from eq. 11 using General Relativ-
ity (red line) and Newtonian perturbation(blue line) theory oproach.

.
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relation function to contain a monopole, a quadrupole and an hex-
adecapole. Finally the gravitational redshift breaks the symmetry of
the cross-correlation function and generate a dipole. This asymme-
try has already been discussed by different authors, see McDonald
(2009), Yoo et al. (2012), Croft (2013), Bonvin (2014) and Bonvin
et al. (2014). We multiply the dipole by a factor of 300 to better
see this effect in comparison to the other ones. As we can see from
the figure the amplitude of the dipole is smaller compared to the
other multipoles. This means that a measurement of the asymme-
try in the correlation faction could be difficult. Unlike the dipole
calculated using General Relativity perturbation theory, the dipole
computed using Newtonian perturbation theory results positive at
small-scales r < 10 Mpc/h.
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obtained using Newtonian perturbation theory with (green line) and without
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Figure 8. The shell estimator as a function of r computed after subtracting
an offset of 0.5, 1 and 2 km/s to the zg component of the redshift.
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4.3 Estimating the shell estimator

We use equation 11 to compute the asymmetry induced by the grav-
itational redshift. Figure 7 shows the shell estimator as a function
of the pair separation without and with the inclusion of peculiar
velocities. We can see that the results without peculiar velocities
are very small but in both of cases the curve is positive at small-
scales (r < 20 Mpc/h) and at scales larger than 100 Mpc/h. If we
subtract an offset of 0.5, 1 and 2 km/s to the zg component of the
redshift before using it to compute the shell estimator, we can note
from Figure 8 that zshell

g

becomes negative at small-scales showing
the blueshift of galaxy pairs at small-scales that becomes smaller
at large-scales. Figure 9 shows a comparison ofzshell

g

using the two
different approaches and considering a bias difference of 0.22. The
blue curve includes only the gravitational redshift and RSD effects
while the red line includes all the relativistic effects that distort the
cross-correlation function, such as light cone and beaming effect.
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Figure 9. The shell estimator computed from eq. 11 using General Relativ-
ity (red line) and Newtonian perturbation(blue line) theory oproach.
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cross-correlation function results isotropic and it is described by the
monopole. Redshift-space distortions introduce an anisotropy in
the correlation function which is sensitive to the orientation of the
galaxies in the pair with respect to the observer. This leads the cor-
relation function to contain a monopole, a quadrupole and an hex-
adecapole. Finally the gravitational redshift breaks the symmetry of
the cross-correlation function and generate a dipole. This asymme-
try has already been discussed by different authors, see McDonald
(2009), Yoo et al. (2012), Croft (2013), Bonvin (2014) and Bonvin
et al. (2014). We multiply the dipole by a factor of 300 to better
see this effect in comparison to the other ones. As we can see from
the figure the amplitude of the dipole is smaller compared to the
other multipoles. This means that a measurement of the asymme-
try in the correlation faction could be difficult. Unlike the dipole
calculated using General Relativity perturbation theory, the dipole
computed using Newtonian perturbation theory results positive at
small-scales r < 10 Mpc/h.

Figure 7. The shell estimator zshell
g

(eq. 11) as a function of the separation r
obtained using Newtonian perturbation theory with (green line) and without
(blue line) considering peculiar velocities.

Figure 8. The shell estimator as a function of r computed after subtracting
an offset of 0.5, 1 and 2 km/s to the zg component of the redshift.
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4.3 Estimating the shell estimator

We use equation 11 to compute the asymmetry induced by the grav-
itational redshift. Figure 7 shows the shell estimator as a function
of the pair separation without and with the inclusion of peculiar
velocities. We can see that the results without peculiar velocities
are very small but in both of cases the curve is positive at small-
scales (r < 20 Mpc/h) and at scales larger than 100 Mpc/h. If we
subtract an offset of 0.5, 1 and 2 km/s to the zg component of the
redshift before using it to compute the shell estimator, we can note
from Figure 8 that zshell

g

becomes negative at small-scales showing
the blueshift of galaxy pairs at small-scales that becomes smaller
at large-scales. Figure 9 shows a comparison ofzshell

g

using the two
different approaches and considering a bias difference of 0.22. The
blue curve includes only the gravitational redshift and RSD effects
while the red line includes all the relativistic effects that distort the
cross-correlation function, such as light cone and beaming effect.

MNRAS 000, 1–9 (2015)

Shell estimator

8 Giusarma et al.

Figure 9. Comparison between the shell estimator computed using New-
tonian perturbation theory (red line) and quasi-Newtonian approach (blue
line) and considering a bias difference of 0.66. We also show the results
(the magenta and grey lines) obtained after subtracting an offset of 1 and 2
km/s to the zg component of the redshift in order to mimic the gravitational
redshift contribution from the galaxy.

bias difference of 0.22 as computed in Alam et al. (2017b). Notice
that the main different between the two lines of Figure 8 is that the
blue curve includes only the gravitational redshift and RSD effects,
while the red line includes all the relativistic effects that distort the
cross-correlation function, such as light cone and Doppler effects.
We can see that Newtonian perturbation theory (blue line) describes
well the gravitational redshift on small non-linear scales while Gen-
eral Relativity perturbation theory (red line) is able to predict the
relativistic effects on large linear scales.

In Figure 9 we also compare our results of the shell estima-
tor obtained using Newtonian perturbation theory (blue line), with
those obtained in Zhu et al. (2017) using a quasi-Newtonian ap-
proach with N-body simulations (red line). In both of cases we
consider a bias difference of the two galaxy populations of 0.66
as computed by Zhu et al. (2017). Notice that the sign of zshell

g

is
opposite on small scales. In particular it is negative when we use the
quasi-Newtonian approach, showing a relative blueshift for galaxy
pairs, and it is positive when we use Newtonian perturbation the-
ory approach. On the other side, on large scales the shell estimator
tends to zero in both of the approaches. The different behaviour on
small scales is due to the fact that in N-body simulation we also
include the information of the structure of the potential well on
galactic and halo scales and we consider a scale-dependence of the
bias of the two galaxy sub-samples, while in Newtonian perturba-
tion theory approach we assume a scale-independent bias. In order
to mimic the gravitational redshift contribution from the galaxy, we
subtract an offset of 1 and 2 km/s to the zg component of the red-
shift (eq. 12) before using it to compute the shell estimator, zshell

g

.
We can see from Figure 9 (green and magenta lines) that, using this
procedure, we recover a negative trend on small-scales in agree-
ment with Zhu et al. (2017) results. This shows that the shell esti-
mator is quite sensitive to the small scales.

