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Figure 3. Schematic timeline showing the expected increase in sensitivity (µK2) and the corresponding
improvement for a few of the key cosmological parameters for Stage-3, along with the threshold-crossing
aspirational goals targeted for CMB-S4.

improvement for a few of the key cosmological parameters for Stage-3, along with the threshold-crossing
aspirational goals targeted for CMB-S4.

Finally, in Fig. 4 we show how the scientific findings (yellow circles), the technical advances (blue circles)
and satellite selections (green circles) would a↵ect the science goals, survey strategy and possibly the design
of CMB-S4.
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Characterization of the GW signal

Later stages

(1) Backreaction on background �(0)

(2) Estimated saturation of P⇣

Anber, Sorbo ’09

Barnaby, Pajer, MP ’12

Linde, Mooij, Pajer ’12

Primordial B.H.

- - 2.2 — 1.5 — 0.5

(3) Chiral GW production A+A+ ! hL

Cook, Sorbo ’11

Barnaby, Pajer, MP ’12

Crowder, Namba, Mandic, Mukhoyama, MP ’12
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IV. GRAVITATIONAL WAVES AT INTERFEROMETERS

In Section III we discussed the observable cosmological fluctuations on CMB/LSS scales. Such scales left the horizon
roughly 55 to 60 e-foldings before the end of inflation, during the phase where backreaction e�ects are negligible. In
this section, we instead study scalar and tensor fluctuations on much smaller scales. These modes left the horizon
closer to the end of inflation, when backreaction e�ects start to play an important role in determining the evolution
of the homogeneous background, ⇤(t) and H(t). Our main results are summarized in figure 6, where we show that
Advanced LIGO/VIRGO could detect a stochastic background of gravitational waves from inflation for ⇥CMB as small
as 2.33 (equivalent to f/(Mp�) � 0.021) in the case of a linear inflaton potential, and as small as 2.23 (equivalent to
f/(Mp�) � 0.031) in the case of a quadratic potential.

Characterization of the GW signal

Full evolution and comparison with experiments

Bartolo et al’ 16 ⇢ LISA Cosmology group

⌦GW h2 ' 1.5 · 10�13 H4

M4
p

e4⇡⇠

⇠6
, ⇠ � 1

nT ' (4⇡⇠ � 6) (✏� ⌘)

✓
✏ ⌘ �

Ḣ
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2 �2 , Axion scale = Mp/35

Bartolo et al’ 16

Name A5M5 A5M2 A2M5 A2M2 A1M5 A1M2
Arm length [km] 5M 5M 2M 2M 1M 1M
Duration [years] 5 2 5 2 5 2

Table 1: The six representative LISA configurations chosen for the analysis (number of links fixed to
six and noise level to the LISA Pathfinder one N2).

2 LISA sensitivity to a stochastic background

In 2013 the European Space Agency (ESA) has approved a GW observer in space as the
L3 mission. The main candidate for this mission is a space-borne interferometer based on
the long-standing, ESA-NASA joint project LISA (Laser Interferometer Space Antenna).
The goal of the LISA mission is to detect GWs in the frequency range (10�5 � 0.1) Hz
with high sensitivity (see e.g. Ref. [60] and references therein). This frequency band is
unexplored so far and very rich with both astrophysical and cosmological sources: the
main target is the GW signal from (massive black hole binaries) MBHB (masses in the
range 104 � 107M�) with high signal to noise ratio (SNR) and up to high redshift (see
e.g. Ref. [61] and references therein). However, low-mass black hole binaries as those
detected by LIGO in the range of few tens of solar masses will also be visible far from
merger [62, 63], together with galactic binaries [64], extreme mass ratio inspirals (EMRIs)
[65], and possibly a stochastic background from the early Universe [39].

In 2015, in preparation for the L3 mission, ESA appointed the “Gravitational Ob-
servatory Advisory Team” (GOAT) to provide advice on the science return of a range
of possible configurations for the eLISA (evolved LISA) detector. Several analyses were
then conducted on the scientific performance of different (e)LISA designs to specify the
science case: the present work is part of this series of papers. The first paper of this
series dealt with the GW signal from massive black hole binaries [61], the second paper
with the stochastic background from first order phase transitions occurring in the early
Universe [39], the third one with the use of massive black hole binaries as standard sirens
to probe the expansion of the universe [66] (a paper on the GW signal from EMRIs is in
preparation, and other studies dealing with the scientific performances of (e)LISA have
also been completed outside the series, as for example [62, 63]). Here, we address specif-
ically the potential of several LISA configurations to detect a stochastic background of
GW coming from inflation.

