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New	inflationary	a-attractormodels	describe	inflation	and	dark	energy	and	SUSY	breaking.	
They	provide	B-mode	targets for	future	B-mode	detectors,	with		r between	10-2 and	10-3
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Meaning	of	the	measurement	of	the	
curvature	of	the	3d	space	

k=+1,	k=-1,	k=0	 Spatial	curvature	parameter

For	a-attractors,	measuring	
r	means	measuring	the	
curvature	of	the	hyperbolic	
geometry	of	the	moduli	
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Hyperbolic	geometry
of	a	Poincaré disk

⌦K = �0.0003± 0.0026
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Start	with	the	simplest	chaotic	inflation	model

Modify	its	kinetic	term
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1 Introduction

During the next few years we might expect some dramatic new information from B-mode experiments

either detecting primordial gravity waves or establishing a new upper bound on r, and from LHC

discovery/non-discovery of low scale supersymmetry. A theoretical framework to discuss both of

these important factors in cosmology and particle physics has been proposed recently. It is based on

the construction of new models of chaotic inflation [1] in supergravity compatible with the current

cosmological data [2] as well as involving a controllable supersymmetry breaking at the minimum

of the potential [3–7]. In this paper we will develop supergravity models of inflation motivated by

either string theory or extended supergravity consderations, known as cosmological ↵-attractors [8–16].

Here we will enhance them with a controllable supersymmetry breaking and cosmological constant at

the minimum. We find this to be a compelling framework for the discussion of the crucial new data

on cosmology and particle physics expected during the next few years. Some models of this type were

already discussed in [14].

The paper is organized as follows. We begin in Section 2 with a brief review of key vocabulary and

features of these and related models with references to more in-depth treatments. In Section 3 we

present the ↵-attractor supergravity models that make manifest an inflaton shift-symmetry by virtue

of having the Kähler potential inflaton independent – which we will refer to as Killing-adapted form.

Section 4 presents a universal rule: given a bosonic inflationary potential of the form F2(') one can

reconstruct the superpotential W =
⇣
S+ 1

b

⌘
f(�) for the Kähler potentials described in Section 3. The

resulting models with f 0(') = F(') have a cosmological constant ⇤ and an arbitrary SUSY breaking

M at the minimum. In Section 5 we study more general class of models with W = g(') + Sf((')

and the same Kähler potential. For these models it is also possible to get agreement with the Planck

data as well as dark energy and SUSY breaking. Moreover, these models have nice properties with

regard to initial conditions for inflation, analogous to the ones studied in [28] for models without SUSY

breaking and dark energy. We close in Section 6 with a summary of what we have accomplished.

2 Review

2.1 ↵, and attraction

There is a key parameter ↵ in these models, for which the Kähler potential K = �3↵ ln(T + T̄ ). It

describes the moduli space curvature [9] given by RK = � 2

3↵ . Another, also geometric, interpretation

of this parameter is in terms of the Poincaré disk model of a hyperbolic geometry with the radiusp
3↵, illustrated by the Escher’s picture Circle Limit IV [15, 16]. As clarified in these references,

from the fundamental point of view, there are particularly interesting values of ↵ depending on the

original theory. From the maximal N = 4 superconformal theory, [17], one would expect ↵ = 1/3

with r ⇡ 10�3. This corresponds to the unit radius Escher disk [15], as well as a target of the

future space mission for B-mode detection, as specified in CORE (Cosmic ORigins Explorer). Some

interesting simplifications occur for ↵ = 1/9, which corresponds to the GL model [18,19]. From N = 1

1

ds2 =
3↵

(1� ZZ̄)2
dZdZ̄ ds2 =

3↵

(T + T̄ )2
dTdT̄

Escher	in	the	Sky,					RK,	Linde	2015

Disk or	half-plane

Curvature	of	the	moduli	space	in	Kahler geometry

3↵ = R2
Escher ⇡ 103r

Hyperbolic	geometry
of	a	Poincaré disk

ZZ̄ < 1

T + T̄ > 0

SL(2,R) symmetry



From	the	disk	to	a	half-plane	(the	Cayley	transform)

T =
1 + Z

1� Z



B-modes 
• Thomson scattering within local quadrupole 

anisotropies generates linear polarization 
• Scalar modes Æ T, E 
• Tensor modes Æ T, E, B 
• Ratio r = ΔT / ΔS 
• Gravitational waves at LSS                 

create B-mode polarization 
• Probes Lyth bound of Inflation  
• Ekpyrotic models Æ r = 0 
 

Lorenzo Moncelsi 

Planck 2015 

BICEP2 2014 

W. Hu 

B>0 B<0 

Moriond 22/3/16 

Planck XX 2015 

BK14 w / 95GHz 2016 

Next	in	CMB	cosmology:	