5 DISCUSSION

In the past years, relativistic distortions in large-scale structure have
drawn a lot of interest in cosmology. This effect, together with

the wide-angle and evolution effects, distorts the observed distri-
bution of galaxies inducing line-of-sight asymmetries in the cross-
correlation function of two galaxy populations. All of these ef-
fects have been studied in various works (McDonald 2009; Yoo
et al. 2009, 2012; Yoo & Zaldarriaga 2014; Croft 2013; Bonvin
2014; Bonvin et al. 2014) and have been observed for the first
time in galaxy clusters by Wojtak et al. (2011). These distortions
can be quantified in two ways: using the dipole moment in the
cross-correlation function and the shell estimator. Gaztanaga et al.
(2017) have measured the dipole and shell estimator in the cross-
correlation function of bright and faint galaxies in the LOWz and
CMASS samples of the BOSS DR10 survey and they showed
that the relativistic distortions, which include the gravitational red-
shift effect, are not detectable in this survey of galaxies. Differ-
ently, Alam et al. (2017b) have discussed the different relativistic
effects of two populations of galaxies and used the BOSS DR12
CMASS galaxy sample to measure these asymmetries. In particu-
lar, they detect the amplitude of relativistic asymmetry at the sig-
nificance level of 1.9�, 2.5� and 1.7� in the r, i and z bands re-
spectively using the shell estimator and of 2.3� ,0.9�, 2.7�, 2.8�
and 1.9� in the u, g, r, i and z bands respectively, using the dipole
moment. These measurements dominate especially on small scales,
around 10 Mpc/h. Zhu et al. (2017) have used a quasi-Newtonian
approach, with N-body simulations, to predict the small asymme-
tries in the cross-correlation function of two galaxy different pop-
ulations and they found that the dominant contribution in the shell
estimator is due to the gravitational redshift effects.

In this paper, we have analyzed two different approaches in
order to study the effects which induce line-of-sight asymmetries
in the cross-correlation function of two populations of galaxies, fo-
cusing on small and large scales (0 < r < 150 h/Mpc). We are par-
ticularly interested in the relativistic contributions which include
the effect of gravitational redshift. We have computed the two-
point cross-correlation function using General Relativity perturba-
tion theory and Newtonian perturbation theory. Following Bonvin
et al. (2014) and Gaztanaga et al. (2017), in Sec. 2 we have intro-
duced the dipole for the relativistic and wide-angle effects obtained
using the General Relativistic approach and we have also defined
the shell estimator to quantify the line-of-sight anisotropy in the
cross-correlation function in velocity units. In Sec. 3 we have com-
puted the dipole and shell estimator for a bright and faint popula-
tion of galaxies using the effective redshift of BOSS DR12 CMASS
sample of galaxies and assuming different values for the biases. We
noticed that the sign of the two contributions depends on the biases
difference, in particular a positive difference leads the relativistic
effect to be dominant over the wide-angle on all scales, Figures 2
and 3 . Moreover, as already pointed out by Gaztanaga et al. (2017),
we have noted that General Relativity perturbation theory is able to
predict the two effects on large linear scales (> 10 Mpc/h), but on
small-scales the same effects, especially the gravitational redshift
one, are canceled out, showing that this approach is less accurate
when considering non-linear scales. In Sec. 4 we have studied the
distortions of the galaxy cross-correlation function using the New-
tonian Perturbation theory approach. In particular we have explored
the distortion in the cross-correlation function of two galaxy pop-
ulations induced by gravitational redshift and peculiar velocities,
before separately and then combined. Figure 5 shows the results
in redshift-space, we noticed that the effect of gravitational red-
shift is to shift the contours downwards, corresponding to a rela-
tive blueshift for the g2 (low-mass) galaxies with respect to the g1
(high-mass) ones, while the effect of peculiar velocities is a squash-
ing of the contours on large-scale (Kaiser effect) and a small-scale
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Conclusions
✓Our observables are affected by relativistic effects that include 

gravitational redshifts.
✓Relativistic effects induce asymmetries in the cross-correlation 

function.
✓By measuring these asymmetries we can isolate the relativistic 

effects.
✓ General Relativistic perturbation theory approach makes 

prediction for relativistic clustering on large, linear scales. 
✓Newtonian perturbation theory approach makes prediction on 

small, non linear scales.
✓There exist important uncertainties in the theoretical predictions, 

such as structures on galactic scales, that is necessary to model 
in order to explore these effects.
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Quasi-Newtonian approach with N-body simulation to model 
non-linear effect at small scales. 

Hongyu Zhu et al., MNRAS 2017

2

G = 4.30071⇥10�9 (Mpc km)/(sec M�) is the Newtonian constant of gravitation
in solar mass, c = 299792.458 km/sec is the speed of light and:

H(z) = 100
p
⌦M(1 + z)2 + ⌦⇤ (4)

where z=0.57, ⌦M = 0.3149 and ⌦⇤ = 0.6851. In eq. 2, ⇠g1⇢ and ⇠g2⇢ are the g1
and g2 galaxy-mass cross-correlation functions defined as:

⇠g1⇢(x)� ⇠g2⇢(x) = (bB � bF )⇠0(r) , (5)

where ⇠0(r) is (for ` = 0):

⇠`(r) =
i�`

2⇡2

Z 1
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j`(kr)P`(k)k
2dk , (6)

and:

P`=0(k) =
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�
P (k) . (7)

P (k) comes from the file wmap pk 0.57.dat , �B = ⌦0.6
M /bB, �F = ⌦0.6

M /bF ,
bB = 2.25 and bF = 2.03.
P (k) is defined as:

P (k) =

✓
D1(a)

D1(a = 1)

◆2

T (k)2As

✓
k

k?

◆ns�1

, (8)

where ns = 0.96, k? = 0.05h/Mpc, As = 2.19910�9, and:

T (q) =
ln[1 + 2.34q]

2.34q

⇥
1 + 3.89q + (16.2q)2 + (5.47q)3 + (6.71q)4

⇤�0.25
, (9)

in which q = k/� h Mpc�1 and � = ⌦Mh. Moreover D1(a) is the growth factor
defined as follow:

D1(a) =
3⌦MH(a)

2H0

Z a

0

da0

(a0H(a0)/H0)3
, (10)

in which a = 1/(1 + z) and H(a) is given by eq. 4.
To verify if everything works:

• The plot for D1(a)shouldbe :

czg = v ⇡ gh

c
= 7.5⇥ 10�7 m/s (11)

bB = 2.57 and bF = 1.91
bB = 2.36 and bF = 1.46
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relativistic dipole at all redshifts and scales. In Fig. 9 the
ratio of the corrected standardþ lensing dipoles over
the relativistic dipole is plotted in dashed red. With this
correction, at d ¼ 50h−1 Mpc the contamination amounts
to only 5% at redshift zB ¼ 0.25, 9% at zB ¼ 0.5, 15% at
zB ¼ 1 and 29% at zB ¼ 2. Hence this correction greatly
improves the precision with which one can extract the
relativistic contribution from the dipolar modulation. Note
that this correction is completely model independent. It
does not require any modelling of the density evolution or
the bias evolution. It only necessitates a measurement of
the quadrupole of the bright and faint populations sepa-
rately. The exact same correction can be applied to the
octupole (with opposite sign) since it contains the same
wide-angle term, first term in Eq. (53). In Fig. 10 the red
dashed line represents the standard octupole after having
corrected for the wide-angle effect. This correction is even
more effective for the octupole than for the dipole since
the other terms in the octupole are strongly subdominant
with respect to the wide-angle effect.