The variable characteristics of the (e)LISA configuration analysed in the aforemen-
tioned papers were the low-frequency noise level, the number of laser links (4 or 6), the
length of the interferometer arm (1, 2 or 5 million km), and the duration of the mission
(2 or 5 years). Since then, a major achievement has been reached: the LISA Pathfinder
satellite has flown and demonstrated that the expected noise in (e)LISA is almost one
hundred times better than the original requirement for the instrument [67]. The noise
that we adopt in this analysis is therefore the so-called N2 noise level [61]: this has been
tested by the pathfinder at frequencies f > 1 mHz, but the forecast is that it will be finally
achieved over the whole frequency spectrum. Moreover, the outcome of the GOAT study
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Ḣ

H2
, ⌘ ⌘ �

�̈

H �̇

◆

V =
1

2
m2�2

Characterization of the GW signal

Full evolution and comparison with experiments

Bartolo et al’ 16 ⇢ LISA Cosmology group

⌦GW h2 ' 1.5 · 10�13 H4

M4
p

e4⇡⇠

⇠6
, ⇠ � 1

nT ' (4⇡⇠ � 6) (✏� ⌘)

✓
✏ ⌘ �

Ḣ
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Figure 8. Example of a distribution of PBH masses that satisfies the current PBH bounds and that
can account for the present dark matter of the universe, FPBH ⌘

R
dM/M fPBH (M) = 1. The distri-

bution has a shape as obtained from the rolling axion bump model [16, 49], which is well approximated
by a log-normal distribution close to the peak, fPBH (M) = 1p

2⇡ �
exp

�
�(ln M/Mpeak)2/(2�2)

�
. The

distribution shown in the Figure is characterized by M ' 83M� and � ' 0.42, in a window where
the PBH bounds are weakest. This distribution is used in producing the GW signals shown in Figs. 9
and 12.

5.1 GW at PTA scales

PTA measurements are most sensitive at frequencies f ⇠ few nHz. GW modes of such
frequencies originate from scales that left the horizon about N ⇠ 40 e-folds before the end of
inflation (as can be immediately seen by combining Eqs. (5.3) and (A.2)). From Eq. (A.2),
we see that scalar overdensities produced at N ⇠ 40 e-folds collapse into primordial black
holes of mass M ⇠ O (10) M�. Therefore, as already pointed out in [16], PTA measurements
can provide useful information on PBH of such masses.

We quantify this in the context of the Gaussian vs. Non-Gaussian (rolling axion) bump
models studied in the previous sections. In Figure 8 we show a distribution of current PBH
masses, that saturates the PBH limit in this mass range and that constitutes all of the dark
matter of the universe,

FPBH ⌘
Z

dM

M
fPBH (M) = 1 . (5.1)

In the left panel of Figure 9 we show the bump in the primordial scalar curvature required to
produce this distribution, both in the case of the Gaussian peak and of the rolling axion peak
models.11 We note that the required distribution of P⇣ in the Non-Gaussian case is much
smaller, and narrower, than the required distribution in the Gaussian case. Nevertheless,
they result in the same fPBH (M), due to the very di↵erent relations (3.1) for the PBH
formation fraction �.

In both models, this bump in the scalar modes is accompanied by a GW bump at
PTA frequencies. In the Gaussian bump model, the GW signal is sourced by the scalar
perturbations at horizon re-entry. In the Non-Gaussian rolling axion bump model (denoted
as �2 in the figure), the GW signal is dominated by the primordial GWB produced during
inflation, by the same mechanism that produced the bump in the scalar modes. As we already
discussed in the previous section, we stress that the induced GW signal is much smaller in

11We stress that this discussion ignores any possible merging and accretion of the PBH after their formation.
For a proper discussion, see the next section.
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Figure 9. Left panel: Bump in the primordial scalar perturbations that saturates the PBH bound
at PTA scales. Right panel: Corresponding bump in the stochastic GW background, compared with
current (“PTA”) and forthcoming (“SKA”) limits. The blue solid (resp., red dashed) curves refer to
the Gaussian bump model (resp., the rolling axion bump model, for which we chose ⇠⇤ = 5.59 and
� = 0.4).

the Non-Gaussian vs. the Gaussian model, since the PBH bound on the scalar perturbations
is much more stringent in the former case (a more constrained ⇣ implies a more constrained
induced ⇣ + ⇣ ! hi signal).