Relentless	observation

If	B-modes	will	be	discovered	soon,	r	>	10-2
natural	inflation	models,	axion monodromy
models,	a-attractor	models,…,	will	be	validated
No	need	to	worry	about	log	scale	r

Otherwise,	we	switch	to	log	r

A	majority	of	string	theory	inflation	models	have	very	small	r	
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Kahler function	defines	the	geometric	
kinetic	term	as	well	as	the	potential



KKLT	construction	of	de	Sitter	vacua in	string	theory:
Positive	energy	from	anti-D3	brane

Basic	idea:	D-brane	and	anti-D-brane	are	extended	objects	in	superstring	theory.
Like	strings,	they	have	various	possible	descriptions.

1. They	are	solutions	of	d=10	supergravity

2. They	have	their	own	world-volume	action	

Anti-D-brane:		Volkov-Akulov geometric	construction

E = dX � ✓̄�md✓

SD3 = �2T3

Z
d4� detE

ultimate	spontaneously	
broken	supersymmetry:
Majorana goldstino



From	geometry	of	anti-D3	brane	interacting	with	CY	moduli	to	
effective	supergravity	models	of	inflation	with	the	following	
features

• Fit	to	data

• Allow	an	exit	to	de	Sitter	vacua

• Models	are	simple	and	falsifiable	by	observations

• Include	advanced	a-attractor models	and	new	ones

• Hyperbolic	disk	mergers	with	discrete	3a=	1,2,3,4,5,6,7	as	B-mode	targets

• Simple	version	of	fibre inflation	with	3a=6,	paper	in	hep-th today

Inflationary	dynamics including	the	exit	to	de	Sitter	space	is	fully	defined	by	the	
geometric	Kahler function	in	underlying	supergravity

From	Geometry	to	Dynamics



Möbius transformations applied to hyperbolic tilings allowed to 
produce animation in disk variables
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RK,	Quevedo,	Uranga 2015

The action of the O3-plane is

�O|0i ! �(�⌦�
T��1

⌦ )O|0i (2.2)

where �⌦ is the action on Chan-Paton indices. This result is essentially identical to the orientifold

projection in type I theory, which is related to it (in suitable toroidal compactification) by T-duality.

In our present case of a single D3-brane, Chan-Paton matrices reduce to complex numbers, and we

have �⌦ = 1. All the massless states, both for NS and R states, are odd under the orientifold action,

and therefore are projected out, so the D3-brane has no degrees of freedom at all. The physical

interpretation is that, since the D3-brane is stuck at the O3-plane, there are no massless scalars in

the spectrum; then, since the D3-brane preserves the same 16 supersymmetries as the O3-plane, this

implies that the orientifold projection removes the whole 4d N = 4 vector multiplet, i.e. the gauge

bosons and fermions as well.

The supersymmetry of the orientifold projection in the open string channel is related, by open-

closed duality, to the cancellation of closed string NSNS and RR exchanges in the closed string channel.

For the annulus diagram, this works as in the parent oriented theory; for the Moebius strip diagram,

which is responsible for the orientifold projection, this corresponds to the BPS cancellation of the

gravitational and 4-form interactions between the D3-brane and the O3-plane, see Figure ??.

Figure 1: The one-loop open string annulus and Moebius strip diagrams turns into closed string channel

diagrams describing tree level exchange of NSNS and RR states between two boundaries (branes or antibranes),

or between one boundary and one crosscap (O3-plane).

We now consider one D3-brane on top of the O3�-plane. Again, the worldvolume spectrum is

obtained by a simple orientifold action on the parent oriented spectrum in section ??. This is very

similar to the D3-brane case, except for the fact that the orientifold does not preserve the same

supersymmetries as the D3-brane. As studied in [?,?] (see also [?,?]), this manifests in an extra sign

in the orientifold action on the open string Ramond sector. This is easily derived from open-closed

duality, because the extra sign in the Moebius strip diagram for open string Ramond states maps to

an extra sign in the RR exchange between the crosscap and the boundary. This precisely matches the

6

The	one-loop	open	string	annulus	and	Moebius	strip	diagrams	turn	into	
closed	string	channel	diagrams	describing	tree	level	exchange	of	NSNS	and	
RR	states	between	two	boundaries	(branes	or	antibranes),	or	between	one	
boundary	and	one	crosscap	(O3-plane)

A	technical	tool	for	the	
string	theory	landscape
construction	and	for	
inflationary	model
building

