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® In many models, inflationary evolution is uneventful. Nearly exponential
expansion led by a weakly coupled & slow rolling scalar

= Nearly scale invariant signals

= Small NG

* No guaranteed GW signal at CMB scales

* Very hard to detect signals at smaller scales (< 10 e-folds from CMB-+LSS)

® In contrast, strong ongoing/forthcoming/discussed experimental advance

CMB polarization & distortions, LSS, GW @ smaller scales ...

New windows to probe potential and interactions (of the inflaton, and

possibly of other fields) at specific epochs during inflation
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GW at CMB scales

e Strong experimental program, from

ground, balloon, and (proposed) satellite
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GW from gauge fields

At this conference: Adshead, Agrawal, Caldwell, Dimastrogiovanni, Erfani,

Fasiello, Ferreira, Komatsu, Maleknejad, Sfakianakis, Sorbo
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Sourced GW during inflation

Cook, Sorbo '11 —_
N2 .2
L=(¢—-¢:)" x Senatore, Silverstein, Zaldarriaga '11

Models I worked on

(standard GR and QM)

Barnaby, Moxon, Namba, MP, Shiu, Zhou '12
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A field X produced during inflation, and X — hsourced > hvacuum (notation: h = 6¢77)

e Real question heoyrced VS. Csourced- VWhatever sources GW is also at least

gravitationally coupled to (¢ Barnaby, MP '10; Barnaby et al' 12;

Ferreira, Sloth '14; Mirbabayi, Senatore, Silverstein, Zaldarriaga '14; Namba et al '15



e No direct coupling with inflaton (Source gravitationally coupled to both GW and inflaton)

e Relativistic source (GW are produced by quadrupole moment; ¢ by energy density)
Barnaby et al '12

e Source active only for limited time (GW observed only on a small window;

¢ provides constrains on many more scales)

All these present in Namba, MP, Shiraishi, Sorbo, Unal '15 Simplest V for a pseudoscalar:
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e Gives visible r at arbitrarily small rvacuum / scale of inflation

e Under perturbative control MP, Sorbo, Unal '16

Three examples with ¢, = 10> (so that rvacuum = 16€ is unobservable):
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e Distinguishable from vacuum GW by tensor running

e Also BBB (bump has (h3) ~ (h?)3/2) and TB (only hr)
~

Testable at > 30 at LiteBIRD Shiraishi et al '16

Moral: Hard, but not impossible, to violate V < r relation. Requires

specific conditions, that allow to distinguish from vacuum GW



Naturally blue signals in axion inflation

Consider now AL = _¢ FF where ¢ = inflaton
4f Freese, Frieman, Olinto '90
Recall A4 « €™ g—ioc\/E
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Inflaton speeds up — signal naturally grows at small scales
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Gravitational Waves from Inflation 11 Valerie Domcke (APC) - GWs & Cosmology 2016
(i) GW at interferometer scales Cook, Sorbo 11; Barnaby, Pajer, MP "12

(ii) Primordial Black Holes Linde, Mooij, Pajer '12



Characterization of the GW
Full evolution and comparison
with experiments

Bartolo et al’ 16
LISA Cosmology group
49302010
1078+

g
a 10—11 -
o~
<
— n* gy
——— h2 nglrced
10-1 — Ny = —4€ + (41§ - 6)(€-n)

—-—— Ny

(4rté - 6)(e-n

1
0.1 100

f [Hz]

2 , Axion scale = M, /35

Slgnal Barnaby, Pajer, MP '12
1e-08 | N 60
cMB = .
(p=1) _~"AdvLIGO
1e-10 | ‘
[ ]
= ET
= te-12 b
O(}D .
Ecmp = 2.33
te-14 | -
.......... £=0
1e-16 | -
1e-12 1e-10 1e-08 1e-06 0.0001 0.01 1 100 10000
f/Hz
Name ASMb5 | ASM2 | A2M5 | A2M2 | AIM5 | A1M2
Arm length [km| | 5M 5M 2M 2M 1M 1M
Duration [years| 5 2 5 2 5 2




e Again, must avoid overproduction of ¢. Risk is too many PBH

e Uncertainty in scalar perturbations in large & regime. Beside r.h.s

additional effect from A [g [q'b—l— 6¢]] Friction also on §¢
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(lattice computations along lines of Adshead, Giblin, Scully, Sfakianakis '15)

e PBH production enhanced by the y? statistics of ¢

1
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e In chaotic inflation, PBH bound prevents GW from being observable
Linde, Mooij, Pajer '13
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e In relating N ~ 10 with N ~ 25, a given V (¢) must be assumed.

PBH bounds at LISA scales do not prevent GW from being seen at LISA
Garcia-Bellido, MP, Unal '16

e Due to x qu, significant differences from a minor change of V
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PBH Dark Matter Bird et al '16

Clesse, Garcia-Bellido '16

Suggested that LIGO events might be 1r
due to PBH accounting for present DM M
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Weaker limit than Ricotti et al '07
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« Required primordial F; if perturbations obey

Gaussian distribution

2 . . . . .
50 45 20 T 30 s X~ distribution (from rolling axion)

e Can we experimentally tell one from the other 7

e Can we learn about PBH evolution from formation up to today ?
Garcia-Bellido, MP, Unal '17



e PBH formed from large overdensities at re-entry. Unavoidably, also ( + ¢ — h

e At equal fpgH, greater P required in Gaussian case — dgreater GW

10 Mg

MpgH

e f~nHz GW signal at P TA scales, great experimental improvement

* Case of Gaussian ¢ very well studied C\ hi

Ananda et al’ 06; Baumann et al '07 C/

* In NG case, peak value (but not scale-dependence) estimated

Nakama, Silk, Kamionkowski '16
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Garcia-Bellido, MP, Unal '17

Impact of different statistics
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92 2.2
AL = —E(Qb—%) X
1) Bump of x— quanta production when ¢ (t) = ¢. during inflation  cpyng et al '99
Dominant ¢ from §x + ¢ — §x + 8¢  Barnaby, Kofman, et al '09

e Numerical 4+ semi-analytic results replaced with analytical results
Pearce, MP, Sorbo '17
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2) Slow roll from dense Zz (6 — gb*i)Q xf, trapped inflation Green et al '09

e Followed original computation, lifting the approx. (x; (1) x5 (t2)) o 6;6 (t1 — t2)
Pearce, MP, Sorbo '16

Impact on PS normalization, region of parameter space, and NG



Conclusions

e Models of particle production / field amplification during inflation

e Observable effects at CMB scales: NG, ns, GW 'r/y/Hmf

testable !

e Signatures at small scales = late times (from both scalar & tensor),

which typically very hard to probe