2. Removing the evolution effects

To go further and correct for the other important term in
the dipole; i.e., the evolution term in the last line of Eq. (52)
is more involved. The shape of this term is given by μ0ðdÞ

and is therefore the same as the shape of the monopole term
in Eq. (50). The amplitude however is more complicated to
model since it is given by ðbBb0F − b0BbFÞD2

1 and requires a
knowledge of the bias evolution.
One possibility that can help us determine the bias

evolution is to look at asymmetries in the autocorrelation
function of the bright and the faint population separately.
We argued in Sec. I that asymmetric correlation functions
can only be found by cross-correlating two populations of
galaxies. The validity of this statement depends however on
what we call an asymmetry and how the measurement is
done. An antisymmetry under the exchange of the position
of two galaxies in the pair can obviously only exist if one
cross-correlates two populations. However, an antisymme-
try around a fixed galaxy can exist even in the case where
one has only a single galaxy population. This asymmetry
was first discussed by [34].
Suppose we select galaxies situated at a redshift z%

(corresponding to a radial coordinate r% on our past light-
cone). Let us call these galaxies the central galaxies. We
then correlate the central galaxies with galaxies behind
them (i.e. at a higher redshift) with r ¼ r% þ Δr, and with
galaxies in front of them (i.e. at a lower redshift) with
r ¼ r% − Δr. It is important that in this process, z% for the
central galaxies is held fixed. The correlation function
ξðr%;r%þΔr;jΔx⊥jÞ needs not equal ξðr%; r% − Δr; jΔx⊥jÞ,
for some transverse separation jΔx⊥j, and radial separation
Δr. Their difference arises entirely from the evolution
terms, and not from the relativistic terms, that cancel out for
one population of galaxies. This shows that the asymmetry
around the central galaxies can be used to isolate evolution
effects. Let us emphasize that to do so, one needs to be
careful in the averaging procedure. It is essential to fix the
position of the central galaxies and only average over the
other galaxies. If one also averages over the redshift of
the central galaxies within the same volume as the other
galaxies, the evolution asymmetry is washed out, for in that
case, all galaxies are treated on equal footing and there
cannot be any asymmetry.
Denoting by r% the fixed position of the central galaxies,

one finds a dipolar modulation of the form

ξ1pop:dip ¼ 2AD1
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FIG. 11 (color online). The various contributions of Eq. (52)
to the standard dipole: the first line wide-angle effect (red dotted),
the second line (magenta dash-dotted), the third line (green solid),
the fourth line (blue dashed) and the total (black solid). The top
panel is at zB ¼ 0.25 and the bottom panel at zB ¼ 1.
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relativistic dipole at all redshifts and scales. In Fig. 9 the
ratio of the corrected standardþ lensing dipoles over
the relativistic dipole is plotted in dashed red. With this
correction, at d ¼ 50h−1 Mpc the contamination amounts
to only 5% at redshift zB ¼ 0.25, 9% at zB ¼ 0.5, 15% at
zB ¼ 1 and 29% at zB ¼ 2. Hence this correction greatly
improves the precision with which one can extract the
relativistic contribution from the dipolar modulation. Note
that this correction is completely model independent. It
does not require any modelling of the density evolution or
the bias evolution. It only necessitates a measurement of
the quadrupole of the bright and faint populations sepa-
rately. The exact same correction can be applied to the
octupole (with opposite sign) since it contains the same
wide-angle term, first term in Eq. (53). In Fig. 10 the red
dashed line represents the standard octupole after having
corrected for the wide-angle effect. This correction is even
more effective for the octupole than for the dipole since
the other terms in the octupole are strongly subdominant
with respect to the wide-angle effect.

2. Removing the evolution effects

To go further and correct for the other important term in
the dipole; i.e., the evolution term in the last line of Eq. (52)
is more involved. The shape of this term is given by μ0ðdÞ

and is therefore the same as the shape of the monopole term
in Eq. (50). The amplitude however is more complicated to
model since it is given by ðbBb0F − b0BbFÞD2

1 and requires a
knowledge of the bias evolution.
One possibility that can help us determine the bias

evolution is to look at asymmetries in the autocorrelation
function of the bright and the faint population separately.
We argued in Sec. I that asymmetric correlation functions
can only be found by cross-correlating two populations of
galaxies. The validity of this statement depends however on
what we call an asymmetry and how the measurement is
done. An antisymmetry under the exchange of the position
of two galaxies in the pair can obviously only exist if one
cross-correlates two populations. However, an antisymme-
try around a fixed galaxy can exist even in the case where
one has only a single galaxy population. This asymmetry
was first discussed by [34].
Suppose we select galaxies situated at a redshift z%

(corresponding to a radial coordinate r% on our past light-
cone). Let us call these galaxies the central galaxies. We
then correlate the central galaxies with galaxies behind
them (i.e. at a higher redshift) with r ¼ r% þ Δr, and with
galaxies in front of them (i.e. at a lower redshift) with
r ¼ r% − Δr. It is important that in this process, z% for the
central galaxies is held fixed. The correlation function
ξðr%;r%þΔr;jΔx⊥jÞ needs not equal ξðr%; r% − Δr; jΔx⊥jÞ,
for some transverse separation jΔx⊥j, and radial separation
Δr. Their difference arises entirely from the evolution
terms, and not from the relativistic terms, that cancel out for
one population of galaxies. This shows that the asymmetry
around the central galaxies can be used to isolate evolution
effects. Let us emphasize that to do so, one needs to be
careful in the averaging procedure. It is essential to fix the
position of the central galaxies and only average over the
other galaxies. If one also averages over the redshift of
the central galaxies within the same volume as the other
galaxies, the evolution asymmetry is washed out, for in that
case, all galaxies are treated on equal footing and there
cannot be any asymmetry.
Denoting by r% the fixed position of the central galaxies,

one finds a dipolar modulation of the form

ξ1pop:dip ¼ 2AD1
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FIG. 11 (color online). The various contributions of Eq. (52)
to the standard dipole: the first line wide-angle effect (red dotted),
the second line (magenta dash-dotted), the third line (green solid),
the fourth line (blue dashed) and the total (black solid). The top
panel is at zB ¼ 0.25 and the bottom panel at zB ¼ 1.
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Gravitational redshifts 3011

Figure 1. Redshift distortions of the cross-correlation function of two populations of galaxies (high and low mass), using a halo model of galaxy clustering
(Section 2). We show the effect of peculiar velocities and gravitational redshifts separately (top right and bottom left panels, respectively) and together (bottom
right). The magnitude of the gravitational redshift component has been magnified by a factor of 500 in order to make its effect easily visible. (a) Real space.
(b) With grav. redshifts ×500. (c) With pec. vels. (d) With grav. redshifts ×500 and pec. vels.

!" = 0.74, and mass density parameter !m = 0.26. The cubic peri-
odic box side length was 1 h−1 Gpc, and the number of particles 7683

per realization, leading to a particle mass of 1.5 × 1011 h−1 M⊙.
The gravitational force resolution was 20 h−1 kpc, so that subhalo
structure is not well resolved (we return to this below).

The bound structure finder SUBFIND (Springel 2001) was used to
find galaxy-sized subhaloes. Because the current relevant redshift
surveys [e.g. Baryonic Oscillation Spectroscopic Survey (BOSS);
Ahn et al. 2012] are focused on massive galaxies, we make two dif-
ferent subhalo samples, one where subhaloes are above a mass limit
of 1013 h−1 M⊙ (64 particles) and the other above 3 × 1013 h−1 M⊙.

We compute the gravitational redshift zg of the central particle in
each subhalo, and assign that to be the zg associated with the galaxy
inside the subhalo. We have also tried averaging the gravitational
redshifts of all particles inside each subhalo instead. We find that
while this makes a small difference to the individual zg values it does
lead to problems with the pairwise differences between satellite and
central galaxies. This is because while the central part of a central
subhalo may be in a deeper potential well than nearby satellites, av-
eraging particle zg values over the entirety of the dark matter subhalo
decreases the redshift and can often lead to a blueshift with respect

to nearby small satellites. This would not happen observationally as
the stellar parts of galaxies are more centrally concentrated than the
dark matter. We therefore account for this by using only the central
particle to assign zg to the galaxy.

