Beyond Einstein in the era of precision cosmology: Gravity from ultra-large to small scales

Yashar Akrami

Lorentz Institute, Leiden University

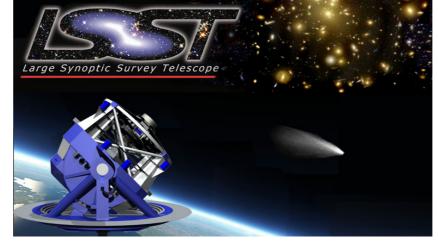
Advances in theoretical cosmology in light of data, NORDITA, July 20, 2017

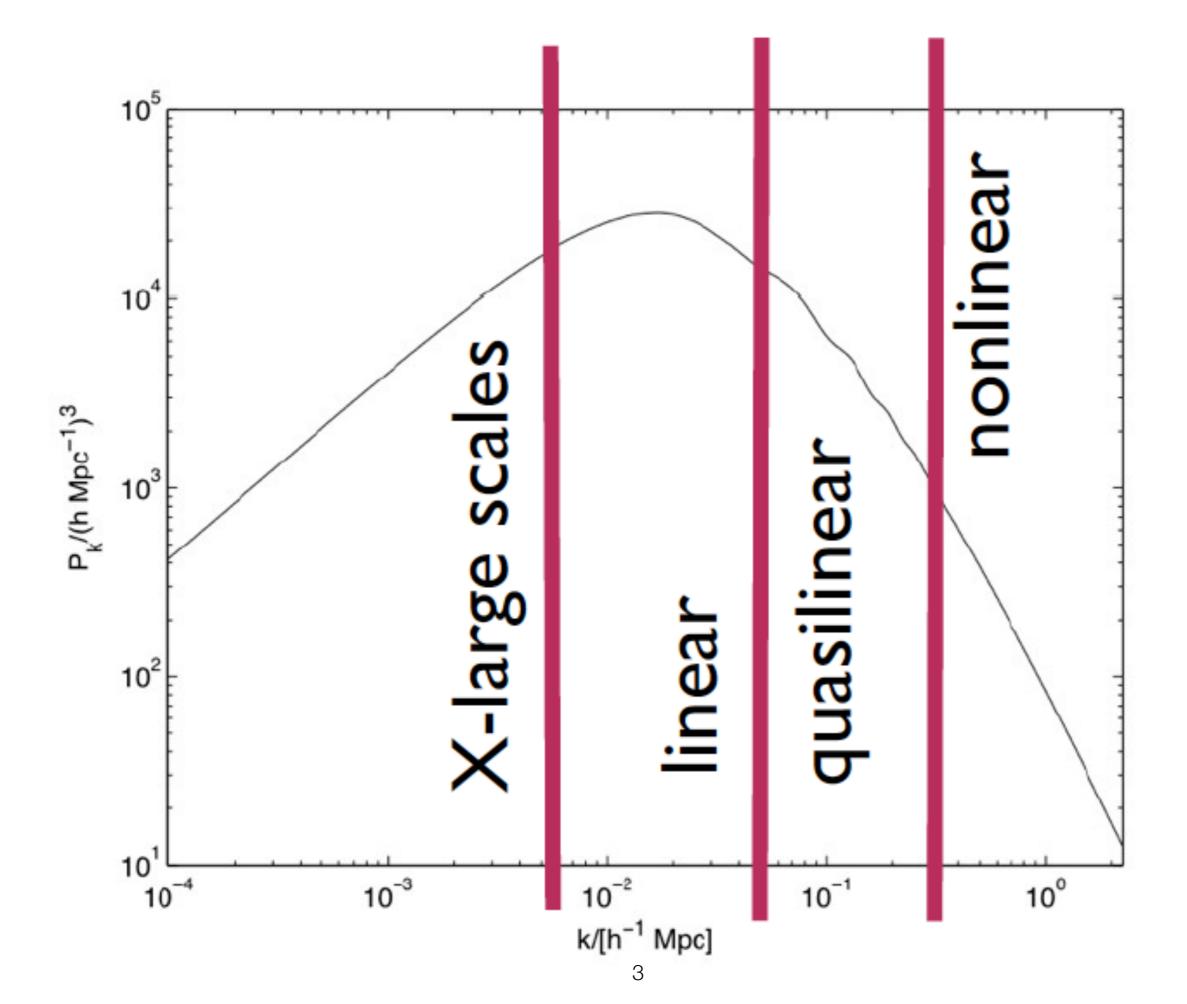
Low-redshift surveys

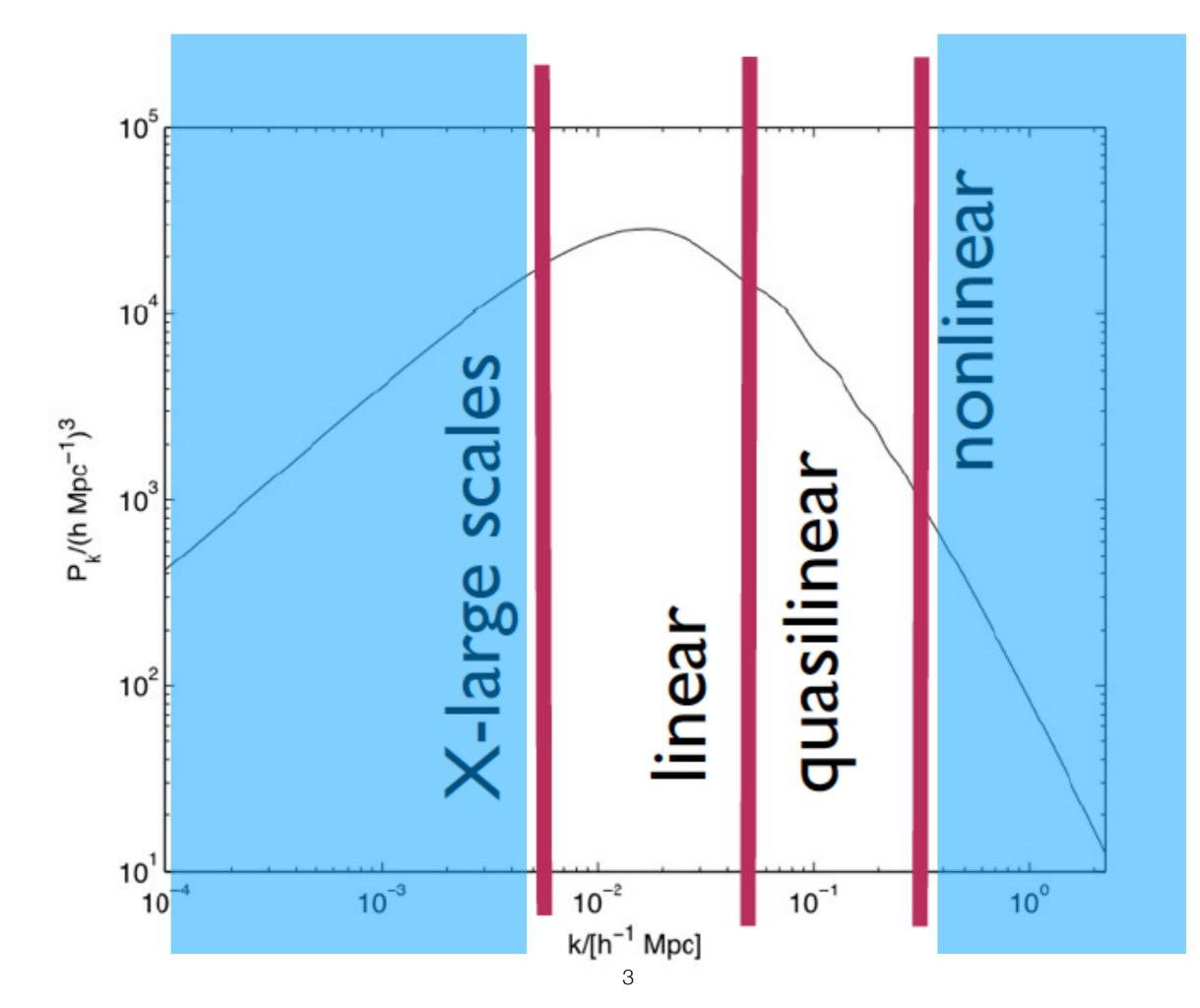
Euclid

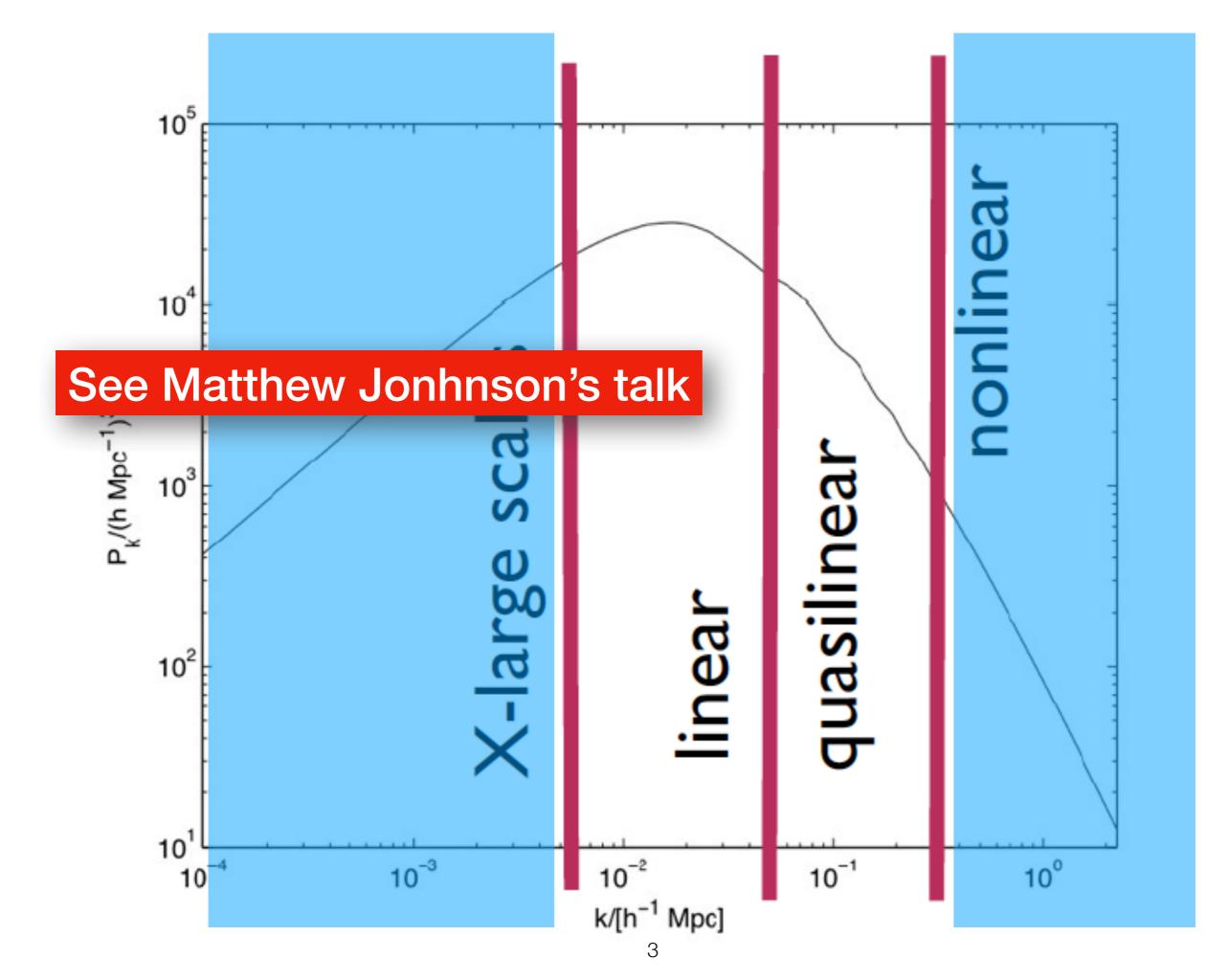
Square Kilometre Array

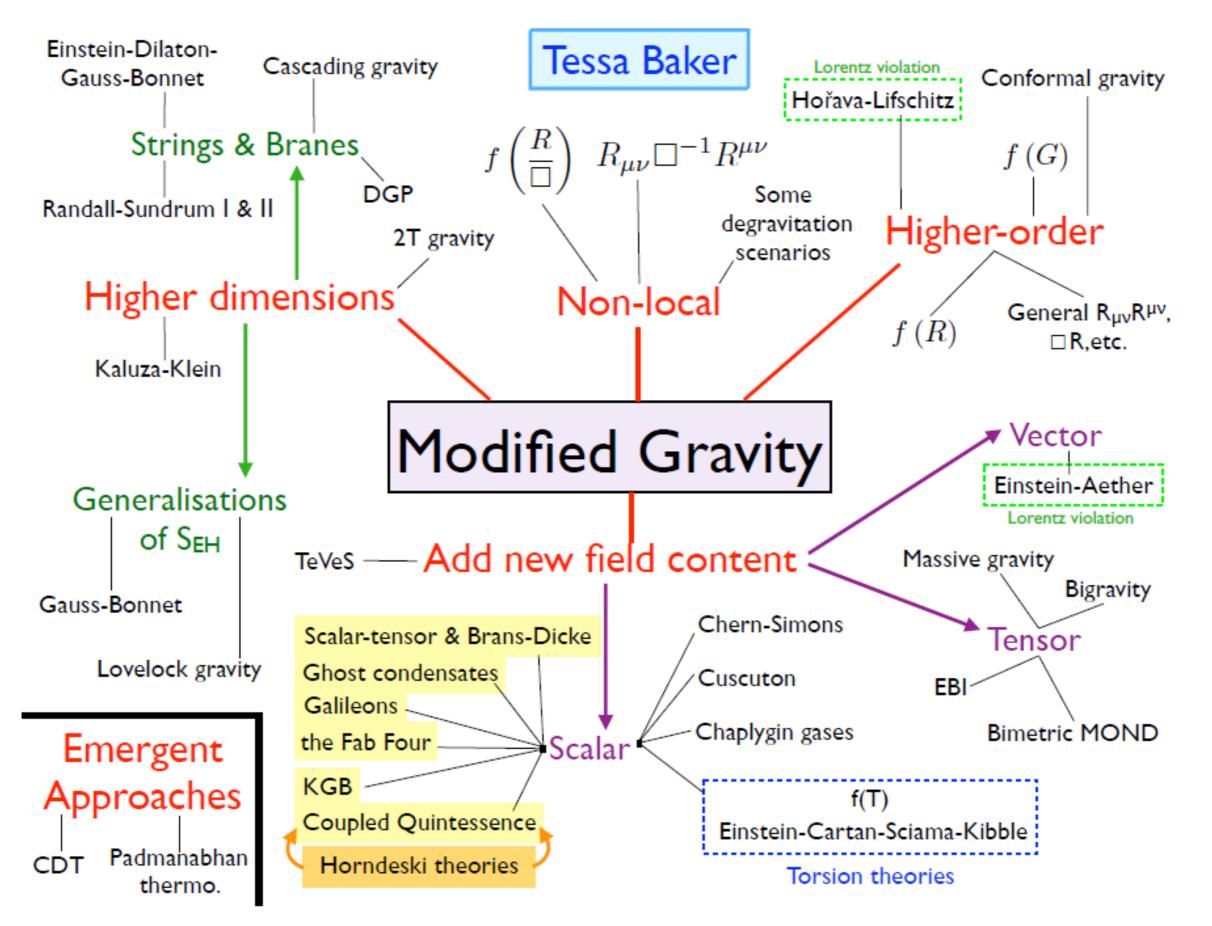