Non-linear	supersymmetry:	not	of	the	kind	that	was	not	found	at	LHC

Volkov-Akulov,	1972 Allows	de	Sitter	vacua in	
supergravity	without	scalars

S

2(x, ✓) = 0



The	positive	contribution	to	the	vacuum	energy	which	converts	the	AdS minumum
into	dS minimum	due	to	the	presence	of	the	non-perturbative	anti-D3	brane	can	be	
effectively	described	in	supergravity	by	the	presence	of	the	nilpotent	superfield S

String	theory	D-branes:
supersymmetric	KKLT

Cosmological	Models	with	nilpotent	
stabilizer
Antoniadis,	Dudas,	Ferrara	and	Sagnotti,	
2014
Ferrara,	RK,	Linde	2014	Dall’Agata,	Zwirner
2014	
RK,	Linde,	Scalisi,	2014	
Carrasco,	RK,	Linde,	Roest,	2015	
McDonough,	Scalisi,	2016
Ferrara,	RK,	2016
RK,	Linde,	Wrase,Yamada,	2017	

RK,	Wrase,	2014
Bergshoeff,	Dasgupta,	RK,	Wrase,	Van	Proeyen
2015
RK,	Quevedo,	Uranga 2015	
RK,	Vercnocke ,	Wrase 2016	

RK,	Linde,	Roest,	Yamada,	2017	

Anti-D3 Induced Geometric Inflation 

𝑺𝟐 = 𝟎	



In	current	literature	on	de	Sitter	vacua this	function	is	called	Kahler function	

G
We	are	interested	in	anti-D3	brane	interaction	with	Calabi-Yau moduli	Ti .		In	
supergravity	we	expect	some	interaction	between	the	nilpotent	superfield S and	
Calabi-Yau moduli	Ti

G(T i, T̄ i;S, S̄)

stability of each model and show the absence of tachyons. The bisectional curvature of
these geometric models will play a role in the stability analysis.

We will develop a general class of D3 induced geometric inflation with multiple moduli
in CY bulk interacting with D3 nilpotent multiplet S. It is important that the D3 induced
geometric inflation models have a non-vanishing gravitino mass, W does not vanish during
and at the exit from inflation. In this case, one can use the advantage of a geometric Kähler
function formalism where

G ⌘ K + logW + log

¯W , V = eG(G↵�̄G
↵

G
�̄

� 3) (1.1)

and study various interesting application of the new models. Here the index ↵ includes the
directions S and T

i

.

The role of the Kähler function G was recognized starting with [10] when supergravity
models interacting with matter were first constructed. It was shown there that the action
is fully determined by the Kähler function. However, in some cosmological models, for
example in D-term inflation [11], or in models in [12], during the evolution the superpotential
might vanish. For these models it was more useful to employ the Kähler potential and the
superpotential W since the Kähler function G has a singularity at W = 0. Meanwhile, the
analysis of metastable de Sitter vacua with spontaneously broken supersymmetry was based
mostly on the analysis using the Kähler function G, see for example, [13]. Comparative to
this analysis, the new ingredient here is the fact that the S superfield is nilpotent and that
we will use it for developing inflationary models with the exit to de Sitter minima. Our
Hermitian Kähler function will be of the form

G(T
i

, ¯T
i

;S, ¯S) = G0(Ti

, ¯T
i

) + S +

¯S + G
SS̄

(T
i

, ¯T
i

)S ¯S , (1.2)

which we will show will describe the general case of supergravity models with one nilpotent
multiplet and non-vanishing superpotentials.

We will show below that, in general, from the knowledge of the potential V(T
i

, ¯T
i

) and
the T -dependent Kähler function G0(Ti

, ¯T
i

) it is possible to recover the S-field geometry

G
SS̄

(T
i

, ¯T
i

)dSd ¯S. (1.3)

Whereas the complete formula will be given below in eq. (2.13), here we would like to
point out that under certain conditions the relation between the S-field geometry and the
potential simplifies significantly. If the gravitino mass is constant throughout inflation at
S = 0, and supersymmetry is unbroken in the T

i

directions, i.e. during inflation

eG(Ti,T̄i)
= |m3/2|2 = const , G

Ti(Ti

, ¯T
i

) = 0 , (1.4)

– 3 –

Erich	Kahler noticed	in	1933	and	Moroianu suggested in 2004, that once the hermitian
Kahler function is introduced 

“a long list of miracles occur then” 

Model Building Paradise May	2017
RK,	Linde,	Roest,	Yamada

now confirmed in the 
cosmological context

Cremmer,	Ferrara,	Girardello,		Julia,		Scherk,		
van	Nieuwenhuizen,	Van	Proeyen,	from		1978
Binetruy,	Gaillard,	from	1985
Gomez-Reino et	al,	Achucarro et	al,	Covi et	al,	from	2007