As the gravitational potential is very smooth, the distribution of
gravitational redshifts of galaxies will be also. It is instructive to plot
a slice through the simulation to see the nature of the zg fluctuations
which we will be characterizing. We have done this in Fig. 2, which
shows a randomly chosen slice through the simulation volume. We
show zg on a colour scale with galaxy mass denoted by symbol size.
We can see that the most massive galaxies are the most clustered,
as expected, and also that the galaxies in the deepest potential well
(visible near the centre of the slice) are also the most massive. The
length scale of the visible zg fluctuations is extremely large, with the
main potential well covering most of the h−1 Gpc volume. We will
be seeking to measure this structure by measuring zg differences
between pairs of galaxies on scales up to 100 h−1 Mpc. On average
the most massive galaxies will tend to be more clustered and have
more positive redshifts (red in Fig. 2) and this is what we will
measure through the effect of this small shift relative to the nearby
lower mass galaxies.
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Figure 3. The 2d 2-pt cross-correlation of the g1 � g2 galaxy samples for
different relativistic effects in the redshift space (plots made using one sim-
ulation realization). We exaggerate all the effect by multiplying them with a
constant factor of 250. Top left: With Grav. redshifts ⇥250. Top right: With
TD effect ⇥250. Bottom left: With SRB effect ⇥250. Bottom right: With
LC effect ⇥250. All four effects are computed at z = 0.57 with the mass
threshold for the g1 (high mass) sample being M

subhalo

> 1013 M�/h.
In each panel, the colormap and contours show the distortion of 2-pt cross-
correlation function. We have chosen not to plot the LDP and the wide-angle
effects here, as LDP is quite similar in effect to SRB (see Fig. 4) and the
wide-angle effects are computed independently of the simulations.

tion. The mathematical form is Eqn. 12:

zshell
(s) =

H
|r↵��s|<�sP
↵2g1,�2g2

(z↵ � z�)wbeam,↵wbeam,�

|r↵��s|<�sP
↵2g1,�2g2

w
beam,↵wbeam,�

, (12)

which is also mentioned in our companion paper (Alam et al.
2016a). This estimator was also used by Gaztanaga et al.
(2015) and Alam et al. (2016a). In the measurement with
SDSS/BOSS/CMASS samples, the shell estimator is computed
from the correlation function and it takes the form of

zshell
(s) =

H
⇡R

0

d✓0s0k [1 + ⇠ (s0, ✓0)]

⇡R

0

d✓0 [1 + ⇠ (s0, ✓0)]
, (13)

where the integral over ✓0 averages the line-of-sight pair differ-
ence s0k in each radial bin. Note that zshell is zero in real space
and zshell

(s) ! 0 as s ! 0 even in redshift space. Fig. 4 shows
the contributions to the shell estimator from the four different rela-
tivistic effects. Among them, the gravitational redshift effect is the
most significant one, causing a relative blueshift for galaxy pairs
on small scales, which peaks when s ⇠ 8 Mpc/h. The LDP term is

the largest in magnitude on scales s > 20 Mpc/h. The SRB effect
behaves similarly to the LDP term but with a smaller magnitude.
Also, the LDP and SRB effects do change sign, at s ⇠ 8 Mpc/h –
there is a relative blueshift at small scales and a relative redshift at
large scales. Although there is a quite complex interaction between
galaxy spectra and SRB (see Alam et al. 2016b), one can approxi-
mately explain this pattern as being due to infall on large scales and
virialized motions on small scales. The mean relative line-of-sight
peculiar velocity of pairs of galaxies with given redshift separa-
tion s will therefore change sign as we move between these two
regimes, and this leads to a change of sign in zshell.

The next effects in order of significance seen in Fig. 4 are the
TD and the LC effects. They result in a relative redshift at all scales
since high mass galaxies move more slowly on average than the
lower mass member of a pair. The least significant effects are the
cross terms Hzvz/c, zgz discussed in Cai et al. (2016). Our g1�g2
galaxy cross-correlation almost shows no sign of these two effects.
This is expected as both subsets g1 and g2 contain equal numbers
of galaxies, which leads to small correlations in z, vz and gz when
averaging over populations of relatively similar objects. These ef-
fects are even smaller that for the cluster-galaxy cross-correlation
case simulated by Cai et al. (2016), where they were also not sig-
nificant compared to the gravitational redshift.

We also show in Fig. 4 the combined effect (“all”) which we
obtain by adding each of five effects (the gravitational redshift, TD,
SRB, LC and LDP) to the subhalo positions in redshift space. The
curve labelled “add up” is the sum of these individual five effect
curves (computed by measuring zshell from galaxy catalogues with
only one relativistic effect included at a time). The two curves (“all”
and “add up”) agree quite well, showing that the effects can be
added linearly, even on these relatively small scales. However, we
find taking account of two cross terms only adds noise to the overall
signal. Therefore we only consider the five effects mentioned while
excluding those two cross terms. The amplitude of zshell while in-
cluding all the effects is dominated by the gravitational redshift ef-
fect on small scales and the LDP effect on large scales (s > 30

Mpc/h).

3.5 Increasing the signal to noise ratio of the simulation
predictions

As we mentioned in Sec. 3.3 and Sec. 3.4, both the dipole and the
shell estimator are capable of quantifying the signal due to rela-
tivistic effects (the antisymmetric part of the cross-correlation func-
tion could also be used- see e.g., Iršič et al. 2016). We choose the
shell estimator for three reasons. First, the shell estimator shows
the signal in km/s units, which serves as a direct way to express
line-of-sight redshift (velocity) distortions. Second, we have seen
in Sec. 2 that the asymmetry signal on small scales is dominated
by the gravitational redshift, and this has already been quantified
using the very similar gravitational redshift profile in several pub-
lished works on galaxy clusters.

A third and more practical reason to prefer shell estimator has
to do with the limitations of our simulations. Since our simula-
tions are only 1 (Gpc/h)3 in volume the signal we measure will
be quite noisy due to the intrinsically asymmetric shapes of large-
scale structures not being fully averaged out in the cross-correlation
function. In order to reduce the relative effect of noise we boost
each of the relativistic effects by multiplying the input peculiar ve-
locity of each halo by multiplication factor, and then account for
the multiplication factor in the final measurement. Ideally, using
different multiplication factors should only change the noise char-
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Figure 4. The shell estimator Eqn. 13, of clustering asymmetries computed
from the cross-correlation function of g1 � g2 galaxy samples. We show
the different relativistic effects individually: the gravitational redshift, TD,
SRB, LC, Hzvz/c, zgz and LDP. The curves are the average of results
from 8 realizations at z = 0.57 with masscut 3 ⇥ 1013 M�/h. The error
bars show the errors on the mean. The solid yellow line shows zshell for
the five significant effects (the gravitational redshift, TD, SRB, LC, LDP)
included at once and the dashed yellow line is the sum of the curves for
these five effects. Here a boost factor 100 is applied. How the boost factor
is chosen is discussed in Sec. 3.5

.

acteristics of the signal without affecting its amplitude and shape.
In practice, this is something which must be explored with a con-
vergence test, as described below.

