



http://www.astro.caltech.edu/cbass

# THE C-BAND ALL SKY SURVEY

#### Moumita Aich, University of KwaZulu-Natal, South Africa

for the C-BASS collaboration



## Galactic foregrounds in Planck bands



**Temperature and polarisation foreground spectra** *Planck Collaboration, 2015, arXiv:1502.01588, CORE arXiv: 1704.04501* 

- Total intensity appear to be more complicated than polarisation!
- Foreground minimum at ~80 GHz
- Polarisation might be less complicated but requires higher precision (CMB weaker)
- Foreground minimum at ~70 GHz



## Need for a synchrotron dedicated study

- Low frequency temperature foreground spectrum consists of free-free, synchrotron and anomalous microwave emission – degenerate in the narrow band 23-70 GHz
- Break degeneracy extend to lower frequency
- Sky maps where low-frequency foregrounds are clearly detected in each pixel
- Ground based for wavelengths much longer than 1 cm
- Polarised foreground components synchrotron emission and thermal dust emission are spatially correlated (WMAP 23 GHz and Planck 353 GHZ)<sup>1,2</sup>
- Synchrotron has same 'color' as CMB in 200-400 GHz range; the same level as BB at r=0.01

<sup>1</sup> Steve K. Choi, Lyman A. Page, JCAP12(2015)020 <sup>2</sup> Planck intermediate results. XXII, A&A Volume 576, April 2015

## Low-frequency ground-based surveys

| Survey                                                 | Frequency<br>(GHz)   | Angular<br>Resolution<br>(deg.) | Sky Coverage | Status                                                                 |
|--------------------------------------------------------|----------------------|---------------------------------|--------------|------------------------------------------------------------------------|
| <b>GEM</b> : Galactic<br>Emission Mapper               | 0.4/1.4/2.3/5/<br>10 | ~0.5 (10GHz)                    | Full-sky     | Low frequencies noisy<br>10 GHz on-going                               |
| <b>S-PASS</b> : S-band<br>Parkes All-Sky<br>Survey     | 2.3                  | 0.1                             | Southern Sky | First results out<br>Observations complete<br>Analysis on-going        |
| <b>C-BASS</b> : C-Band<br>All-Sky Survey               | 5.0                  | 0.75                            | Full-sky     | First results out<br>Northern obs complete<br>Southern obs have begun  |
| <b>QUIJOTE</b> : Q-U-I<br>JOint Tenerife<br>Experiment | 11,13,17,19          | ~1                              | Northern sky | First results out<br>Obs on-going<br>Possibility of full-sky in future |

## C-Band All Sky Survey (C-BASS)

| Sky coverage       | All sky                           |  |
|--------------------|-----------------------------------|--|
| Angular resolution | 0.73 degree (43.8 arcmin)         |  |
| Sensitivity        | 0.1 mK rms                        |  |
| Stokes coverage    | I, Q & U                          |  |
| Frequency          | 4.5 - 5.5 GHz (centered at 5 GHz) |  |

- Primary goal: a synchrotron template for use in CMB foreground subtraction, inflationary B-mode searches.
  - 5 GHz dominated by synchrotron radiation and largely uncorrupted by Faraday rotation; polarisation angles and fractions can be extrapolated to higher frequencies.
  - A 'low frequency channel' for Planck and future experiments; constrain synchrotron spectral index and its variation across the Galaxy
- Secondary goals:
  - understand emission mechanisms in the diffuse interstellar medium and magnetic fields
  - study distribution of AME, constrain models of Galactic structure
  - to help understanding of the Galactic Haze

To observe the entire sky, C-BASS uses two different ground based radio telescopes.

## **C-BASS North vs South**





|                       | North                                       | South                             |
|-----------------------|---------------------------------------------|-----------------------------------|
| Location              | Owens Valley Radio Observatory              | SKA Support Base in Klerefontein  |
| Bandwidth             | 4.5 – 5.5 GHz across <mark>1 channel</mark> | 4.5 – 5.5 GHz across 128 channels |
| Backend               | Analogue                                    | Digital                           |
| Dish Diameter         | 6.1 m with absorbing baffles                | 7.6 m under-illuminated           |
| Optical Configuration | Gregorian                                   | Cassegrain                        |
| Angular Resolution    | 0.73 degrees                                | 0.73 degrees                      |
| Sensitivity           | 0.1 mK per beam                             | 0.1 mK per beam                   |
| Start of Observations | Nov 2012                                    | Late 2015                         |
| End of Observations   | Early 2015                                  |                                   |

Table courtesy: Heiko Heilgendorff

## **Observations at 5 GHz - temperature**





#### Preliminary full season temperature map from C-BASS north



These are not the final maps as work is continuing on calibration and removal of systematic effects such as ground-spill, atmospheric 1/f noise and instrumental cross-polarisation. This map is of Stokes I and is presented with a highly non-linear colour scale to show features at all brightness levels – the ratio of brightest pixel to thermal noise level in the map is over 10,000:1.

#### Preliminary full season polarisation amplitude map from C-BASS north



This map is polarized intensity (Stokes  $(Q^2 + U^2)^{1/2}$ ) and is on a linear intensity scale.

### Preliminary all-sky intensity map from C-BASS



- Includes ~ 3 months of C-BASS south data, uncalibrated, uncleaned, lacks ground subtraction (gives rise to the background slope towards the SCP).
- Currently surveying through the SCP and will be surveying at a variety of elevations as per the north.

#### Figure courtesy: Angela Taylor



This map is a three-colour image in which

- red channel is the Haslam et al 408 MHz map
- green channel is the C-BASS / map, and
- blue channel is WMAP K band V band, which is an approximation to the high-frequency diffuse emission with the CMB removed.

The colours are balanced such that a temperature spectrum of index -2.7 would appear white. The intensity scale is highly non-linear.

#### Preliminary C-BASS T-T plots



T-T plots of the NCP region for various combinations of maps. The circles are for pixels used for template fitting. Blue filled circles are pixels that contain a weak (< 600mJy) extragalactic source from the Mingaliev et al. (2007) survey. Red stars are pixels that contain a bright (> 600mJy) source and are excluded from the analysis. The line is the best-fitting straight line to the masked data (unfilled and filled blue circles).

C-BASS NCP paper, C. Dickinson et al. 2017, In preparation Figure courtesy: Luke Jew

#### Survey status

- The northern survey observations at Owens Valley, USA are complete
- The **southern** survey at Klerefontein, South Africa started in **late 2015**
- Data analysis pipeline is complete: working on optimization of
  - RFI detection

•

- Sun contamination (data selection and subtraction)
- Ground contamination
- Polarisation calibration
- Pointing corrections
- Repeat Planck intensity analysis including C-BASS using COMMANDER, Gibbs sampling software, performs a pixel based parametric component separation (*Luke Jew* working with *Hans Kristian Eriksen & Ingunn Wehus*)
- Aim to have final northern maps in late 2017
- Southern survey should be completed in 2018, with full-sky maps soon thereafter

# Thanks!