In	models	with	Hermitian	Kaḧler	function	of	the	form	
	

G = G0(Ti, T̄i) + S + S̄ + GSS̄(Ti, T̄i)SS̄

If	during	inflation,
as	in	a-attractor	models,	
or	7-disk	geometries eG = m2

3/2

Ti = T̄i , S = 0

Gi = 0

one	finds	the	following	simple	relation	between	the	potential	and	
the	nilpotent	field	geometry

GSS̄(Ti, T̄i) =
V(Ti, T̄i) + 3|m3/2|2

|m3/2|2

Easy	to	establish	stability	during	and	after	inflation	with	the	exit	
into	de	Sitter	vacuum:	sectional	and	bisectional	curvature	
associated	with	our	Kaḧler	function	play	important	role	in	the	
stability	analysis

From	the	sky	to	
fundamental	physics



The	models	are	relatively	simple	if	the	T-moduli	have	hyperbolic	
geometry	of	a	combination	of	Poincare	disks.		In	half-flat	
geometry	variables

The	Kahler function	is	invariant	under	inversion	and	scaling	
part	of	the	Mobius	symmetry

Ti !
1

Ti
, Ti ! a2 Ti

Inflaton shift	symmetry	is	broken	only	via	interaction	
with	the	anti-D3	brane,	via	the	S-field	geometry	

GSS̄(Ti, T̄i)SS̄

G
���
S=0

= �1

2

X

i=1

log

h
(Ti +

¯Ti)
2

4Ti
¯Ti

1

m4
3/2

i



Inflaton shift	symmetry	in	a	hyperbolic	geometry	
with	inversion/scaling	symmetry

If	during	inflation	Im T	=0	is	a	minimum,	which	is	valid	in	our	models,	we	find	

�1

2

log

h
(ReT )2

(ReT )2 + (ImT )2
1

m4
3/2

i

@G
@T

= 0eG = m2
3/2

for S = T � T̄ = 0

�1

2

log

h
(T +

¯T )2

4T ¯T

1

m4
3/2

i
=



GSS̄(Ti, T̄i) =
V(Ti, T̄i) + 3|m3/2|2

|m3/2|2

This	equation	shows	incredible	simplicity	of	inflationary	model	construction	
in	this	approach.	One	can	take	any	function	V(X)	of	a	real	inflaton field	X,	
replace	X,		e.g.,	by																						,	and	put	the	resulting	function																																							
to	the	equation	above.	The	resulting	potential	evaluated	by	usual	SUGRA	
rules	automatically	has	the	desired	shape	V(X)	 in	the	inflaton direction.	The	
only	thing	remaining	to	check	is	stability	with	respect	to	the	imaginary	part	
of	the	field	T,	which	is	usually	not	a	problem.

By	this	method	we	easily	reproduced	and	improved	many	previously	known	
models,	and	generalized	them	in	a	way	allowing	to	have	an	arbitrary	

cosmological	constant	and	SUSY	breaking	after	inflation.

(T + T )/2

Why	do	we	use	these	words?	Let	us	look	again	at	this	equation	from	the	
previous	page:

V (T, T )



Why so	simple?

• One	nilpotent	multiplet (representing	anti-D3	brane)

• Supersymmetry	is	broken	only	in	the	nilpotent	goldstino
direction	due	to	inversion/scaling	symmetry	of	the	Kahler
function.	 It	is	unbroken	in	absence	of	anti-D3	brane

• Only	the	nilpotent	multiplet geometry	breaks	inversion/scaling	
symmetry	of	the	moduli	geometry



6 ZACHARIAH SACHS

3. Möbius transformations

I now focus on a special collection of functions from the upper half-plane to itself.

Definition 3.1. The set of Möbius transformations of the upper half-plane is

(3.2)

{

T : z !→
az + b

cz + d

∣

∣

∣

∣

a, b, c, d ∈ R, ad− bc = 1

}

.

Much like the isometries in R
2, these maps are of only a few special types.

Remark 3.3. Möbius transformations come in three basic types:

(1) Translations of the form Tα : z !→ z + α for α in R

(2) Dilations of the form Dr : z !→ rz for positive r in R,
(3) Inversion I : z !→ − 1

z
.

Inversion is something new. This map corresponds to turning the upper half-
plane “inside out.” A good animation is provided by [4]. Note that reflection along
a vertical line takes H to itself, but does not satisfy the restriction ad − bc = 1.
This type of map will become important in Section 6.

It is not instantly clear why a dilation is a Möbius transformation. It looks like
a fine map, but it does not satisfy ad− bc = 1.