The magnitude of this GW signal is shown in the right panel of Figure 9, where it
is compared with the present PTA bounds [51–53], as well as the forecast bounds for the
forthcoming Square Kilometer Array (SKA) experiment [28, 54]. While consistent with the
current bounds, both models produce a GW signal well within the reach of SKA.

Besides the PBH limit shown in Figure 2, the spatial curvature perturbations are also
constrained by µ and y CMB distortions. Of relevance for the present discussion, see also
Ref. [3], the µ distortion is given by [55, 56]

µ ' �3 ⇥ 10�9 + 2.3

Z 1

k0

dk

k
P⇣ (k)

2

64exp

0

B@�

h
k̂

1360

i2

1 +
h

k̂
260

i0.3
+ k̂

340

1

CA � exp

0

@�
"

k̂

32

#2
1

A

3

75 , (5.2)

where k̂ = k Mpc and k̂0 = 1. In this expression, the primodrial curvature power spectrum
is multiplied by a window function with its main support at wavenumbers 50 <⇠ k̂ <⇠ 2 ⇥ 104.

Assuming NCMB = 60 at the scale k̂CMB = 0.002, this corresponds to modes that left the
horizon between approximately 45 and 50 e-folds before the end of inflation.12 The Gaussian
and �2 distribution shown in Figure 9 lead, respectively, to the distortion µ ' 3.6 ⇥ 10�5

and 3⇥ 10�8. Both values are below the current bound |µ| <⇠ 10�4 from the COBE / FIRAS
experiment [57, 58]. The CMB distortion obtained in the Gaussian bump model is well within
the reach of a PIXIE-like experiment, which has an estimated sensitivity |µ| = O

�
10�7

�
[59].

The rolling axion model leads instead to a value below this sensitivity, and only slightly
greater than the scale invariant case (a scale invariant spectrum corresponding to that of
Figure 9, with no bump, leads to µ ⇠ 10�8).

We also see from the figure that the Gaussian bump model results in a much greater
GW signal than the rolling axion bump model, and that the Gaussian bump case shown in

12On the other hand, y-distortions are mostly sensitive to modes 1 <⇠ k̂

<⇠ 50, which roughly corresponds to
50 <⇠ N

<⇠ 54. These scales are significantly larger than those considered in this work.
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fPBH ⌘
1

⇢CDM

d ⇢PBH

d lnM

Required primordial P⇣ if perturbations obey

�2 distribution (from rolling axion)

Gaussian distribution

• Can we experimentally tell one from the other ?

• Can we learn about PBH from their formation up to today ?
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Figure 3. Diagrammatic expression for the GW induced by scalar perturbations in the Gaussian
bump model.

4 Primordial vs. Induced Gravitational Waves

We identify three distinct populations of GW associated with PBH.6

In order of their formation, they are:

1. The GW produced during inflation by the same mechanism that produces the enhanced
scalar perturbations that later become PBH at reentry. We refer to this population as
the “primordial GW”, and we denote it as hp.7

2. The GW sourced by the enhanced scalar perturbations. This gravitational production is
maximized when the scalar modes re-enter the horizon during the radiation dominated
era. We refer to this population as the “induced GW”, and we denote it as hi.

3. The GW produced by the merging of PBH binaries, since formation until today [23, 24].

In this work we study the first two populations, in the context of the Gaussian bump
model and of the rolling axion bump model introduced in the previous section.

The Gaussian bump model assumes that no significant primordial GW are produced.
The induced GW are produced by the scalar curvature modes through standard nonlinear
gravitational interactions, through a process diagrammatically shown in Figure 3. The gravi-
tational interaction is schematically of the type h⇣2, where h is a tensor mode of the metric
(the GW) and ⇣ is the scalar curvature (in this schematic discussion we do not indicate the
tensorial indices, nor the spatial derivatives acting on ⇣, which characterize the interaction).
The tensor mode sourced by this interaction obeys a di↵erential equation that can be solved
through a Green function, G (⌘, ⌘0), schematically described as

hi (⌘) =

Z ⌘

d⌘0 G
�
⌘, ⌘0

�
⇣
�
⌘0
�
⇣
�
⌘0
�

, (4.1)

where ⌘ is (conformal) time, and where the right hand side contains also a convolution in
momenta. This leads to a contribution to the GW power spectrum, schematically as

hhi (⌘) hi (⌘)i =

Z ⌘

d⌘0
Z ⌘

d⌘00 G
�
⌘, ⌘0

�
G
�
⌘, ⌘00

� ⌦
⇣
�
⌘0
�
⇣
�
⌘00
�↵ ⌦

⇣
�
⌘0
�
⇣
�
⌘00
�↵

. (4.2)

