

GWs from first-order phase transitions David J. Weir, University of Helsinki NORDITA, 5 July 2017 tinyurl.com/nordita-weir

arXiv:1705.01783 and references therein

What's next? LISA

- LISA: three arms (six laser links), 2.5 M km separation
 Launch as ESA's third large-scale mission (L3) in (or before) 2034
 Proposal officially submitted earlier this year arXiv:1702.00786
- Officially adopted on 20.6.2017

From the LISA proposal:

SI7.2 : Measure, or set upper limits on, the spectral shape of the cosmological stochastic GW background

OR7.2: Probe a broken power-law stochastic background from the early Universe as predicted, for example, by first order phase transitions [21] (other spectral shapes are expected, for example, for cosmic strings [22] and inflation [23]). Therefore, we need the ability to measure $\Omega = 1.3 \times 10^{-11} (f/10^{-4} \text{ Hz})^{-1}$ in the frequency ranges 0.1 mHz < f < 2 mHz and 2 mHz < f <20 mHz, and $\Omega = 4.5 \times 10^{-12} (f/10^{-2} \text{ Hz})^3$ in the frequency ranges 2 mHz < f < 20 mHz and 0.02 < f <0.2 Hz. First order thermal phase transition:

Bubbles nucleate and grow
 Expand in a plasma - create shock waves
 Bubbles + shocks collide - violent process
 Sound waves left behind in plasma
 Turbulence; expansion

Thermal phase transitions

• Standard Model is a crossover

Kajantie et al.; Karsch et al.; ...

• First order possible in extensions (xSM, 2HDM, ...)

Andersen et al., Kozaczuk et al., Carena et al.,

Bödeker et al., Damgaard et al., Ramsey-Musolf et al.,

Cline and Kainulainen, ...

- Baryogenesis?
- GW PS ⇔ model information?

What the metric sees at a thermal phase transition

- Bubbles nucleate and expand, shocks form, then:
 1. h²Ω_φ: Bubbles + shocks collide 'envelope phase'
 2. h²Ω_{sw}: Sound waves set up 'acoustic phase'
 3. h²Ω_{turb}: [MHD] turbulence 'turbulent phase'
- Sources add together to give observed GW power: $h^2 \Omega_{GW} \approx h^2 \Omega_{\phi} + h^2 \Omega_{sw} + h^2 \Omega_{turb}$

• Equation of motion is (schematically)

Liu, McLerran and Turok; Prokopec and Moore

$$\partial_{\mu}\partial^{\mu}\phi + V_{\text{eff}}'(\phi, T) + \sum_{i} \frac{dm_{i}^{2}}{d\phi} \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}2E_{i}} \delta f_{i}(\mathbf{k}, \mathbf{x}) = 0$$

- $V'_{\text{eff}}(\phi)$: gradient of finite-*T* effective potential
- $\delta f_i(k, x)$: deviation from equilibrium phase space density of *i*th species
- *m_i*: effective mass of *i*th species:
 - Leptons: $m^2 = y^2 \phi^2/2$
 - Gauge bosons: $m^2 = g_w^2 \phi^2/4$
 - Also Higgs and pseudo-Goldstone modes

Put another way:

This equation is the realisation of this idea:

Yet another interpretation:

We will return to this later!

Kosowsky, Turner and Watkins; Kamionkowski, Kosowsky and Turner

- Thin, hollow bubbles, no fluid
- Stress-energy tensor $\propto R^3$ on wall
- Solid angle: overlapping bubbles \rightarrow GWs
- Simple power spectrum:
 - One length scale (average radius R_*)
 - Two power laws (ω^3 , ~ ω^{-1})
 - Amplitude
 - \Rightarrow 4 numbers define spectral form

NB: Used to be applied to shock waves (fluid KE), now only use for bubble wall (field gradient energy)

4-5 numbers parametrise the transition:

- α_{T_*} , vacuum energy fraction
- $v_{\rm w}$, bubble wall speed
- κ_{ϕ} , conversion 'efficiency' into gradient energy $(\nabla \phi)^2$
- Transition rate:
 - *H*_{*}, Hubble rate at transition
 - *β*, bubble nucleation rate
 - \rightarrow ansatz for $h^2 \Omega_{\phi}$

[only matters for near-vacuum/runaway transitions]