LSST



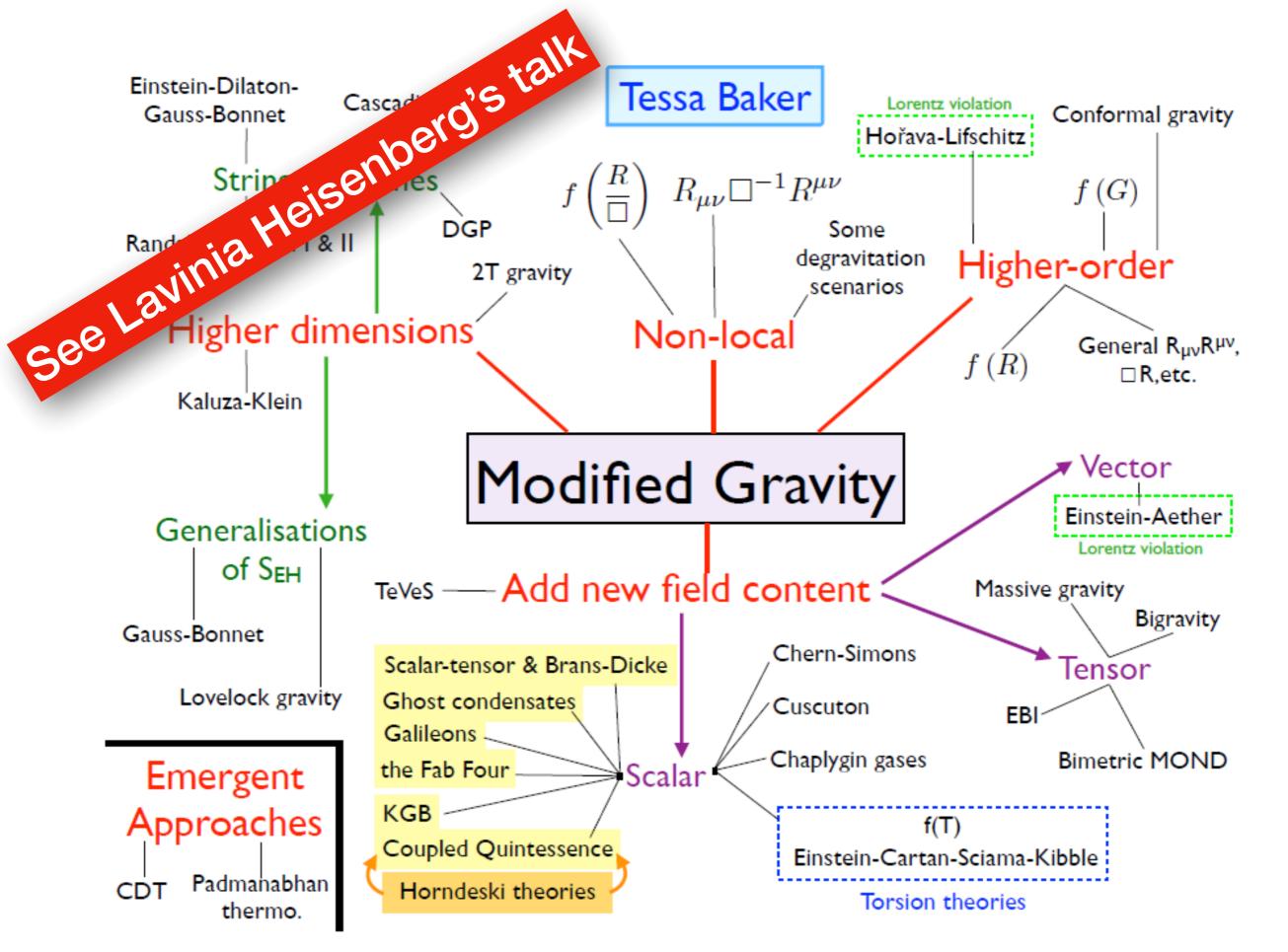






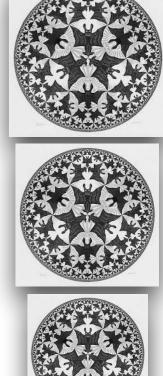


Bull and YA et al. 2016



Bull and YA et al. 2016

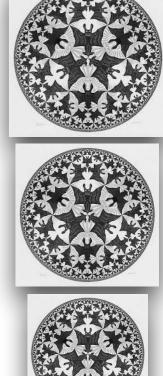
Escher disks from supergravity Kallosh, Linde et al.