Definition 3.4. Möbius transformations include the fractional linear transforma-
tions,

(3.5)

{

T : z !→
az + b

cz + d

∣

∣

∣

∣

a, b, c, d ∈ R, ad− bc > 0

}

.

Multiplying the numerator and denominator of a fractional linear transformation
by 1√

ad−bc
gives a Möbius transformation. Since they are related so simply and are

such nice maps, I include them.

Remark 3.6. A generic Möbius transformation T (z) = az+b
cz+d

with c nonzero can be
decomposed into the following four maps:

(1) f1(z) = z + d
c
,

(2) f2(z) = − 1
z
,

(3) f3(z) =
(ad−bc)

c2
z,

(4) f4(z) = z + a
c
.

So T (z) = (f4 ◦ f3 ◦ f2 ◦ f1)(z). If c = 0, then T is the composition of the following:

(1) g1(z) = az,
(2) g2(z) = z + b,
(3) g3(z) =

1
d
z.

So T (z) = (g3 ◦ g2 ◦ g1)(z).

It is already easy to see that fractional linear transformations behave nicely.

Proposition 3.7. Möbius transfromations take

(1) H to H bijectively,
(2) generalized circles to generalized circles

Proof. For all points z = x+ yi with y > 0 and for T a Möbius transformation,

(3.8) T (z) =
(ax+ b) + ayi

(cx+ d) + cyi
=

[(ax+ b) + ayi][(cx+ d)− cyi]

(cx+ d)2 + (cy)2
.
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Definition 3.1. The set of Möbius transformations of the upper half-plane is

(3.2)

{

T : z !→
az + b

cz + d

∣

∣

∣

∣

a, b, c, d ∈ R, ad− bc = 1

}

.

Much like the isometries in R
2, these maps are of only a few special types.

Remark 3.3. Möbius transformations come in three basic types:

(1) Translations of the form Tα : z !→ z + α for α in R

(2) Dilations of the form Dr : z !→ rz for positive r in R,
(3) Inversion I : z !→ − 1

z
.

Inversion is something new. This map corresponds to turning the upper half-
plane “inside out.” A good animation is provided by [4]. Note that reflection along
a vertical line takes H to itself, but does not satisfy the restriction ad − bc = 1.
This type of map will become important in Section 6.

It is not instantly clear why a dilation is a Möbius transformation. It looks like
a fine map, but it does not satisfy ad− bc = 1.
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such nice maps, I include them.
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with c nonzero can be
decomposed into the following four maps:
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,

(3) f3(z) =
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(4) f4(z) = z + a
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So T (z) = (f4 ◦ f3 ◦ f2 ◦ f1)(z). If c = 0, then T is the composition of the following:
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Proof. For all points z = x+ yi with y > 0 and for T a Möbius transformation,

(3.8) T (z) =
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=

[(ax+ b) + ayi][(cx+ d)− cyi]

(cx+ d)2 + (cy)2
.

6 ZACHARIAH SACHS
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a fine map, but it does not satisfy ad− bc = 1.
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and	inflaton shift	symmetry	



⌧ 0 =
a⌧ + b

c⌧ + d
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Isometries:	

Mobius	Transform



A tessellation is the tiling of a plane or hyperbolic plane, or a 
hyperbolic disk using one or more geometric shapes, called tiles, with 
no overlaps and no gaps 

The	choice	of	the	Kahler frame	is	suggested	by	the	tessellation of	the
hyperbolic	geometry

It	leads	to	an	improved	stability	of	inflationary	trajectory	since	the	
moduli	dependent	part	of	the	geometry	is	flat	in	the	inflaton direction	
due	to	inversion	and	scaling	symmetry	of	the	Kahler fuction



Ferrara,	RK,	Linde,	Roest,	Wrase,	Yamada

1. Start	with	M-theory,	or	String	theory,	or	N=8	supergravity

2. Perform	a	consistent	truncation	to	N=1	supergravity	in	d=4	with	a	7-disk	manifold

Tessellation

3.5 Seven-disk merger model

Finally, we briefly discuss the possible merger of several disks. Consider for instance,

G = logW 2
0 � 1

2

7X

i=1

log

(1� ZiZi)
2

(1� Z2
i )(1� Z

2
i )

+ S + S + GSSSS, (3.32)

GSS
=

1

W 2
0
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corresponding to seven disks with ↵i = 1/3. The scalar potential is
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, (3.34)

and the last term gives the dynamical constraint �i = �j where we have defined canonical
fields as Zi = tanh

�i+i✓ip
2

. During inflation at �i = �j =
'p
7
, the scalar potential reads

V(') = ⇤+m2
tanh

2 'p
14

, (3.35)

in terms of the canonically normalized inflaton field.