Coupled field and fluid system

Ignatius, Kajantie, Kurki-Suonio and Laine

- Scalar ϕ and ideal fluid u^{μ} :
 - Split stress-energy tensor $T^{\mu\nu}$ into field and fluid bits $\partial_{\mu}T^{\mu\nu} = \partial_{\mu}(T^{\mu\nu}_{\phi} + T^{\mu\nu}_{\text{fluid}}) = 0$
 - Parameter η sets the scale of friction due to plasma

$$\partial_{\mu}T^{\mu\nu}_{\phi} = \tilde{\eta}\frac{\phi^{2}}{T}u^{\mu}\partial_{\mu}\phi\partial^{\nu}\phi \quad \partial_{\mu}T^{\mu\nu}_{\text{fluid}} = -\tilde{\eta}\frac{\phi^{2}}{T}u^{\mu}\partial_{\mu}\phi\partial^{\nu}\phi$$

• $V(\phi, T)$ is a 'toy' potential tuned to give latent heat \mathcal{L} • $\beta \Leftrightarrow$ number of bubbles; $\alpha_{T_*} \Leftrightarrow \mathcal{L}, v_{\text{wall}} \Leftrightarrow \tilde{\eta}$

Begin in spherical coordinates: what sort of solutions does this system have?

Velocity profile development: small $\tilde{\eta} \Rightarrow$ detonation (supersonic wall)

Velocity profile development: large $\tilde{\eta} \Rightarrow$ deflagration (subsonic wall)

$v_{\rm w}$ as a function of $\tilde{\eta}$

Cutting [Masters dissertation]

Simulation slice example

Velocity power spectra and power laws

Fast deflagration

Detonation

- Weak transition: $\alpha_{T_*} = 0.01$
- Power law behaviour above peak is between k^{-2} and k^{-1}
- "Ringing" due to simultaneous nucleation, unimportant

GW power spectra and power laws

Fast deflagration

Detonation

• Causal k^3 at low k, approximate k^{-3} or k^{-4} at high k

• Curves scaled by *t*: source until turbulence / expansion

 \rightarrow power law ansatz for $h^2 \Omega_{sw}$

Transverse versus longitudinal modes – turbulence?

- Short simulation; weak transition (small α): linear; most power in longitudinal modes \Rightarrow acoustic waves, turbulent
- Turbulence requires longer timescales $R_*/U_{\rm f}$
- Plenty of theoretical results, use those instead

Kahniashvili et al.; Caprini, Durrer and Servant; Pen and Turok; ...

 \rightarrow power law ansatz for $h^2 \Omega_{\text{turb}}$

Putting it all together - $h^2 \Omega_{gW}$ arXiv:1512.06239

- Three sources, $\approx h^2 \Omega_{\phi}$, $h^2 \Omega_{sw}$, $h^2 \Omega_{turb}$
- Know their dependence on T_* , α_T , v_w , β

Espinosa, Konstandin, No, Servant

• Know these for any given model, predict the signal...

(example, $T_* = 100$ GeV, $\alpha_{T_*} = 0.5$, $v_w = 0.95$, $\beta/H_* = 10$)

Putting it all together - physical models to GW power spectra Model \longrightarrow (T_* , α_{T_*} , v_w , β) \longrightarrow this plot

... which tells you if it is detectable by LISA (see arXiv:1512.06239)

Detectability from acoustic waves alone

- In many cases, sound waves dominant
- Parametrise by RMS fluid velocity $U_{\rm f}$ and bubble radius R_* (quite easily obtained Espinosa, Konstandin, No and Servant)

Sensitivity plot:

The pipeline

- 1. Choose your model (e.g. SM, xSM, 2HDM, ...)
- 2. Dim. red. model Kajantie et al.
- 3. Phase diagram (α_{T_*}, T_*); lattice: Kajantie et al.
- 4. Nucleation rate (β); lattice: Moore and Rummukainen
- 5. Wall velocities (v_{wall})

Moore and Prokopec; Kozaczuk

- 6. GW power spectrum Ω_{gw}
- 7. Sphaleron rate

Very leaky, even for SM!

Questions, requests or demands...

- Turbulence
 - MHD or no MHD?
 - Timescales $H_*R_*/\overline{U}_f \sim 1$, sound waves and turbulence?
 - More simulations needed?
- Interaction with baryogenesis
 - Competing wall velocity dependence of BG and GWs?
 - Sphaleron rates in extended models?
- The best possible determinations for xSM, 2HDM, Σ SM, ...
 - What is the phase diagram?
 - Nonperturbative nucleation rates?