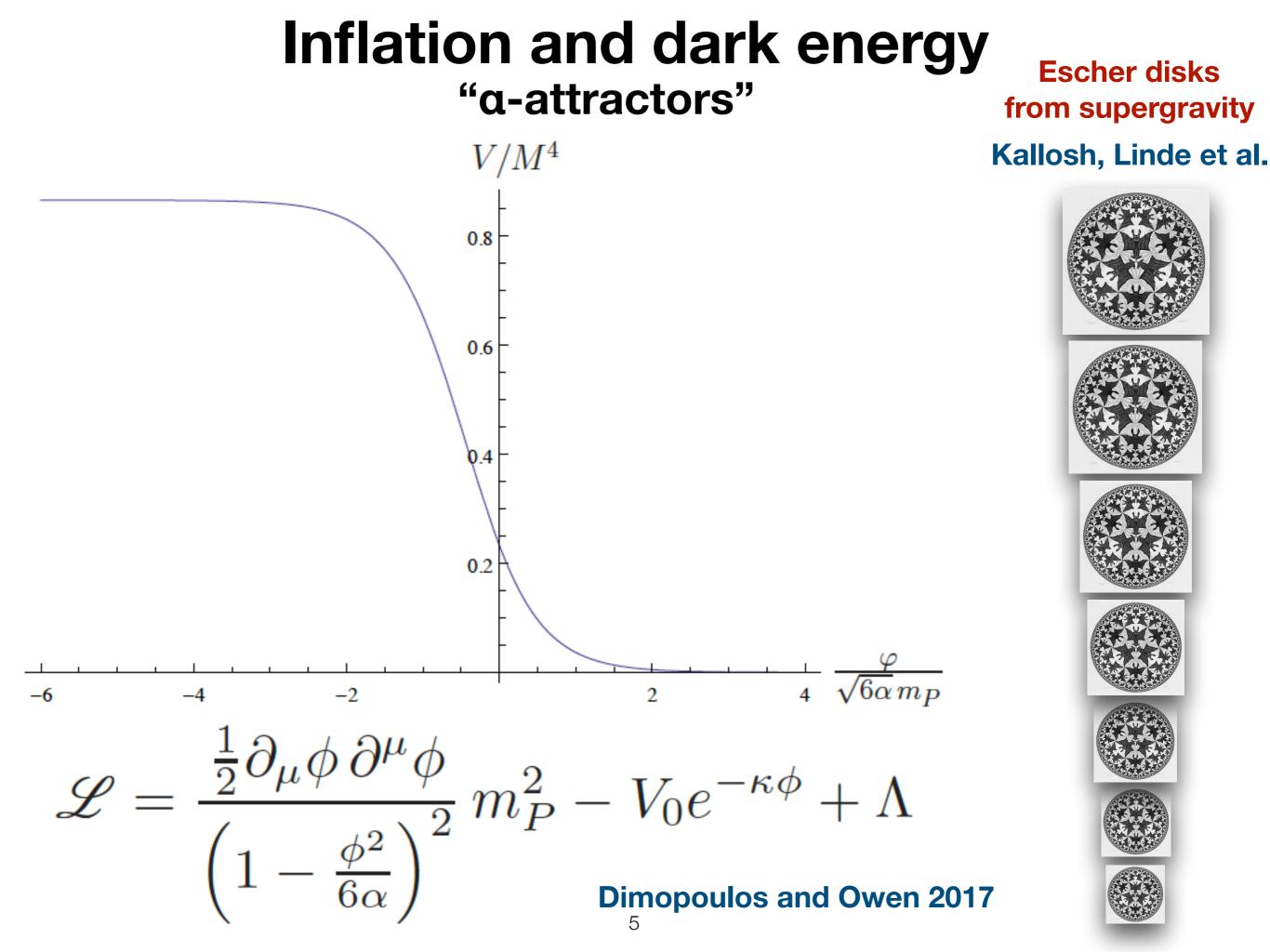


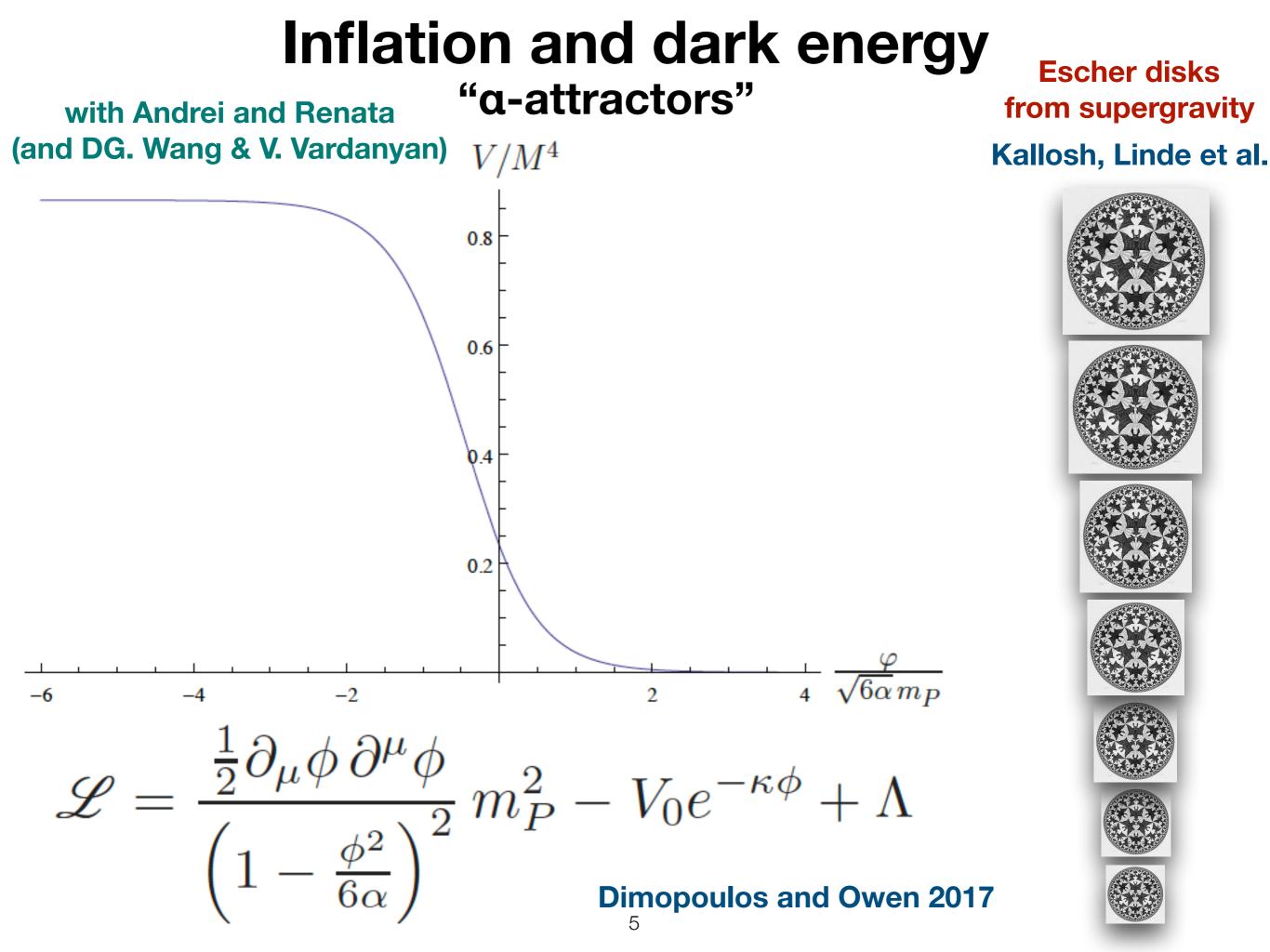
Escher disks from supergravity

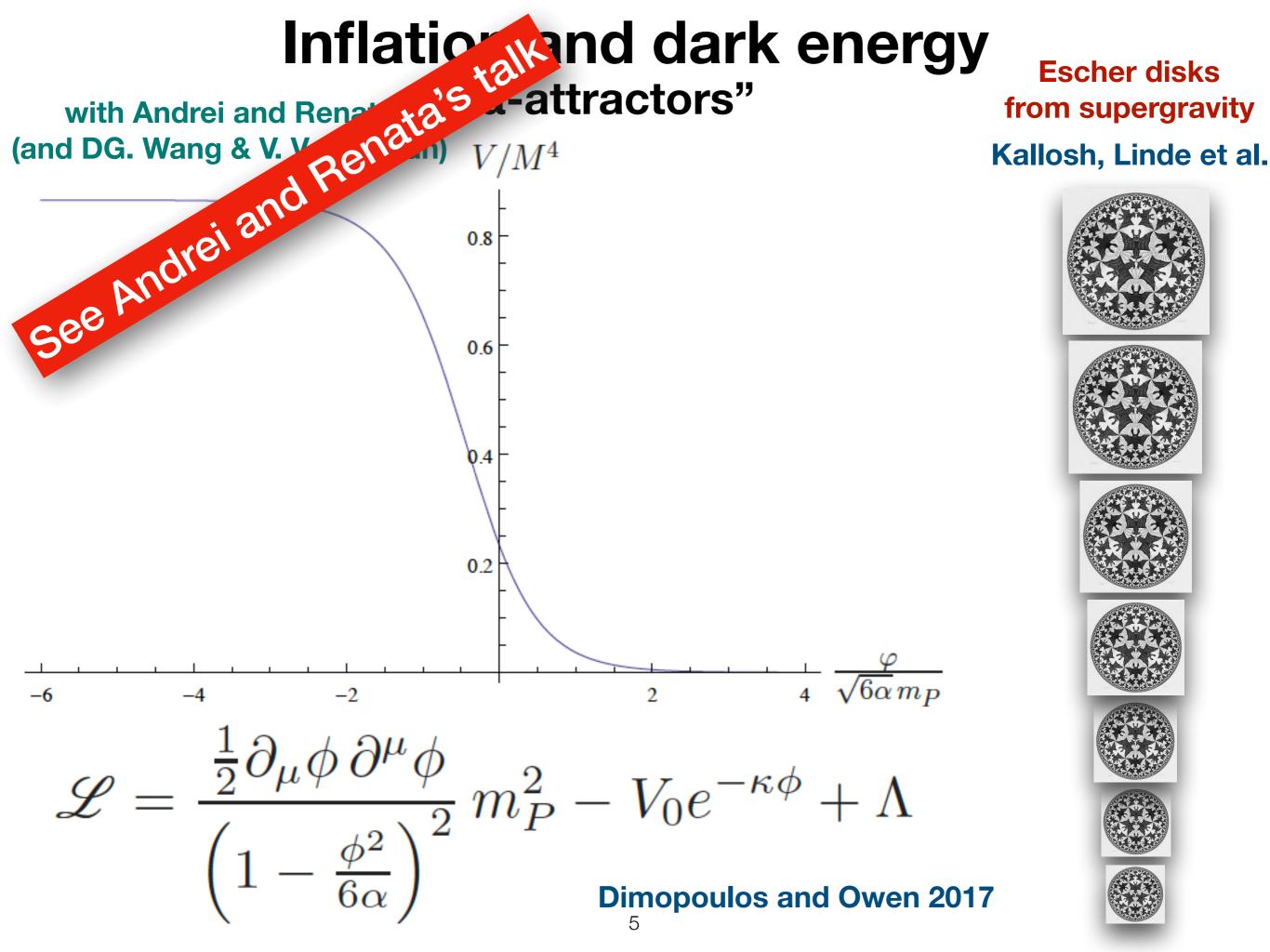
Kallosh, Linde et al. 0.1 M=10 M. CMB-S4 0.03 BK14/Planck $V_0(1-(\phi/M)^4)$ 0.01 $V_0 \tanh^2(\phi/M)$ TE Υ. 47< N_{*} < 