6In addition to the signals considered here, there is also the stochastic background from the non-spherical
collapse of PBH [1]. This background can be estimated as ⌦nsc, 0 = E ·� ·⌦rad,0, where E indicates the e�ciency
of converting the horizon mass during formation of PBH to GW and � is the fraction of causal domains that
collapse into a PBH. Using the bound �

<⇠ 2 ⇥ 10�8, from Figure 1, we can estimate ⌦nsc, 0 h
2
<⇠ 10�12 · E ,

which is much smaller than the signals studied here, and thus is ignored.
7These are not the vacuum tensor fluctuations produced during quasi-de-Sitter inflation, which are negli-

gible on these scales.
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Figure 6. Auto-correlation of the induced GW signal in the rolling axion bump model. Intermediate
solid (resp. wiggly) lines represent scalar (resp. gauge field) perturbations.

sourced by these scalar modes. In fact, we will see that hp dominates over hi in the rolling
axion bump model.

Even if we ignore hp, the study that we perform here constitutes, to the best of our
knowledge, the first attempt to fully compute the hhihii auto-correlation in a Non-Gaussian
model, where the source of the enhanced scalar perturbations is completely specified. In
the previous literature, when studying the induced GW in the context of PBH formation,
the scalar perturbations are typically assumed to be Gaussian, so that the source term
h⇣4i in hhihii =

R
d⌘0d⌘00G2

⌦
⇣4
↵

can be written as the product of two point functions P 2
⇣ ,

see Eq. (4.3). In the present context, this Gaussian contribution corresponds to just the
first diagram of Figure 6. The other two diagrams only emerge when a concrete model is
considered, and analogous additional diagrams could be present also for di↵erent concrete
mechanisms, where e.g. more fields are involved.

In general, the 4-point correlator
⌦
⇣4
↵

cannot be expressed completely in terms of prod-
ucts of 2-point correlators

⌦
⇣2
↵
, and the expression (4.3) must be replaced by 8

Phi(⌘, k) ⌘ k3

2⇡2

X

�=±
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D
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E0
,

(4.6)

where FT , T and T̃ are given in Eq. (4.5) and cos ✓kp = k ·p. Evaluating the
⌦
⇣4
↵

correlator
in the rolling axion bump model gives rise to the three diagrams shown in Figure 6. The three
diagrams are evaluated in Appendix D. We denote the first diagram as “Reducible”, since in
this case the

⌦
⇣4
↵

correlator can be reduced to the product of two scalar power spectra. Using

8A prime on a correlator denotes the correlator divided by the corresponding Dirac �-function.
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Figure 4. Primordial and induced GW in the rolling axion bump model.

The two expressions (4.1) and (4.2) are diagrammatically shown in Figure 3.
Adding up the two GW polarizations (the induced GW is not polarized, since it is

sourced by the scalar ⇣), the total explicit expression corresponding to (4.2) is [21]

Phi(⌘, k) =
32

81

k

⌘2

Z ⌘

0
d⌘0

Z ⌘

0
d⌘00

Z 1

0
dp

Z 1

�1
dz

p3
�
1 � z2

�2

|k � p|3 P⇣(p) P⇣(|k � p|)

⇥ ⌘0 ⌘00 sin(k⌘ � k⌘0) sin(k⌘ � k⌘00) FT (p ⌘0, |k � p| ⌘0) FT (p ⌘00, |k � p| ⌘00) ,

(4.3)

where p is the loop momentum, z is the cosine of the angle between k and p, and where

FT (u, v) = 2T (u)T (v) + T̃ (u)T̃ (v) , (4.4)

with

T (u) =
9

u2

"
sin(u/

p
3)

u/
p

3
� cos(u/

p
3)

#
, T̃ (u) =

3

u2

"
(u2 � 6) sin(u/

p
3)

u/
p

3
+ 6 cos(u/

p
3)

#
.

(4.5)

Let us now turn our attention to the rolling axion bump model. In this case, both
primordial and induced GW are present. Figure 4 shows how the GW are produced from the
vector field A amplified by the rolling axion. The primordial GW are produced by the vector
fields during inflation. The autocorrelation hhphpi is of the form (3.4). This correlator was
computed in [16, 49], and it is given by the first diagram of Figure 5.