We have performed the measurement of the shell estimator
and dipole moment for a series of different multiplication factors,
and the results are shown in Fig. 5. The top panel shows the shell es-
timator and bottom panel shows the dipole moment. The error bars
are obtained from the errors on the mean of 8 simulation realiza-
tion. We observe from the top panel that the prediction for the shell
estimator is largely independent of the factor used but the dipole
moment is highly sensitive to the factor. This behavior is likely
due to the fact that the definition of the shell estimator includes
a normalization in the denominator which balances the effect of
the boost factor, something which is not the case for the computa-
tion of the dipole moment. To be specific, both the numerator and
denominator in either Eqn. 12 or Eqn 13 will fluctuate somewhat
coherently and mostly cancel or reduce the non-linear effect when
boosting while the dipole moment will not. We do find that shell
estimator has some weak dependence on the multiplication factor,
and that this becomes most noticeable when the boost factor is in-
creased to 100 or more. When the boost factor is this large the rel-
ativistic effects change the line-of-sight separation by significantly
more than a bin size. This leads to a shifting of the minimum to
right and a dilution of the amplitude of the signal. We therefore de-
cide to use the boost factor with good signal to noise while making
sure that we are in a regime where the shell estimator is indepen-
dent of the boost factor. Examining the zshell signal in Fig. 5 close
to the minimum, we can see that a boost factor of 50 leads to a
statistical error bar of ⇠ 5%, and the systematic error from the be-
haviour of the convergence at low factors is similar or less than this.
We therefore choose a boost factor of 50 in this paper to make our
predictions for zshell.

Figure 5. The shell estimator and the dipole moment for different multi-
plication factors. The x-axis represents the pair separation in the log space.
The color and style schemes are the same for both panels. The circles with
the solid line (red), the squares with the dashed line (cyan), the triangles
with the dash- dotted line (green), the upside down triangles with the dotted
line (magenta), the pentagons with the solid line (yellow) and the diamonds
with the dashed line show the two estimators computed using multiplica-
tion factors of 10, 20, 30, 40, 50, and 100 respectively. In each case, the
peculiar velocities entering in to the calculation of relativistic effects were
multiplied by this factor, and then the measure statistic (zshell or dipole)
was divided by the same factor before plotting (see text). The error bars
are the errors on the mean of 8 simulation realizations. Note that the shell
estimator has a much weaker dependence since the normalization saturates
such dependence.

4 SIMULATING AN OBSERVED SAMPLE OF
GALAXIES

4.1 Galaxy bias

We can study the distribution of galaxies from both observations
and simulations since galaxies are used as tracers of the matter in
the Universe. Galaxies are “biased” tracers in the sense that the
physics of galaxy formation can influence the relationship between
galaxies and matter. The simplest parametrization of this relation-
ship, galaxy bias measures the difference between the spatial dis-
tribution of galaxies and the underlying dark matter density field. It
is defined as

�
g

= f(�
m

), (14)

here �
g

= ⇢
g

/⇢̄
g

� 1 represents the mean overdensity of galaxies
and similarly �

m

represents the mean overdensity of matter. The
function f(�

m

) depends on both scale and galaxy evolution. On
large scales, the galaxy bias is linear and takes the following form

b =
�
g

�
m

=

s
⇠
g

⇠
m

, (15)

where ⇠
g

and ⇠
m

are the 2-pt cross-correlation functions of galaxy-
matter and matter-matter respectively.

Our primary application of the work in this paper is a
prediction for the clustering asymmetry measured from the
SDSS/BOSS/CMASS redshift sample in our companion paper

MNRAS 000, 1–13 (2015)
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the monopole, dipole and quadrupole, respectively. We estimate
the linear bias b of a sample of galaxies by fitting the model
⇠theo
0

= b2⇠m
0

to the observed monopole from data. Convolution
Lagrangian Perturbation Theory (CLPT; Carlson et al. 2013) is
used to estimate the monopole of the matter correlation function
(⇠m

0

) assuming fiducial cosmology for z = 0.57. We also estimate
the dipole moment ⇠`=1

and use it as a means to detect asymmetry
in the cross-correlation function Gaztanaga et al. (2015).

4.4 Estimating the Covariance Matrix

Estimation of the covariance matrix of a summary statistic (such as
the cross-correlation function) is one of the most important steps
in a cosmological analysis. The covariance matrix of an observed
statistic is usually computed either by sub-sampling the data or by
using mock catalogues. Both methods have their limitations and
regime of validity. Generally speaking, the sub-sampling methods
over-estimate errors on small scale (Norberg et al. 2009) and are
difficult to use on large scales due to the limited volume of the ob-
served data. Conversely creating realistic mock catalogues in large
numbers and covering a large volume with high spatial resolution
requires huge computing resources. Therefore, mocks often use ap-
proximate simulations with lower spatial and temporal resolution
(e.g. White et al. 2014). This approach makes small scale cluster-
ing in the mocks inaccurate and hence covariance estimated from
mocks can only be used above a certain minimum scale decided by
details of the method.

Because our signal of interest is on small scales (r ⇠
3 � 20h�1Mpc) we adopt the subsampling approach. We use the
“delete one jackknife” algorithm (Shao 1986) to estimate the co-
variance matrix. We first split the data into 210 approximately equal
area regions (154 in the North Galactic cap and 56 in the South
Galactic cap) as shown in Figure 4. A realization of data is defined
by omitting one region at a time, which yields 210 realizations. We
measure the summary statistics, correlation function and shell esti-
mator for each realization. We then estimate the covariance matrix
of these summary statistics (ss) using

Ci,j =
N � 1

N

NX

jk=1

(ssjki � s̄si)(ss
jk
j � s̄sj). (9)

Here Ci,j represents the covariance between bin i and j, s̄s is the
mean of the jackknife realizations and the sum is over all the 210
jackknife realizations. Our smallest jackknife region has an angu-
lar diameter of ⇠ 4�, which translates to ⇠ 100 h�1Mpc. This
distance is much larger than largest scale we are using in our anal-
ysis.

4.5 Shell estimator: Estimating Asymmetry

As our primary measure of the redshift asymmetry in clustering
caused by relativistic effects, we use a shell-averaged estimator ap-
plied to the cross-correlation function. Croft (2013) proposed this
estimator to quantify the effects of gravitational redshift predicted
from in N -body simulations. The shell estimator is defined as fol-
lows:

zshellg (s) =

R ✓=⇡

✓=0

Hsk[1 + ⇠(s, ✓)]d✓
R ✓=⇡

✓=0

[1 + ⇠(s, ✓)]d✓
(10)

where sk is the angle of pair separation from line of sight. We can
see that zshellg measures the mean sk weighted by the cross corre-

Figure 5. The bias measured for each of the sub-samples used in our anal-
ysis using scales between 20 and 50 h�1Mpc. The red, blue, black and
green points represent bias of low-mass auto-correlation, high-mass auto-
correlation, low-high cross-correlation and full sample auto-correlation
functions, respectively. The subsamples are defined by each of the five pho-
tometric magnitudes (u, g, r, i, z) and also a random split. The r, i and z
samples show significantly different biases for low and high mass subsam-
ples.

lation function and is converted to km/s units through multiplica-
tion factor of H=100 (km/s) / (h�1Mpc). Other quantifications of
the relativistic asymmetry in clustering have been proposed, such
as the imaginary part of the power spectrum McDonald (2009),
the dipole Bonvin et al. (2014), and the anti-symmetric part of the
cross-correlation function Iršič et al. (2016). Here we focus on the
shell estimator, but also measure the dipole and compare conclu-
sions derived from both.

