Signatures of particle production during inflation

Marco Peloso, University of Minnesota

$$V\left(\sigma\right) + \frac{\sigma}{4f}F\,\tilde{F}$$

- Namba, MP, Shiraishi, Sorbo, Unal '15
- Bartolo et al, '16
- García-Bellido, MP, Unal '16, '17

$$V(\phi) + g^2(\phi - \phi_0)^2 \chi^2$$

• Pearce, MP, Sorbo '16, '17

 In many models, inflationary evolution is uneventful. Nearly exponential expansion led by a weakly coupled & slow rolling scalar

- Nearly scale invariant signals
- Small NG
- No guaranteed GW signal at CMB scales
- Very hard to detect signals at smaller scales (< 10 e-folds from CMB+LSS)

• In contrast, strong ongoing/forthcoming/discussed experimental advance

CMB polarization & distortions, LSS, GW @ smaller scales ...

New windows to probe potential and interactions (of the inflaton, and possibly of other fields) at specific epochs during inflation

$$\Delta \mathcal{L} = \frac{\phi}{f} F \, \tilde{F} \ \text{coupling}$$

Turner, Widrow '88
Garretson, Field, Carroll '92
Anber, Sorbo '06

$$\left(\frac{\partial^2}{\partial \tau^2} + k^2 \mp 2 a H k \xi\right) A_{\pm}(\tau, k) = 0 \qquad \xi \equiv \frac{\alpha \dot{\phi}^{(0)}}{2 f H} = O(1)$$

Physical ρ in one mode

- One tachyonic helicity at horizon crossing
- Then diluted by expansion
- Max amplitude $A_+ \propto \mathrm{e}^{\pi \xi}$

Amplified gauge fields source scalar and tensor perturbations

GW at CMB scales

 Strong experimental program, from ground, balloon, and (proposed) satellite

In single field slow-roll models

Scale of inflation
$$V^{1/4} \simeq 10^{16} \, \mathrm{GeV} \, \left(\frac{r}{0.01}\right)^{1/4}$$

Inflaton excursion
$$\Delta \phi \gtrsim M_p \left(\frac{r}{0.01} \right)^{1/2}$$
 Lyth '96

Are we sure?

GW from gauge fields

At this conference: Adshead, Agrawal, Caldwell, Dimastrogiovanni, Erfani,

Fasiello, Ferreira, Komatsu, Maleknejad, Sfakianakis, Sorbo

In this talk

Sourced GW during inflation

$$\mathcal{L} = (\phi - \phi_*)^2 \chi^2$$

Cook, Sorbo '11

Senatore, Silverstein, Zaldarriaga '11

$$\mathcal{L} = \sigma F \tilde{F}$$

Barnaby, Moxon, Namba, MP, Shiu, Zhou '12

Namba, MP, Shiraishi, Sorbo, Unal '15

$$\mathcal{L} = \frac{1}{2} \left(\delta \sigma'^2 - c_s^2 (\nabla \delta \sigma)^2 \right) , c_s \ll 1$$
 Biagetti, Fasiello, Riotto '13

Biagetti, Dimastrogiovanni, Fasiello, MP '14

Models I worked on (standard GR and QM)

A field X produced during inflation, and $X \to h_{\mathsf{sourced}} \gg h_{\mathsf{vacuum}}$ (notation: $h \equiv \delta q^{TT}$)

• Real question h_{sourced} vs. ζ_{sourced} . Whatever sources GW is also at least

gravitationally coupled to C

Barnaby, MP '10; Barnaby et al' 12;

Ferreira, Sloth '14; Mirbabayi, Senatore, Silverstein, Zaldarriaga '14; Namba et al '15

- No direct coupling with inflaton (Source gravitationally coupled to both GW and inflaton)
- Relativistic source (GW are produced by quadrupole moment; ζ by energy density)

Barnaby et al '12

• Source active only for limited time (GW observed only on a small window; ζ provides constrains on many more scales)

All these present in Namba, MP, Shiraishi, Sorbo, Unal '15

$$\mathcal{L} = \underbrace{-\frac{1}{2}(\partial\varphi)^2 - U(\varphi) - \frac{1}{2}(\partial\sigma)^2 - V(\sigma) - \frac{1}{4}F^2 - \frac{\sigma}{4f}F\tilde{F}}_{\text{inflaton sector}}$$

Mass of σ tuned to be comparable to H, $\delta \equiv \frac{\Lambda^4}{6H^2f^2} = \frac{m^2}{3H^2} = O(1)$

Simplest V for a pseudoscalar:

$$V\left(\sigma\right) = \frac{\Lambda^{4}}{2} \left[\cos\left(\frac{\sigma}{f}\right) + 1\right]$$

Bumps in ζ , h at scales that left the horizon while $\dot{\sigma} \neq 0$

- Gives visible r at arbitrarily small r_{vacuum} / scale of inflation
- Under perturbative control
 MP, Sorbo, Unal '16

Three examples with $\epsilon_{\phi} = 10^{-5}$ (so that $r_{\text{vacuum}} = 16 \epsilon$ is unobservable):

- Distinguishable from vacuum GW by tensor running
- Also BBB (bump has $\langle h^3 \rangle \simeq \langle h^2 \rangle^{3/2}$) and TB (only h_L)

Testable at $> 3\sigma$ at LiteBIRD Shiraishi et al '16

Moral: Hard, but not impossible, to violate $V\leftrightarrow r$ relation. Requires specific conditions, that allow to distinguish from vacuum GW

Naturally blue signals in axion inflation

Consider now
$$\Delta \mathcal{L} = -\frac{\phi}{4f} F \tilde{F}$$
 where $\phi = \text{inflaton}$

