Delensing the cosmic microwave background

Anthony Challinor

KICC/IoA/DAMTP
University of Cambridge

B-modes from lensing

- Lensing B-mode power can be accurately modelled (currently around 1% uncertainty due to parameter errors)
 - Additional cosmic variance is main obstacle for primordial B-modes

B-mode power measurements

Implications for inflation constraints

Delensing the CMB

Remap CMB with Wiener-filtered tracer I of CMB lensing

$$X^{\mathrm{delens}}(\hat{\mathbf{n}}) = X^{\mathrm{obs}}(\hat{\mathbf{n}} - \nabla \hat{\phi}_{\mathcal{W}})$$

$$\approx X^{\mathrm{unlens}}(\hat{\mathbf{n}} + \nabla (\phi - \hat{\phi}_{\mathcal{W}})) + \mathrm{noise}$$
Residual lensing

- Gradient approximation accurate for large-angle B-modes
- Residual lensing has power spectrum

ng has power spectrum
$$C_l^{\phi\phi,\,\mathrm{delens}} = C_l^{\phi\phi}(1-\rho_l^2) \qquad \qquad \qquad \qquad \\ \rho_l^2 = \frac{\left(C_l^{I\phi}\right)^2}{C_l^{II,\,\mathrm{tot}}C_l^{\phi\phi}}$$

Which scales matter for BB?

Delensing with CIB

Mak, AC+ 2016; see also Planck XLVII 2016

CIB delensing in practice:TT

Larsen, AC, Sherwin & Mak 2016

See Manzotti+ 2017 for application to BB from SPTPol

Internal delensing: Planck noise

Internal delensing with Planck

Planck internal delensing (TT recon.)

Undoes around 20% of peak smoothing

Origin of "peak-sharpening" bias

Reconstruction noise not independent of CMB fields

Bias from dependent recon. noise

Consider B-mode template delensing with XY estimator:

$$B_{\text{delens}} \sim B - \hat{E}_{\mathcal{W}} \hat{\phi}_{\mathcal{W}}(X, Y)$$

Power spectrum after delensing:

$$C_{\text{delens}}^{BB} \sim \langle BB \rangle - 2 \langle B\hat{E}_{\mathcal{W}}\hat{\phi}_{\mathcal{W}}(X,Y) \rangle + \langle \hat{E}_{\mathcal{W}}\hat{\phi}_{\mathcal{W}}(X,Y)\hat{E}_{\mathcal{W}}\hat{\phi}_{\mathcal{W}}(X,Y) \rangle$$

If reconstruction noise were independent of CMB, just gives usual

$$2\langle B\hat{E}_{\mathcal{W}}\phi_{\mathcal{W}}\rangle$$

In practice, reconstruction dependent on CMB giving dominant bias

$$2B\hat{E}_{\mathcal{W}}\hat{\phi}_{\mathcal{W}}(X,Y) + 2B\hat{E}_{\mathcal{W}}\hat{\phi}_{\mathcal{W}}(X,Y)$$

r-dependent bias if X,Y=B and overlapping scales

BB delensing (TT and MV recon.)

- Detect expected change in BB at 5σ (MV recon.)
- Planck too noisy to detect BB directly at high significance

1000

1500

Future reconstruction noise

- EB particularly helpful for pol. noise $< 5 \mu K$ arcmin
 - Polarization reconstructions less susceptible to extragalactic contamintion (e.g., tSZ)

BB delensing with future CMB

Corrections to lens remapping

- Polarization rotation
 - Negligible (Lewis, Hall & AC 2017) as deflection², i.e., less than I arcsec (but cf. Marozzi+ 2017, where shear²)
- Time delay
 - Hu & Cooray 2001
- Emission-angle effects
 - Lewis, Hall & AC 2017

- (Curl-mode lensing from e.g., post-Born effects)
 - Hirata & Seljak 2003; Pratten & Lewis 2016 etc.

Emission angle and time delay

Angle and time-delay B-modes

- Large-scale angle+delay B-modes like 0.02 μ Karcmin white noise
 - Not removable by standard delensing
 - Larger than B-modes from post-Born curl lensing

Lewis, Hall & AC 2017

Summary

- CMB lensing generates \emph{B} -modes with almost white-noise spectrum equivalent to 5 μ Karcmin noise
 - Now detected by several ground-based experiments
- With no coherent cleaning ("delensing"), will dominate error budget for r
 - E.g., limits $\sigma(r) > 5x \, I \, O^{-4}$ from I > 30 on 70% of sky
- Can improve $\sigma(r)$ by factor few with internal delensing
 - CIB is useful external lensing proxy
- Internal and external delensing demonstrated on data in past year – beware of biases for internal delensing!
- Emission-angle and time-delay effects not removed by standard delensing – small but may be ultimate limit

Implications for inflation constraints