5 MEASUREMENTS, NULL TESTS AND SYSTEMATICS

We use the methodologies described in previous section to perform
our clustering measurements. In this section we present the mea-
surement of bias, the measurements of shell estimator and fitting
the model described in section 2. We also perform two null tests
and look at the sensitivity of our observed signal to the possible
systematic.

5.1 Measurements of Bias

The linear biases measured for our various samples are displayed
in Figure 5. The galaxy bias is measured using the monopole ⇠

0

(s)
as described in section 4.3. We use scales between 20h�1Mpc and
50h�1Mpc to measure bias. The bias of auto-correlation and cross-
correlation of different sub-samples created by splitting the sample
using all five photometric bands (u, g, r, i, z) and randomly are pre-
sented in the figure. The blue points show the biases of higher mass
samples, red points for lower mass samples and the black points
for the cross-correlation between the lower and higher mass sam-
ples. The bias of full sample is indicated by the green point. The
relativistic effects, dominantly the gravitational redshift, breaks the
line of sight symmetry of cross-correlation and is proportional to
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the dipole moment ⇠`=1

and use it as a means to detect asymmetry
in the cross-correlation function Gaztanaga et al. (2015).

4.4 Estimating the Covariance Matrix

Estimation of the covariance matrix of a summary statistic (such as
the cross-correlation function) is one of the most important steps
in a cosmological analysis. The covariance matrix of an observed
statistic is usually computed either by sub-sampling the data or by
using mock catalogues. Both methods have their limitations and
regime of validity. Generally speaking, the sub-sampling methods
over-estimate errors on small scale (Norberg et al. 2009) and are
difficult to use on large scales due to the limited volume of the ob-
served data. Conversely creating realistic mock catalogues in large
numbers and covering a large volume with high spatial resolution
requires huge computing resources. Therefore, mocks often use ap-
proximate simulations with lower spatial and temporal resolution
(e.g. White et al. 2014). This approach makes small scale cluster-
ing in the mocks inaccurate and hence covariance estimated from
mocks can only be used above a certain minimum scale decided by
details of the method.

Because our signal of interest is on small scales (r ⇠
3 � 20h�1Mpc) we adopt the subsampling approach. We use the
“delete one jackknife” algorithm (Shao 1986) to estimate the co-
variance matrix. We first split the data into 210 approximately equal
area regions (154 in the North Galactic cap and 56 in the South
Galactic cap) as shown in Figure 4. A realization of data is defined
by omitting one region at a time, which yields 210 realizations. We
measure the summary statistics, correlation function and shell esti-
mator for each realization. We then estimate the covariance matrix
of these summary statistics (ss) using

Ci,j =
N � 1

N

NX

jk=1

(ssjki � s̄si)(ss
jk
j � s̄sj). (9)

Here Ci,j represents the covariance between bin i and j, s̄s is the
mean of the jackknife realizations and the sum is over all the 210
jackknife realizations. Our smallest jackknife region has an angu-
lar diameter of ⇠ 4�, which translates to ⇠ 100 h�1Mpc. This
distance is much larger than largest scale we are using in our anal-
ysis.

4.5 Shell estimator: Estimating Asymmetry

As our primary measure of the redshift asymmetry in clustering
caused by relativistic effects, we use a shell-averaged estimator ap-
plied to the cross-correlation function. Croft (2013) proposed this
estimator to quantify the effects of gravitational redshift predicted
from in N -body simulations. The shell estimator is defined as fol-
lows:

zshellg (r) =

R ✓=⇡

✓=0

Hrk[1 + ⇠(r, ✓)]d✓
R ✓=⇡

✓=0

[1 + ⇠(r, ✓)]rdrd✓
(10)

where rk is the line of sight component of pair separation. We can
see that zshellg measures the mean rk weighted by the cross corre-
lation function and is converted to km/s units through multiplica-
tion factor of H=100 (km/s) / (h�1Mpc). Other quantifications of
the relativistic asymmetry in clustering have been proposed, such
as the imaginary part of the power spectrum McDonald (2009),
the dipole Bonvin et al. (2014), and the anti-symmetric part of the
cross-correlation function Iršič et al. (2016). Here we focus on the

Figure 5. The bias measured for each of the sub-samples used in our anal-
ysis using scales between 20 and 50 h�1Mpc. The red, blue, black and
green points represent bias of low-mass auto-correlation, high-mass auto-
correlation, low-high cross-correlation and full sample auto-correlation
functions, respectively. The subsamples are defined by each of the five pho-
tometric magnitudes (u, g, r, i, z) and also a random split. The r, i and z
samples show significantly different biases for low and high mass subsam-
ples.

shell estimator, but also measure the dipole and compare conclu-
sions derived from both.

5 MEASUREMENTS, NULL TESTS AND SYSTEMATICS

We use the methodologies described in previous section to perform
our clustering measurements. In this section we present the mea-
surement of bias, the measurements of shell estimator and fitting
the model described in section 2. We also perform two null tests
and look at the sensitivity of our observed signal to the possible
systematic.

5.1 Measurements of Bias

The linear biases measured for our various samples are displayed
in Figure 5. The galaxy bias is measured using the monopole ⇠

0

(s)
as described in section 4.3. We use scales between 20h�1Mpc and
50h�1Mpc to measure bias. The bias of auto-correlation and cross-
correlation of different sub-samples created by splitting the sample
using all five photometric bands (u, g, r, i, z) and randomly are pre-
sented in the figure. The blue points show the biases of higher mass
samples, red points for lower mass samples and the black points
for the cross-correlation between the lower and higher mass sam-
ples. The bias of full sample is indicated by the green point. The
relativistic effects, dominantly the gravitational redshift, breaks the
line of sight symmetry of cross-correlation and is proportional to
the difference in biases of the two sub-samples. Therefore we ex-
pect to see relatively smaller signal for u and g bands and relatively
larger signal for r, i and z bands. We also expect no line of sight
asymmetry in the cross-correlation using random split and the auto-
correlation of the full sample. These two cases are used as our null
tests.
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Figure 6. The measurement of shell estimator from SDSS CMASS sample. The five different panels show the shell estimator measured using cross-correlation
of sub-samples created by splitting the sample in two equal halves for each of u, g, r, i, z photometric bands. We detect the amplitude of relativistic asymmetry
by measuring bias difference at the level of 2.0� ,2.6� and 1.7� away from zero in the r, i and z bands, respectively. This result is consistent with our
expectation from bias measurements of the five sub-samples given in Figure 5. The bias difference for u and g bands are at the level of 1.3� and 1.5�,
consistent with the expectation from biases.
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Figure 8. The results of our null test of zero signal to check our pipeline and
various possible systematic effects. The top panel shows the shell estimator
computed from cross-correlation when we split the sample randomly. The
best fit signal amplitude is completely consistent with zero. The bottom
panel shows the shell estimator computed from the auto-correlation of the
full sample. Because this is an auto-correlation we do not expect to see any
signal in the shell estimator. The plots demonstrate that we pass both the
null tests because the best fit signals are consistent with zero.