57 $47 < N_* < 57$ 0.003 $47 < N_{\star} < 57$ $N_{*} = 57$ 0.001 $N_{\star} = 50$ 3×10^{-4} 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 -1.00 n_8 Ferrara and Kallosh 2017

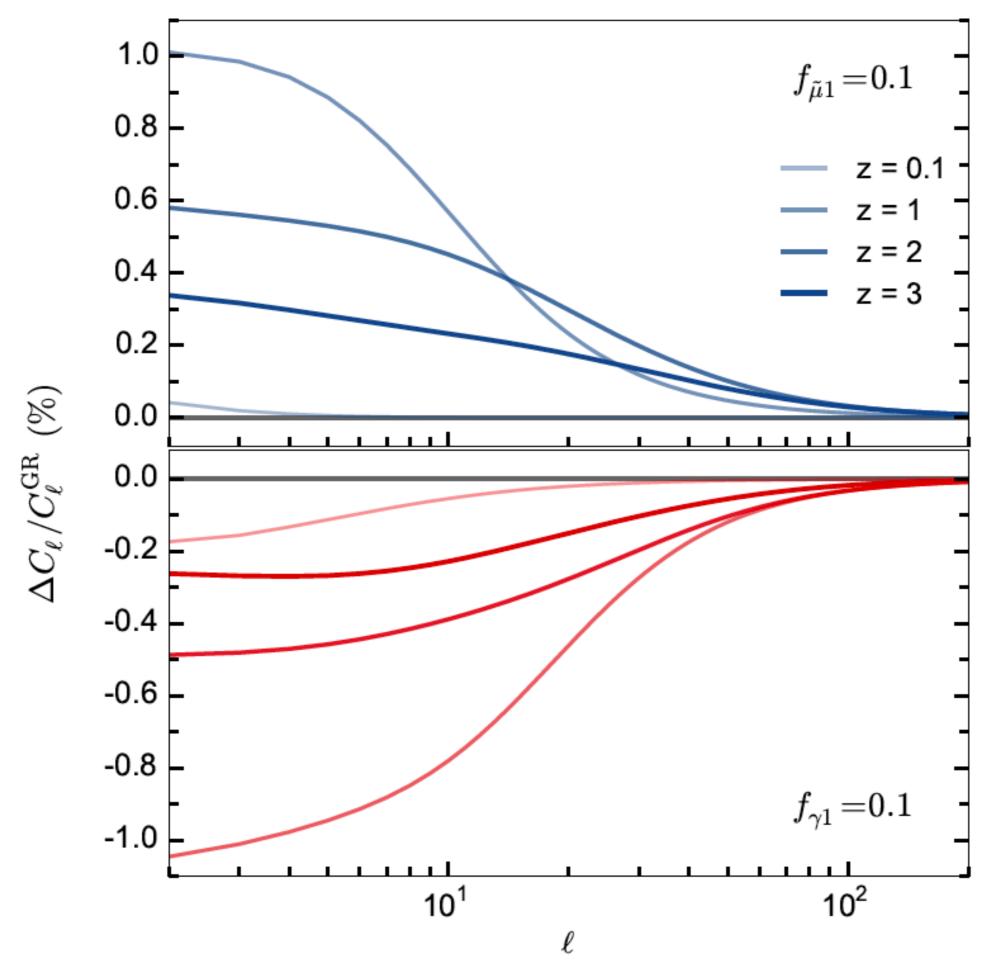
Escher disks from supergravity Kallosh, Linde et al.