The axionic directions are stabilized at their origin, and their masses are given by
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The first two constant part dominate the mass and the remaining negative part is suppressed
during inflation. At the minimum, the mass of the axions becomes m2
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=

1
7m

2
+ 4W 2

0 and
is still positive.

For real directions {�i}, the following canonical mass eigenbasis is useful, ' =

1p
7

P7
i=1 �i,

and �i =
1p
8�i

((7� i)�i � �i+1 · · ·� �7). The inflaton is ' and moduli �i are stabilized at
their origin with the mass
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As the two disk models, the mass of the moduli �i becomes small, and when 4M2 <

m2
cosh

q
2
7', they becomes tachyonic. At the minimum ' = 0, the inflaton and moduli

mass are given by

m2
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7
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4
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M2. (3.38)

Note that SUSY breaking takes place at the minimum; GS = 1 and
q

GSGSSGS =

p
3W0.

Here again we see the advantage of using the new geometric class of models comparative to
the earlier version of the seven-disk model in Ref. [24] where we only studied an inflationary
stage.
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3a=7	example

De	Sitter	exit

The	scalar	potential	defining	geometry	is

r ⇡ 10�2



October	2016

CMB-S4 Science Book
First Edition

CMB-S4 Collaboration

August 1, 2016

ar
X

iv
:1

61
0.

02
74

3v
1 

 [a
str

o-
ph

.C
O

]  
10

 O
ct

 2
01

6

4 Exhortations

2000 2005 2010 2015 2020

10
−4

10
−3

10
−2

10
−1

W
M

AP

Planck

CM
B−S4

Year

A
p
p
ro

xi
m

a
te

 r
a
w

 e
xp

e
ri
m

e
n
ta

l s
e
n
si

tiv
ity

 (
µ

K
)

 

 

Space based experiments

Stage−I − ≈ 100 detectors

Stage−II − ≈ 1,000 detectors

Stage−III − ≈ 10,000 detectors

Stage−IV − ≈ 100,000 detectors

Figure 2. Plot illustrating the evolution of the raw sensitivity of CMB experiments, which scales as
the total number of bolometers. Ground-based CMB experiments are classified into Stages with Stage II
experiments having O(1000) detectors, Stage III experiments having O(10,000) detectors, and a Stage IV
experiment (such as CMB-S4) having O(100,000) detectors. Figure from Snowmass CF5 Neutrino planning
document.

1.2.1 Raw sensitivity considerations and detector count

The sensitivity of CMB measurements has increased enormously since Penzias and Wilson’s discovery in
1965, following a Moore’s Law like scaling, doubling every roughly 2.3 years. Fig. 2 shows the sensitivity of
recent experiments, expectations for upcoming Stage-3 experiments, characterized by order 10,000 detectors
on the sky, and the projection for a Stage 4 experiment with order 100,000 detectors. To obtain many of the
CMB-S4 science goals requires of order 1 µK arcminute sensitivity over roughly half of the sky, which for a
four-year survey requires of order 500,000 CMB-sensitive detectors.

To maintain the Moore’s Law-like scaling requires a major leap forward, a phase change in the mode of
operation of the ground based CMB program. Two constraints drive the change: 1) CMB detectors are
background-limited, so more pixels are needed on the sky to increase sensitivity; and 2) the pixel count for
existing CMB telescopes are nearing saturation. Even using multichroic pixels and wide field of view optics,
these CMB telescopes are expected to field only tens of thousands of polarization detectors, far fewer than
needed to meet the CMB-S4 science goals.

CMB-S4 thus requires multiple telescopes, each with a maximally outfitted focal plane of pixels utilizing
superconducting, background limited, CMB detectors. To achieve the large sky coverage and to take
advantage of the best atmospheric conditions, the South Pole and the Chilean Atacama sites are baselined,
with the possibility of adding a new northern site to increase sky coverage to the entire sky not contaminated
by prohibitively strong Galactic emission.

CMB-S4 Science Book

a-attractor models

Future	B-mode	
satellite	missions

Well	motivated	new	models	originating	in	string	
theory,	M-theory,	maximal	supergravity

Ferrara,	RK,	2016,
RK,	Linde,	Wrase,	Yamada,	2017
RK,	Linde,	Roest,	Yamada,	2017

Ground	based	
experiments

X
X

X
X

X



Why	do	we	find	it	useful	to	talk	about	the	
size	of	the	Escher’s	disks	in	discussions	of	

the	CMB	future	B-mode	targets	?