5.3 Null Tests

We perform two null tests to check for systematics. First, we di-
vide the sample randomly in two equal halves and examine the
shell estimator from the cross-correlation of the two random sub-
samples. We do not expect to observe any signal showing line of
sight asymmetry from such a measurement, because the two sub-
samples are statistically same. The top panel in Figure 8 shows the
shell estimator measurement from the random split. We obtained
�b = 0.08 ± 0.08 which is consistent with zero signal at the 1�
level. We have also investigated the shell estimator from the auto-
correlation of the full sample, which serves as the second null test.
The bottom panel in Figure 8 shows the measurement of the shell
estimator from the auto-correlation of the full sample. This analy-
sis yields �b = 0.01 ± 0.01, which is consistent with zero at the
1� level. Any problems with the survey geometry, mask, wide an-
gle effect or redshift distribution should produce a non-zero signal
in at least one of these measurements. Note that null test using the
auto-correlation has a much smaller error bar and still produces a
null result which is a strong test for many of the possible system-
atic effects. Both of our null tests are in excellent agreement and
suggest that our analysis is not affected with significant systematic
effects.

5.4 Measurement of Dipole moment

We have measured the dipole moment of the cross-correlation for
each of the photometric band as described in section 4.3; Figure 9

Figure 9. The dipole moment measured using cross-correlation of sub-
samples created by splitting the sample in two equal halves for each of
u, g, r, i, z photometric bands. We detect the amplitude of relativistic asym-
metry at the level of 2.3� ,0.9�, 2.7�, 2.8� and 1.9� in the u, g, r, i and
z bands, respectively.
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Figure 3. Predictions for the observed dipole at z = 0.30 and z = 0.58, multiplied by d

2, and plotted as a function of separation. In the
left panels we show the dipole measured with µ

1

⌘ cos� and in the right panels with µ

12

⌘ cos�. The blue dashed line is the relativistic
dipole, the black dotted line is the wide-angle dipole, the green dot-dashed line is the large-angle dipole and the red solid line is the total.
The dipole due to evolution is much smaller than the other contributions and we have therefore neglected it. Note that the scale on the
y-axis is di↵erent for each plot.

Figure 4. Distribution of galaxies in the LOWz and the CMASS samples. Weights are included.

into sub-samples of width �z ' 0.01 and we adjust the lu-
minosity cut in each sub-sample to have roughly equal num-
bers of bright and faint galaxies. With this procedure, we
obtain for both samples n̄

B

= 0.47 and n̄
F

= 0.53. In LOWz
we use 148’833 galaxies and in CMASS 380’899 galaxies. In
both samples we use cubic pixels with size `p = 4Mpc/h for
separations 16  d  120Mpc/h. The e↵ective redshift of

the LOWz sample is z̄ = 0.303 and of the CMASS sample
z̄ = 0.575.

We weight galaxies according to the prescriptions given
in Anderson et al. (2014) and we use the public LSS random
catalogs to build the masks. The distribution of galaxies
is shown in figure 4 for both the LOWz and the CMASS
samples. We pixelize the samples in 3D cubical pixels and
estimate the correlation function, as explain around eq. (3).
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Figure 14. Predictions for the estimator z
shell

at z = 0.30 and z = 0.58, plotted as a function of separation. In the left panels we show
z

shell

calculated with the angle µ

12

= cos� and in the right panels with µ

1

= cos�. The blue dashed line is the relativistic contribution,
the black dotted line is the wide-angle contribution, the green dot-dashed line is the large-angle contribution and the red solid line is the
total.

The relativistic dipole, the dipole due to evolution and
the wide-angle dipole are therefore totally absent with this
choice of kernel: only the large-angle e↵ect contributes. In
figure 11 we show the dipole measured with this new kernel
in the LOWz and CMASS samples. We have a very clear
detection of the large-angle dipole, which agrees well with
the predictions in both samples.

The signal-to-noise for the dipole is very large. As shown
in figure 12, it is comparable to the signal-to-noise of the
monopole. This is due to the fact that the combination of
angles µ

1

� µ
12

removes the dominant part of the variance.
Using kernel (25) the variance of the dipole can indeed be
written as

var(⇠̂large) = 2a2

N

X

ijLiLj

X

abLaLb

�K(dij � d)�K(dab � d)

⇥
�

cos�ijLiLj � cos�ijLiLj

��

cos�abLaLb � cos�abLaLb

�

⇥ h�nLi(xi)�nLa(xa)ih�nLj (xj)�nLb(xb)i . (28)

In the distant-observer approximation cos�ijLiLj =
cos�ijLiLj and cos�abLaLb = cos�abLaLb so that the vari-
ance exactly vanishes. This similarity in the variance is
clearly visible if we compare figures 7 and 9. The ampli-
tude of the error bars as well their variation with separation
look exactly the same. As a consequence with kernel (25) the

only contribution to the variance is from large-angle e↵ects,
which are suppressed by a factor d/r. This suppression is
illustrated in figure 13.

To summarise, our analysis shows that the large-angle
dipole is significantly larger than the relativistic dipole, the
evolution dipole and the wide-angle dipole. This large-angle
dipole exists only if we use the angle µ

1

= cos� in our es-
timator. To measure this e↵ect in BOSS it is however not
su�cient to simply weight the two-point function by cos�,
since in this case the error on the dipole is a↵ected by flat-
sky contributions. To remove this large error we need to
choose our estimator such that the dipole exactly vanishes in
the distant-observer approximation. Kernel (25) satisfies this
constraint and allows us to measure the large-angle dipole
with a signal-to-noise of more than 50. Note that this value
refers to the signal-to-noise per bin of separation. The cu-
mulative signal-to-noise over the whole range of separation
is even larger.

3.4 Comparison with the estimator z
shell

In Croft (2013), Croft constructed an estimator z
shell

to mea-
sure the redshift di↵erence generated by gravitational red-
shift in large-scale structure. Writing the parallel separation
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In a perturbed universe however, both the photon’s direction and the length of the

geodesic are perturbed

θS = θO + δθ, ϕS = ϕO + δϕ and r = r̄ + δr . (13)

These fluctuations translate directly into fluctuations in the volume

δV

V̄
(z, n̂) = −3Φ+

(

cot θO +
∂

∂θ

)

δθ +
∂δϕ

∂ϕ
+V · n̂+

2δr

r
−

dδr

dλ

+
1

H(1 + z)

dδz

dλ
−

(

2

rH
+

Ḣ
H2

− 4

)

δz

1 + z
, (14)

where λ is the affine parameter of the photon geodesic. The fluctuations δr, δθ and

δϕ can be explicitely calculated by solving the null geodesic equation in a perturbed

Friedmann universe. The volume perturbations become

δV

V̄
= −2(Ψ+ Φ) + 4V · n̂+

1

H

[

Φ̇+ ∂rΨ−
d(V · n̂)

dr

]

(15)

+

(

Ḣ
H2

+
2

rH

)

[

Ψ−V · n̂+

∫ r

0

dr′(Φ̇+ Ψ̇)

]

− 3

∫ r

0

dr′(Φ̇+ Ψ̇)

+
2

r

∫ r

0

dr′(Φ+Ψ)−
1

r

∫ r

0

dr′
r − r′

r′
∆Ω(Φ+Ψ) ,

where ∆Ω denotes the Laplacian transverse to the line-of-sight.