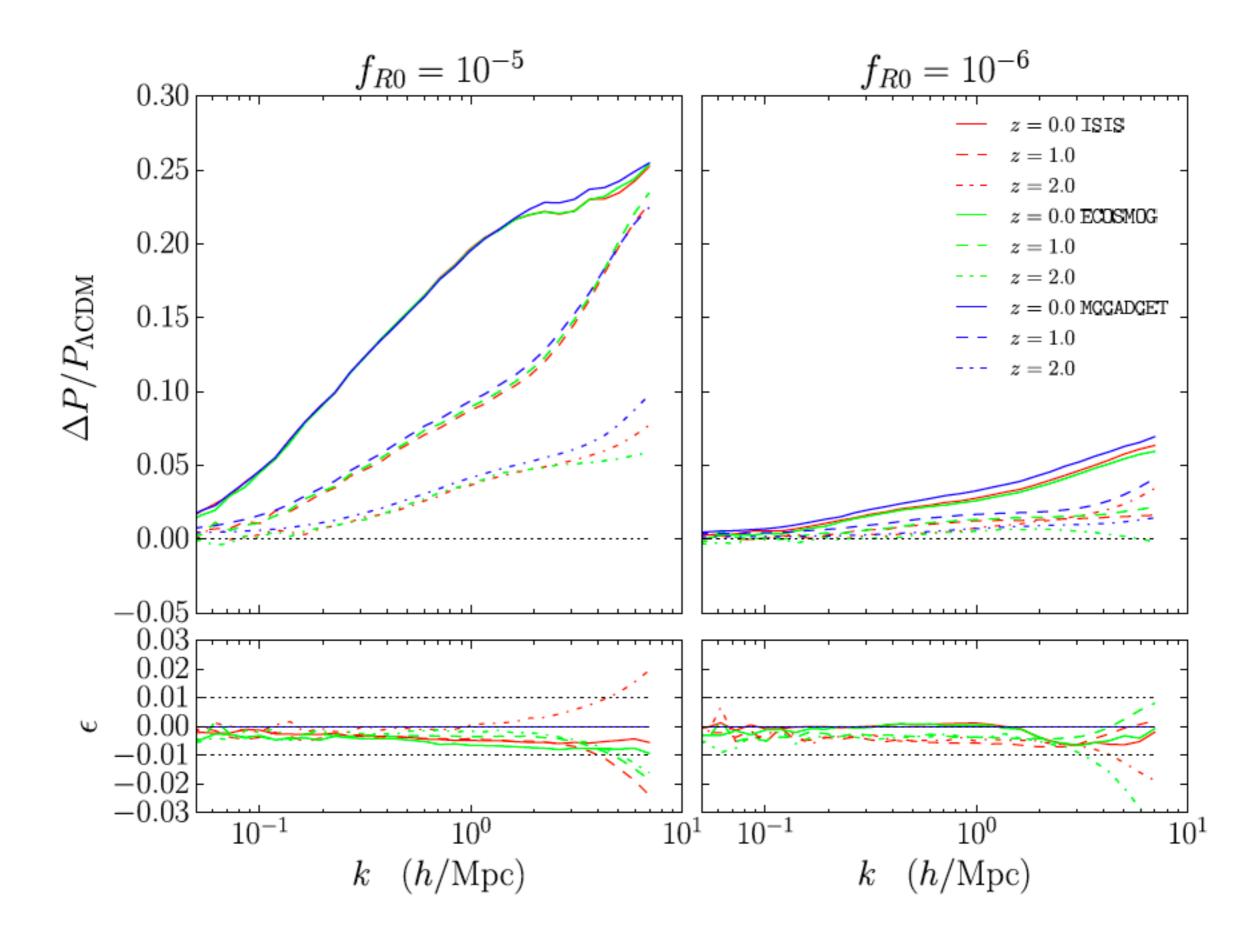




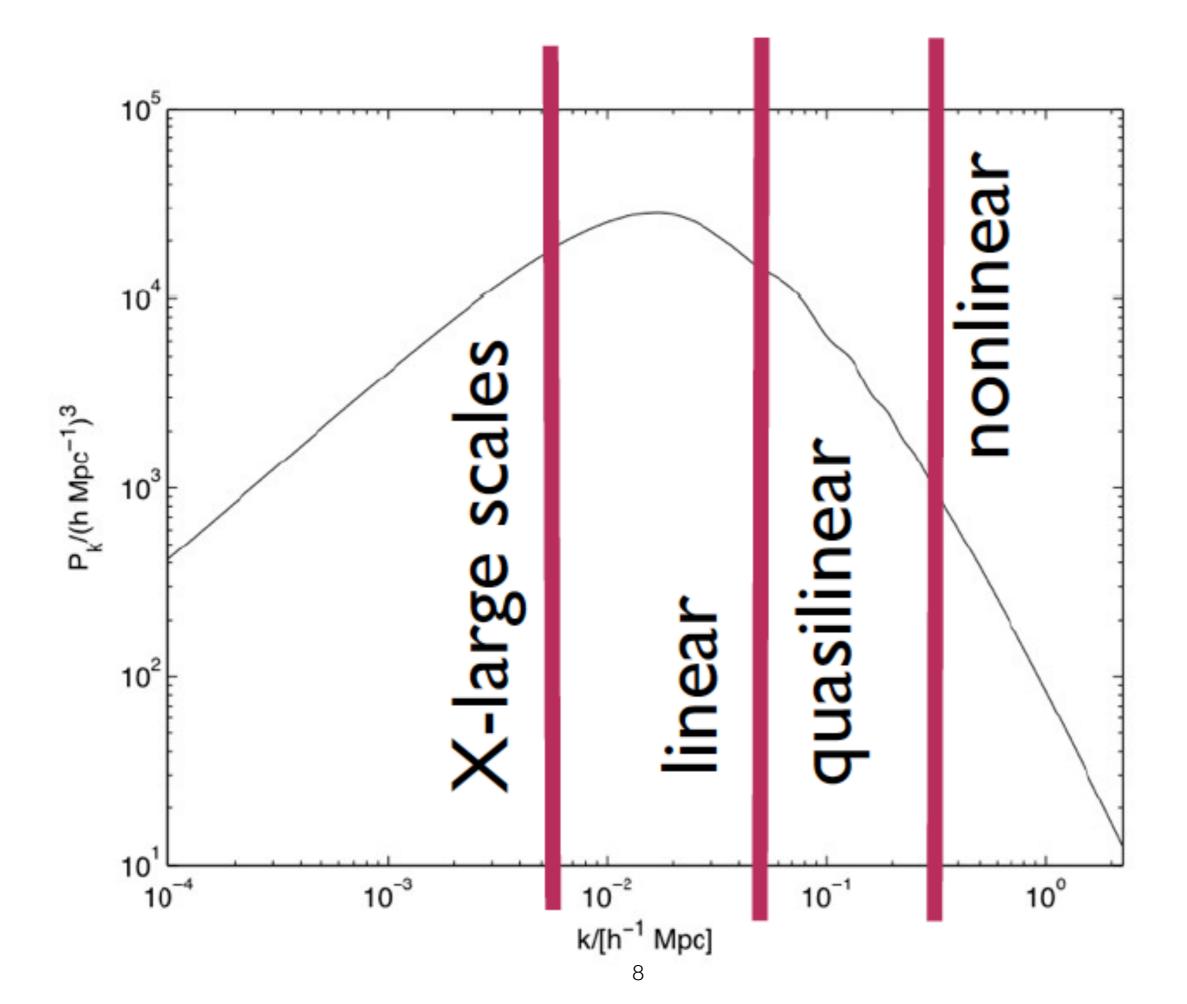




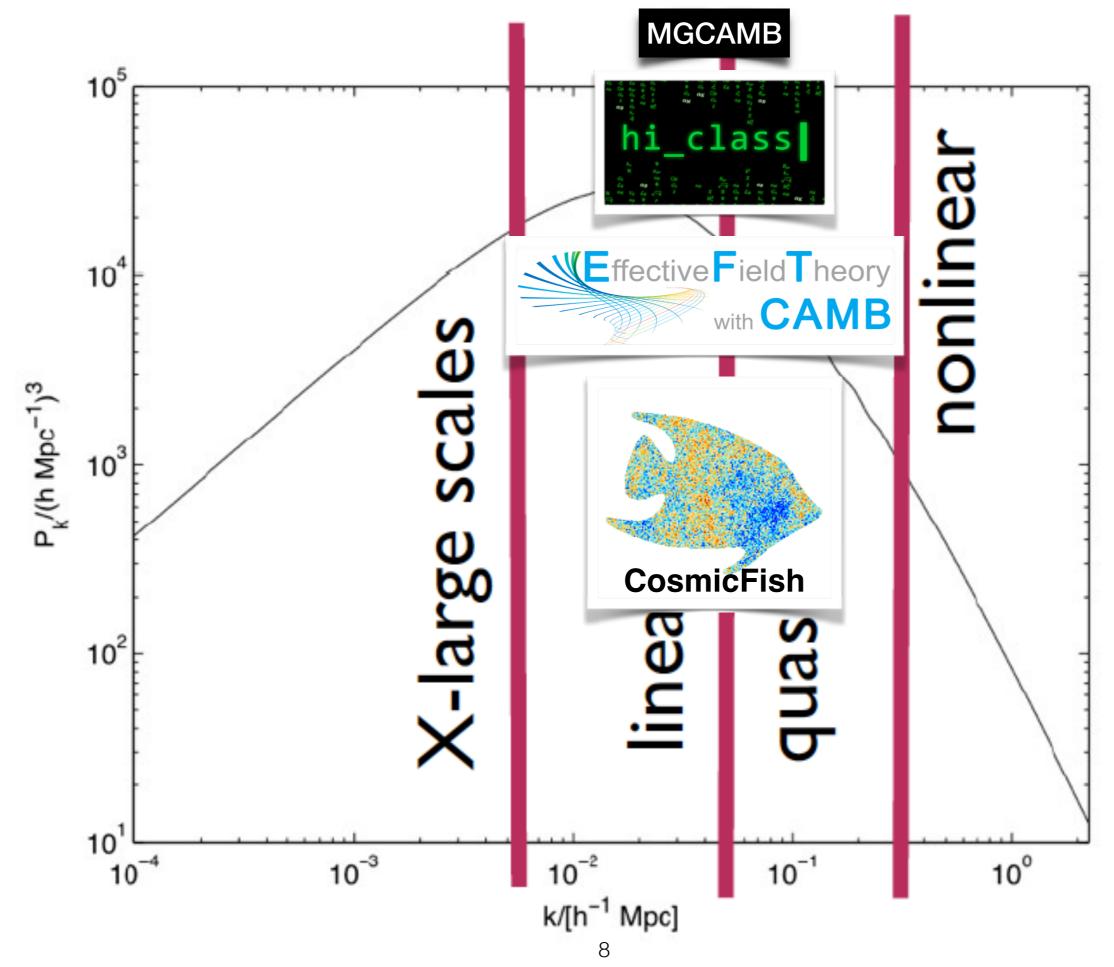