The induced GWB is produced during the radiation dominated era (mostly at horizon
re-entry) by the scalar perturbations that were sourced by the vector fields during inflation.
The induced GW signal in this model was never computed, and it is one of the original
results of the present work. Due to the fact that both hp and hi originate from the vector field
perturbations, the total power spectrum h(hp + hi)

2i contains also a mixed-term contribution,
given by the second and third diagram of Figure 6.

The presence of hp therefore provides additional contributions to the GW power, that
are typically disregarded in works of GW from PBH. Disregarding this signal may not always
be a proper assumption, since the production of PBH required a mechanism that enhances
the scalar perturbations during inflation, and this mechanism can in principle enhance also
the primordial GW. The relevance of hp over hi is particularly important in the case in which
the scalar perturbations obey Non-Gaussian statistics, as we will show below. The reason for
this is that PBH bounds constrain the scalar power much more in the case of Non-Gaussian
vs. Gaussian statistics (see Figure 2). This then limits the amount of induced GW which are
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Garćıa-Bellido, MP, Unal ’17

Impact of di↵erent statistics

Impact of di↵erent evolution

These GW probe PBH mass distribution at formation, not at present

FPBH~1.

CMB

Micro Lensing

1 10 100 1000
10-4

0.001

0.01

0.1

1

MêMü

f PB
H
HML

Figure 8. Example of a distribution of PBH masses that satisfies the current PBH bounds and that
can account for the present dark matter of the universe, FPBH ⌘

R
dM/M fPBH (M) = 1. The distri-

bution has a shape as obtained from the rolling axion bump model [16, 49], which is well approximated
by a log-normal distribution close to the peak, fPBH (M) = 1p

2⇡ �
exp

�
�(ln M/Mpeak)2/(2�2)

�
. The

distribution shown in the Figure is characterized by M ' 83M� and � ' 0.42, in a window where
the PBH bounds are weakest. This distribution is used in producing the GW signals shown in Figs. 9
and 12.

5.1 GW at PTA scales

PTA measurements are most sensitive at frequencies f ⇠ few nHz. GW modes of such
frequencies originate from scales that left the horizon about N ⇠ 40 e-folds before the end of
inflation (as can be immediately seen by combining Eqs. (5.3) and (A.2)). From Eq. (A.2),
we see that scalar overdensities produced at N ⇠ 40 e-folds collapse into primordial black
holes of mass M ⇠ O (10) M�. Therefore, as already pointed out in [16], PTA measurements
can provide useful information on PBH of such masses.

We quantify this in the context of the Gaussian vs. Non-Gaussian (rolling axion) bump
models studied in the previous sections. In Figure 8 we show a distribution of current PBH
masses, that saturates the PBH limit in this mass range and that constitutes all of the dark
matter of the universe,

FPBH ⌘
Z

dM

M
fPBH (M) = 1 . (5.1)

In the left panel of Figure 9 we show the bump in the primordial scalar curvature required to
produce this distribution, both in the case of the Gaussian peak and of the rolling axion peak
models.11 We note that the required distribution of P⇣ in the Non-Gaussian case is much
smaller, and narrower, than the required distribution in the Gaussian case. Nevertheless,
they result in the same fPBH (M), due to the very di↵erent relations (3.1) for the PBH
formation fraction �.

In both models, this bump in the scalar modes is accompanied by a GW bump at
PTA frequencies. In the Gaussian bump model, the GW signal is sourced by the scalar
perturbations at horizon re-entry. In the Non-Gaussian rolling axion bump model (denoted
as �2 in the figure), the GW signal is dominated by the primordial GWB produced during
inflation, by the same mechanism that produced the bump in the scalar modes. As we already
discussed in the previous section, we stress that the induced GW signal is much smaller in

11We stress that this discussion ignores any possible merging and accretion of the PBH after their formation.
For a proper discussion, see the next section.
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Garćıa-Bellido, MP, Unal ’17

Impact of di↵erent statistics

Impact of di↵erent evolution

These GW probe PBH mass distribution at formation, not at present

– Accretion increases mass of each PBH, and total PBH fraction by A

– Merging increases mass of each PBH by M
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