Combining equation (8) with equation (15), the observed overdensity of galaxies

becomes

∆(z, n̂) = D(g)
s −

1

H
∂r(V · n̂) +

1

H
V̇ · n̂+

(

1−
Ḣ
H2

−
2

rH

)

V · n̂+
1

H
∂rΨ

−
1

r

∫ r

0

dr′
r − r′

r′
∆Ω(Φ+Ψ) +

(

Ḣ
H2

+
2

rH

)

[

Ψ+

∫ r

0

dr′(Φ̇+ Ψ̇)

]

+
2

r

∫ r

0

dr′(Φ+Ψ) +Ψ− 2Φ+
1

H
Φ̇ . (16)

The first term in equation (16) describes the true fluctuations in the distribution of

galaxies, related to the fact that the dark matter is inhomogeneously distributed. All

the other terms represent distortions in the coordinate system in which we are making
our observations, namely the galaxy redshift and the incoming direction of the photons.

Comparing expression (16) with its Newtonian counter-part (7), we see first that

the velocity terms are different. The third, fourth and fifth terms in the first line of (16)

are not present in (7). They describe the fact that the mapping between real and

redshift-space does not only affect the comoving distance of galaxies, r, but also the

comoving time at which the observed photons are emitted, since we observe on our past
light-cone, η = η0 − r. The third term accounts for the fact that a wrong estimation

of the photons emission time translates into a wrong estimation of the galaxy velocity

at the time of emission, since velocities evolve with time. The fifth term accounts for

the fact that a wrong estimation of the photons emission time translates into a wrong

Δrel=
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Dipole in the correlation function
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By fitting for a dipole in the correlation function, we can 
measure relativistic distortions, and separate them 
from the density and redshift space distortions.

µ = cosβξ1(s) =
3

2

∫ 1

−1

dµ ξ(s, µ) · µ
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Ḣ

H2
+

2

rH

)

(bB − bF)ν1(s) · cos(β)

By fitting for a dipole in the correlation function, we can 
measure relativistic distortions, and separate them 
from the density and redshift space distortions.

µ = cosβξ1(s) =
3

2

∫ 1

−1

dµ ξ(s, µ) · µ



MNRAS 434, 3008–3017 (2013) doi:10.1093/mnras/stt1223
Advance Access publication 2013 August 14

Gravitational redshifts from large-scale structure

Rupert A. C. Croft1,2‹
1McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK

Accepted 2013 July 1. Received 2013 June 26; in original form 2013 April 10

ABSTRACT
The recent measurement of the gravitational redshifts of galaxies in galaxy clusters by Wojtak
et al. has opened a new observational window on dark matter and modified gravity. By stacking
clusters this determination effectively used the line-of-sight distortion of the cross-correlation
function of massive galaxies and lower mass galaxies to estimate the gravitational redshift
profile of clusters out to 4 h−1 Mpc. Here we use a halo model of clustering to predict the
distortion due to gravitational redshifts of the cross-correlation function on scales from 1 to
100 h−1 Mpc. We compare our predictions to simulations and use the simulations to make
mock catalogues relevant to current and future galaxy redshift surveys. Without formulating
an optimal estimator, we find that the full Baryonic Oscillation Spectroscopic Survey (BOSS)
survey should be able to detect gravitational redshifts from large-scale structure at the ∼4σ

level. Upcoming redshift surveys will greatly increase the number of galaxies useable in
such studies and the BigBOSS and Euclid experiments should be capable of measurements
with precision at the few per cent level. As has been recently pointed out by McDonald,
Kaiser and Zhao et al., other interesting effects including relativistic beaming and transverse
Doppler shift can add additional asymmetric distortions to the correlation function. While
these contributions are subdominant to the gravitational redshift on large scales, they represent
additional opportunities to probe gravitational physics and indicate that many qualitatively
new measurements should soon be possible using large redshift surveys.

Key words: cosmology: observations.

1 IN T RO D U C T I O N

In the weak field limit, the gravitational redshift, zg, of photons with
wavelength λ emitted in a gravitational potential φ and observed
at infinity is given by zg = $λ

λ
≃ $φ

c2 . Measurement of zg is one of
the fundamental tests of General Relativity (GR). First measured
more that 50 years ago for the Earth’s gravity in a laboratory setting
(Pound & Rebka 1959), subsequent determinations have been made
in the Solar system (Lopresto, Schrader & Pierce 1991) and from
spectral line shifts in white dwarf stars (e.g. Greenstein, Oke &
Shipman 1971). In this paper we will examine how well the gravi-
tational redshifts caused by the largest potential fluctuations in the
Universe can be measured using galaxy redshift surveys.

Predictions for the gravitational redshifts of galaxies in clusters
were computed using analytic models by Cappi (1995, see also
Nottale 1990). Cappi found that in the most massive
(!1015 h−1 M⊙) clusters the central galaxy is expected to have
a redshift of a few tens of km s−1 with respect to other cluster
members. Kim & Croft (2004, hereafter KC04) showed that instead

⋆ E-mail: rcroft@cmu.edu

of using single extremely massive clusters, large galaxy surveys
could be used to make a statistical measurement of the gravitational
redshift profile. McDonald (2009, hereafter M09) examined the is-
sue in Fourier space and perturbation theory, studying the effect of
gravitational redshifts on the large-scale cross-power spectrum of
different populations of galaxies.

The first observational determination of galaxy gravitational red-
shifts due to their large-scale environment was made by Wojtak,
Hansen & Hjorth (2011, hereafter W11) using galaxy redshift data
from the Sloan Digital Sky Survey (SDSS). W11 used 125 000
galaxies in 7800 galaxy clusters to make statistical measurement of
zg versus brightest cluster galaxy (BCG) distance out to a radius of
4 h−1 Mpc (h = H0/100 km s−1 Mpc−1). Their 2.6 σ measurement
was compared to modelling of the mass distribution from galaxy
velocity dispersions and used to put constraints on modified gravity
models. Domı́nguez Romero (2012) also used SDSS data to carry
out such a test and also found good agreement with GR.

The redshift of a galaxy is a sum of three components, the Hubble
redshift, the Doppler redshift from the line-of-sight peculiar velocity
and the gravitational redshift:

cz = H (z)r + vpec + czg, (1)
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Gravitational Redshift of photons emitted in a gravitational potential and observed at infinity 

Redshift of galaxy: 

Cappi (1995): In the massive clusters, the central galaxy is expected to have a gravitational 
redshift of a few tens of km/s with respect to other cluster members . 

 Kim & Croft (2004): Gravitational redshifts of galaxies are statistically detectable from the 
survey. 

Wojtak et al. (2011) detected the gravitational redshifts in galaxy clusters using 7800 clusters in 
data from the SDSS survey. 

Croft (2013) proposed an estimator to measure the line-of-sight asymmetry using the cross-
correlation function of the two different samples. 

Zhao et al. (2013) and Kaiser (2013) studied other important effects such as transverse 
Doppler effect, light cone bias and special relativistic beaming effect. 

Bonvin et al. (2014): Gravitational redshift distortion is related to the full general relativistic 
asymmetry of the cross-correlation of two populations of galaxies. 

Gaztanaga et al. (2015)  measured the cross-correlation dipole in BOSS LOWz and CMASS 
samples, data release DR10 on large scales (r>20 Mpc/h). 
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