Baker and Bull 2015



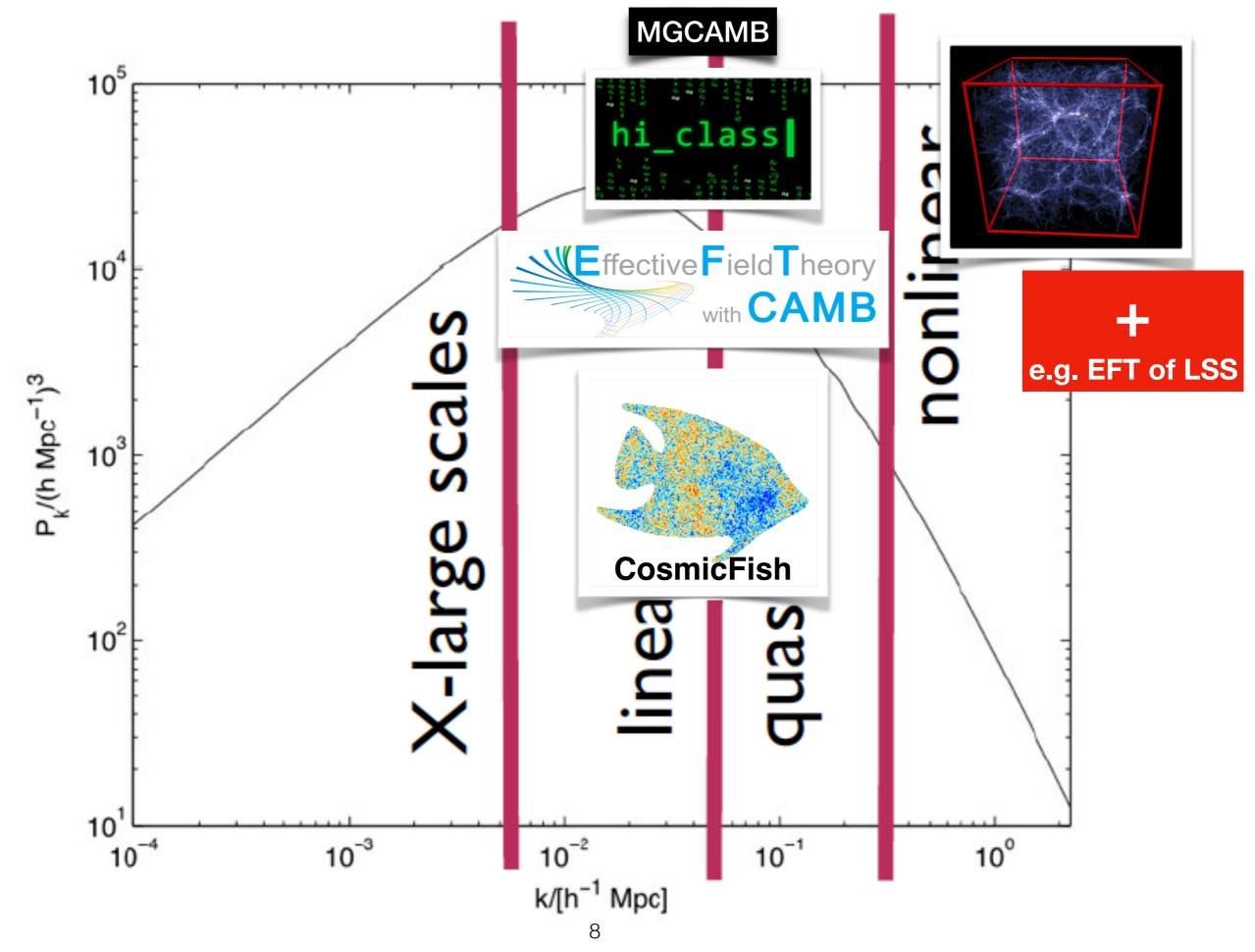
Winther et al. 2016



