

Maximum-likelihood Map-Making for ACTPol/AdvACT

Simone Aiola – Princeton University

19 July 2017 – Nordita

A. HE UNIVERSI WEST CHESTER UNIVERSITY

🚇 🖓 NIST 🖗 🏟 🕈 🔘 SLAC (

CITA

HAVERFORD

ACTive Team

Outline

- 1. From time-ordered data to <u>unbiased maximum-likelihood maps</u>
- 2. Controlling systematics in the map-maker: <u>high-fidelity maps for the community (and the team)</u>
- From big maps to huge maps → comparison with Planck + map-making challenge for Simons Observatory

Atacama Cosmology Telescope

Extracted from "The Eternal Sky" Directed by Debra Kellner Image Nina Bernfeld and Yvan Neault Edit Jean Paul Husson

Courtesy of the Simons Foundation

CMB Data for Cosmology (not quite...)

Barron++ (2017)

30

180

PWV = 0.0 PWV = 0.25

PWV = 0.5 PWV = 0.75

PWV = 1.0PWV = 1.25

PWV = 1.5 PWV = 1.75

PWV = 2.0

200

220

PA1 and PA2 Bandpass PA3 Bandpass

Map-making (i.e. linear algebra)

• We need to go from time-ordered data to a sky map.

This linear system can be solved with (preconditioned) conjugate gradient.

Louis++ (2016)

Go Downhill (with ACT Gods)

- We start from a biased map, and we converge to the true <u>unbiased solution (small scales first)</u>. •
- We can recover scales larger than the first acoustic peak (we take spectra $100 < \ell < 9000$). •
- We are unbiased for l > 500(350) for T(P). ٠
- Straightforward to compute the transfer function. •

CMB D56 Maps

- High signal-to-noise measurement of temperature and polarization fluctuations
- Highlighting only unbiased scales

~ 600 sq-deg mapped on 0.5 arcmin pixels \rightarrow 18 x 10⁶ pixels !

CMB D56 Maps

- High signal-to-noise measurement of temperature and polarization fluctuations
- Highlighting only unbiased scales

~ 600 sq-deg mapped on 0.5 arcmin pixels \rightarrow 18 x 10⁶ pixels !

CMB D56 Maps

- High signal-to-noise measurement of temperature and polarization fluctuations
- Highlighting only unbiased scales

~ 600 sq-deg mapped on 0.5 arcmin pixels \rightarrow 18 x 10⁶ pixels !

CMB D56 Spectra

Polarization is starting to dominate the constraints on some cosmological parameters

Sidelobes Removal

- Atmospheric noise (T) leaking into E polarization noise \rightarrow signal must do the same.
- Observations of bright planets allowed us to model and remove this leakage effect.

Sidelobes Removal

- Atmospheric noise (T) leaking into E polarization noise \rightarrow signal must do the same.
- Observations of bright planets allowed us to model and remove this leakage effect.

Sidelobes Removal

- Atmospheric noise (T) leaking into E polarization noise \rightarrow signal must do the same.
- Observations of bright planets allowed us to model and remove this leakage effect.

Louis++ (2016)

Temperature Map @ 150GHz

18,000 sq-deg mapped on 0.5 arcmin pixels \rightarrow 330 x 10⁶ pixels !

Conclusions

- We produce maximum-likelihood temperature and polarization maps:
 - Two independent pipelines working on several computing clusters
 - Unbiased at multipoles bigger than 350(500) for P(T)
 - Systematics are treated in the map-making step
 - Easy to interpret, to work with, and to share with the community (go online !)
- <u>We cover roughly 18,000 sq-deg at different frequencies</u>:
 - Non-trivial cross-check of Planck results
 - Small-scale foregrounds (of interest especially for lensing)
 - Neutrino science via lensing and high-ell
 - Clusters, tSZ, kSZ and tons of cross-correlations
 - SO/CMB-S4 target such large areas \rightarrow feasible to work with 330 million pixels