Freese, Frieman, Olinto '90

Recall
$$A_+ \propto \mathrm{e}^{\pi \xi}$$
 , $\xi = \frac{\dot{\phi}}{2fH} \propto \sqrt{\epsilon}$

$$\phi(t) \rightarrow A_{+} \rightarrow \zeta, h$$

Inflaton speeds up \rightarrow signal naturally grows at small scales

- (i) GW at interferometer scales
- Cook, Sorbo 11; Barnaby, Pajer, MP '12

(ii) Primordial Black Holes

Linde, Mooij, Pajer '12

Full evolution and comparison with experiments

Bartolo et al' 16
LISA Cosmology group

$$V = \frac{m^2}{2} \phi^2$$
 , Axion scale $= M_p/35$

Name	A5M5	A5M2	A2M5	A2M2	A1M5	A1M2
Arm length [km]	5M	5M	2M	2M	1M	1M
Duration [years]	5	2	5	2	5	2

- Again, must avoid overproduction of ζ . Risk is too many PBH
- Uncertainty in scalar perturbations in large ξ regime. Beside r.h.s

additional effect from $A\left[\xi\left[\dot{\phi}+\delta\dot{\phi}\right]\right]$. Friction also on $\delta\phi$ Anber, Sorbo '09 $\delta\ddot{\phi}+3\left[1-\frac{2\pi\,\xi}{3H\dot{\phi}}\frac{\alpha}{f}\vec{E}\cdot\vec{B}\right]H\delta\dot{\phi}-\frac{\vec{\nabla}^2}{a^2}\delta\phi+m^2\delta\phi=\frac{\alpha}{f}\vec{E}\cdot\vec{B}$

(lattice computations along lines of Adshead, Giblin, Scully, Sfakianakis '15)

• PBH production enhanced by the χ^2 statistics of ζ Avelino '05

Updated by Garcia-Bellido, MP, Unal '16 from Carr et al '09

• In chaotic inflation, PBH bound prevents GW from being observable

Linde, Mooij, Pajer '13

• In relating $N\simeq 10$ with $N\simeq 25$, a given $V\left(\phi\right)$ must be assumed.

PBH bounds at LISA scales do not prevent GW from being seen at LISA

Garcia-Bellido, MP, Unal '16

ullet Due to $\propto {
m e}^{\dot\phi}$, significant differences from a minor change of V

PBH Dark Matter

Bird et al '16 Clesse, García-Bellido '16

Suggested that LIGO events might be due to PBH accounting for present DM

$$f_{\mathrm{PBH}} \equiv \frac{1}{\rho_{\mathrm{CDM}}} \frac{d \, \rho_{\mathrm{PBH}}}{d \, \ln M}$$

 ϵ Required primordial P_{ζ} if perturbations obey

Gaussian distribution

 χ^2 distribution (from rolling axion)

- Can we experimentally tell one from the other?
- Can we learn about PBH evolution from formation up to today?

- PBH formed from large overdensities at re-entry. Unavoidably, also $\zeta + \zeta \to h$
- At equal f_{PBH} , greater P_ζ required in Gaussian case \to greater GW
- $f \sim {
 m nHz} \ \sqrt{rac{10\,M_\odot}{M_{
 m PBH}}}$ GW signal at PTA scales, great experimental improvement
 - \bigstar Case of Gaussian ζ very well studied Ananda et al' 06; Baumann et al '07

In NG case, peak value (but not scale-dependence) estimated

Nakama, Silk, Kamionkowski '16

In rolling axion (χ^2) model

GW produced during inflation

and by ζ at re-entry

$$\frac{h_p}{h_p} + \frac{h_p}{h_i} + \frac{h_i}{h_i} +$$

Impact of different statistics

These GW probe PBH mass distribution at formation, not at present

- Accretion increases mass of each PBH, and total PBH fraction by ${\cal A}$
- Merging increases mass of each PBH by M

Smaller $M_{
m formation}$ Higher $f \propto M_{
m formation}^{-1/2}$

$$\Delta \mathcal{L} = -\frac{g^2}{2} \left(\phi - \phi_* \right)^2 \chi^2$$

- 1) Bump of $\chi-$ quanta production when $\phi(t)=\phi_*$ during inflation Chung et al '99 Dominant ζ from $\delta\chi+\phi^{(0)}\to\delta\chi+\delta\phi$ Barnaby, Kofman, et al '09
- Numerical + semi-analytic results replaced with analytical results

Pearce, MP, Sorbo '17

$$\delta P_{\zeta} \left|_{
m peak} \right. \simeq 300 \, g^{7/2} \, P_{\zeta}$$

$$f_{
m NL}\left(k,\,k,\,k
ight)\,igg|_{
m peak}\,\simeq 90\,\left(rac{\delta P_{\zeta}}{0.1\,P_{\zeta}}
ight)^{9/7}$$

2) Slow roll from dense $\sum_{i} (\phi - \phi_{*i})^2 \chi_i^2$, trapped inflation Green

Green et al '09

• Followed original computation, lifting the approx. $\langle \chi_i^2(t_1) \chi_j^2(t_2) \rangle \propto \delta_{ij} \delta(t_1 - t_2)$

Pearce, MP, Sorbo '16

Impact on PS normalization, region of parameter space, and NG

Conclusions

Models of particle production / field amplification during inflation

ullet Observable effects at CMB scales: NG, n_s , GW

$$r \nleftrightarrow H_{\mathsf{inf}}$$
testable!

ullet Signatures at small scales \equiv late times (from both scalar & tensor), which typically very hard to probe