Based	on	CMB	data	on	the	value	of	the	tilt	of	the	spectrum	ns		as	a	function	of	
N,	we	found	that	hyperbolic	geometry		of	a	Poincaré disk															suggests	a	
way	to	explain	the	experimental	formula

ns ⇡ 1� 2

N
Using	a	consistent	reduction	from	maximal	N=8 supersymmetry	theories:	
M-theory	in	d=11,	String	theory	in	d=10,	maximal	supergravity	in	d=4,	to	the	
minimal	N=1 supersymmetry,	we	found	favorite	models	with	hyperbolic	
geometry	 with	R2Escher	=	7,6,5,4,3,2,1

r ⇡ 0.9⇥ 10�2 r ⇡ 1.3⇥ 10�3B-mode	targets

In	contrast	with	 N=1 supersymmetry	models	where	R2Escher	 is	arbitrary



Back	up	slides



The construction of de Sitter vacua in string theory as well as building 
inflationary models is facilitated by the concept of an upliting anti-D3 
brane. Supersymmetry is spontaneously broken during inflation as well 
as at the exit from inflation, and never restored in models we described 

anti-D3 brane induced geometric inflationary models

Subject to specific assumptions about the geometry of T- moduli one	
finds	a	simple	relation	between	the	desirable	inflationary	potential	
and	geometry	of	the	anti-D3	brane	in	the	background	of	the	T-moduli		

GSS̄(Ti, T̄i) =
V(Ti, T̄i) + 3|m3/2|2

|m3/2|2

Geometry Dynamics



G = G0(Ti, T̄i) + S + S̄ + GSS̄(Ti, T̄i)SS̄

We	start	with	a	geometry,

Any phenomenological	potential	 can	be	reconstructed
by	choosing	the	metric	of	a	nilpotent	superfield S:

GSS̄ =
⇣
e�G0V

pheno

� G
i

Gij̄G
j̄

+ 3
⌘

V
pheno

= eG0(GSS̄ + G
i

Gij̄G
j̄

� 3)

But	the	metric	becomes	quite	complicated.	

V
pheno

Relation	between	a	general	potential	and	S-geometry



Periodic space filling for "Angels and Devils" (1941) The tessellation and the final result for the hyperbolic
tiling for "Angels and Devils”, "Circle	Limit	IV"	(1960)

Principles of Plane Tessellations

The whole surface is covered with equilateral triangles. If we 
shift the whole plane over the distance AB, it will cover the 
underlying pattern once again. This is a translation of the 
plane. We can also turn the duplicate through 60 degrees 
about the point C, and we notice that again it covers the 
original pattern exactly. This is a rotation. Also if we do 
a reflection about the line PQ, the pattern remains the same.



Special	choices	of	a and	future	data

a = 1 r ⇡ 3⇥ 10�3

a = 1/3 r ⇡ 10�3

Critical	point	of	superconformal	
N=1 attractors,	Higgs	inflation,	R2 …

Maximal	superconformal		N=4
model,	maximal	supergravity	N=8	

a = 1/9 r ⇡ 3⇥ 10�4 1984	model	of	Goncharov-Linde

Any a <	20 Generic			N=1	supergravity

All	of	these	models	fit	the	current	data

r < 0.07

↵ = 2 r ⇡ 6⇥ 10�3 Fibre inflation

2015

7/3
6/3

3/3

2/3

1/3

5/3
4/3

New	in2016

Ferrara	and	RK

New	in	2017
RK,	Linde,	Roest,	Wrase,	Yamada

Working	dynamical	models
for	7-disk	manifold



Complex	scalar	fields	in	supergravity	and	string	theory	

are	coordinates	of	some	geometric	space:		MODULI	SPACE

Z(t, ~x) , Z̄(t, ~x)

The	metric	of	the	moduli	space	is	defined	by	a	second	derivative	
of	the	Kahler	potential

The	curvature	of	the	MODULI	SPACE,	Kahler	curvature	for	our	
models	is	

RKähler = �g�1
ZZ̄

@Z@Z̄ log gZZ̄ = � 2

3↵

ds2 = gZZ̄ dZ dZ̄

gZZ̄ = @Z@Z̄K(Z, Z̄)
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In	geometric	variables

in	canonical	variables

1

2
R� 3↵

@T@T̄

(T + T̄ )2
� V0(T � 1)2

Purely	bosonic	theory,	what	is	the	
relation	to	fundamental	theory	?

From	the	previous	lecture



Details	and	assumptions	underlying	3a=1,2,3,4,5,6,7 prediction	

M-theory compactified on	a	7-manifold	with	G2 holonomy
special	choice	of	Betti numbers
one	can	obtain	d=4	N	=	1	supergravity	with	rank	7	scalar	coset

so that
70 ! 2(1 + 6) = 2⇥ 7 = 14 . (3.5)

This truncation has a Kähler structure supporting N = 1 supersymmetry. One can identify 7
Poincaré disks due to the decomposition

E7(7)(R) � [SL(2,R)]7 . (3.6)

The original kinetic term is reduced to a form with the Kähler potential of the form

K = �
7X

i=1

ln(�i(⌧i � ⌧̄i)) (3.7)

with 7 pairs of independent scalars and the [SL(2,R)]7 symmetry, a seven-disk manifold. The
fact that the disk of the SL(2) commuting with SO(6, 6) has the same Kähler curvature of
the other six SL(2)/SO(2) (each separately corresponding to ↵ = 1/3) can be understood by
string triality arguments [14] and by the underlying special geometry of the N=2 truncation
[15].

4 M theory on a 7-manifold with G2 holonomy

Instead of a compactification on a 7-torus, one can compactify M theory on a 7-manifold with
G2 holonomy. The early investigation of G2 holonomy in physics was performed in [16], with
review of the first 20 years in [17]. One of the most recent application of this compactification
can be found in [18] and, of course, many more studies of M theory on G2 were performed over
the years.

Here we will focus on the model studied in [19, 20], it requires the following choice of the
Betti numbers

(b0, b1, b2, b3) = (1, 0, 0, 7) . (4.1)

This theory is identified with the maximal rank reduction on the seven torus and leads directly
to d=4 N = 1 ‘curious supergravity’ where 7 complex scalars are coordinates of the coset space

hSL(2,R)
SO(2)

i7
. (4.2)

The corresponding Kähler potential describing the scalar sector of this theory is the one in
eq. (3.7) with 7 pairs of independent scalars and the [SL(2,R)]7 symmetry. This model is one
of the ‘Four curious supergravities’ defined in [20]. The other 3 have N = 2, N = 4, N = 8
supersymmetries, we are interested only in N = 1 ‘curious supergravity’. It has the field
content defined by Betti numbers : the d=4 fields originating from the d=11 metric gMN are

gµ⌫ ! b0 = 1
Aµ ! b1 = 0
A ! b1 + b3 = 7 (4.3)
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Poincaré disks due to the decomposition

E7(7)(R) � [SL(2,R)]7 . (3.6)

The original kinetic term is reduced to a form with the Kähler potential of the form

K = �
7X

i=1

ln(�i(⌧i � ⌧̄i)) (3.7)

with 7 pairs of independent scalars and the [SL(2,R)]7 symmetry, a seven-disk manifold. The
fact that the disk of the SL(2) commuting with SO(6, 6) has the same Kähler curvature of
the other six SL(2)/SO(2) (each separately corresponding to ↵ = 1/3) can be understood by
string triality arguments [14] and by the underlying special geometry of the N=2 truncation
[15].

4 M theory on a 7-manifold with G2 holonomy

Instead of a compactification on a 7-torus, one can compactify M theory on a 7-manifold with
G2 holonomy. The early investigation of G2 holonomy in physics was performed in [16], with
review of the first 20 years in [17]. One of the most recent application of this compactification
can be found in [18] and, of course, many more studies of M theory on G2 were performed over
the years.

Here we will focus on the model studied in [19, 20], it requires the following choice of the
Betti numbers

(b0, b1, b2, b3) = (1, 0, 0, 7) . (4.1)

This theory is identified with the maximal rank reduction on the seven torus and leads directly
to d=4 N = 1 ‘curious supergravity’ where 7 complex scalars are coordinates of the coset space

hSL(2,R)
SO(2)

i7
. (4.2)

The corresponding Kähler potential describing the scalar sector of this theory is the one in
eq. (3.7) with 7 pairs of independent scalars and the [SL(2,R)]7 symmetry. This model is one
of the ‘Four curious supergravities’ defined in [20]. The other 3 have N = 2, N = 4, N = 8
supersymmetries, we are interested only in N = 1 ‘curious supergravity’. It has the field
content defined by Betti numbers : the d=4 fields originating from the d=11 metric gMN are

gµ⌫ ! b0 = 1
Aµ ! b1 = 0
A ! b1 + b3 = 7 (4.3)

5

String	theory	compactified on	 T2 ⇥ T2 ⇥ T2 ⇢ T6

K = �
7X

i=1

ln(⌧i + ⌧̄i)) ) �7 ln(⌧ + ⌧̄)

K = � ln(S + S̄)� 3 ln(U + Ū)� 3 ln(T + T̄ ) ) �7 ln(⌧ + ⌧̄)

N=8	supergravity:	consistent	reduction	to	N=1	 E7(7)(R) � [SL(2,R)]7

3a=7
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