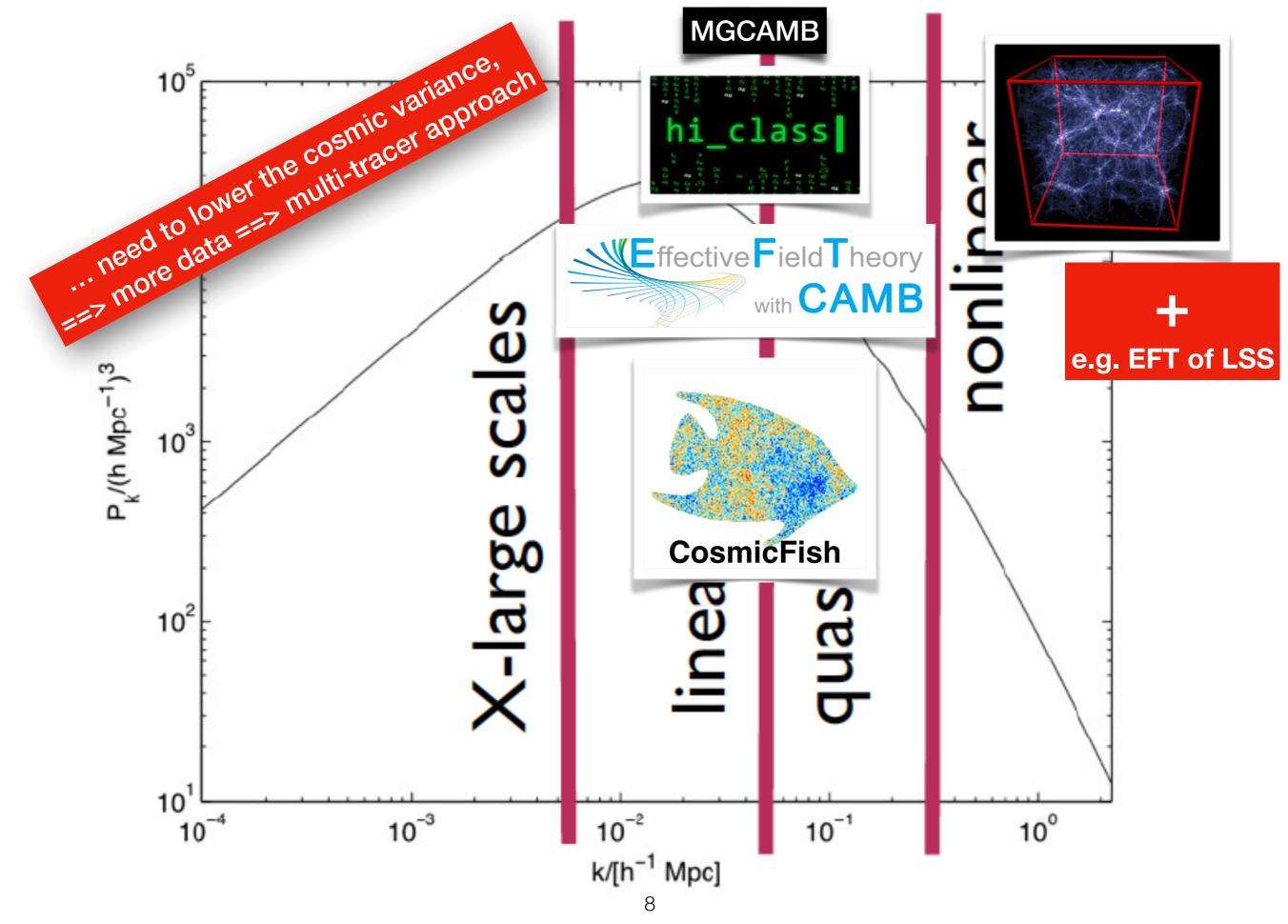
Einstein-Boltzmann codes

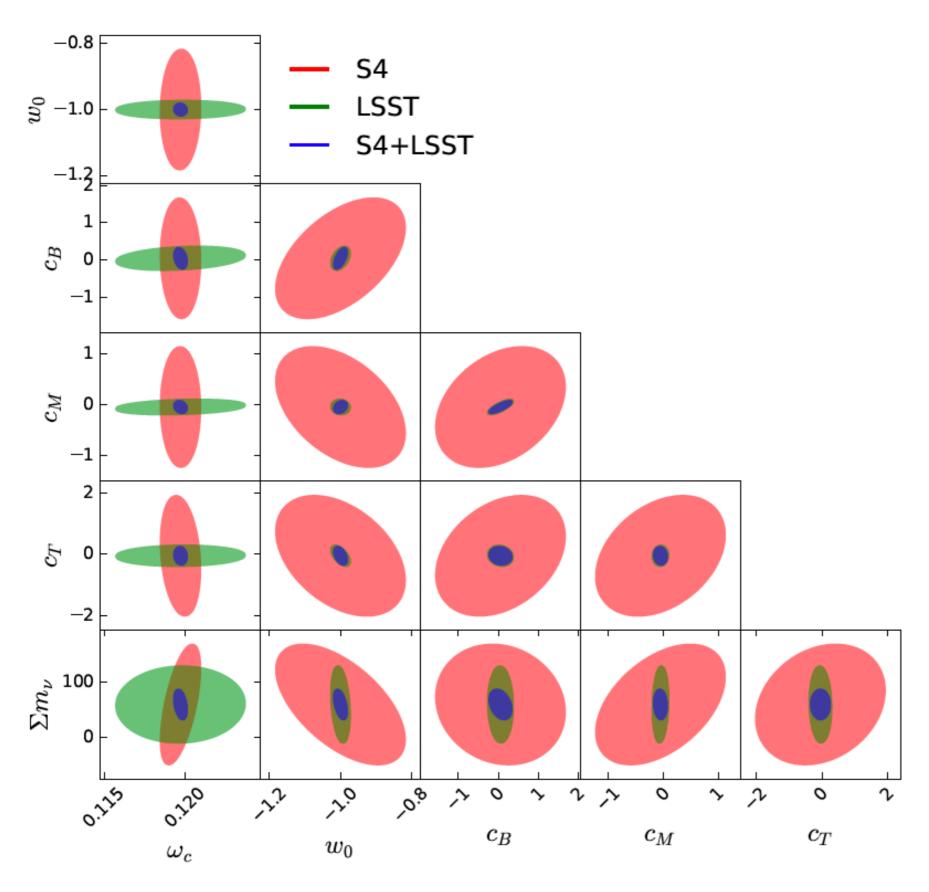


Einstein-Boltzmann codes

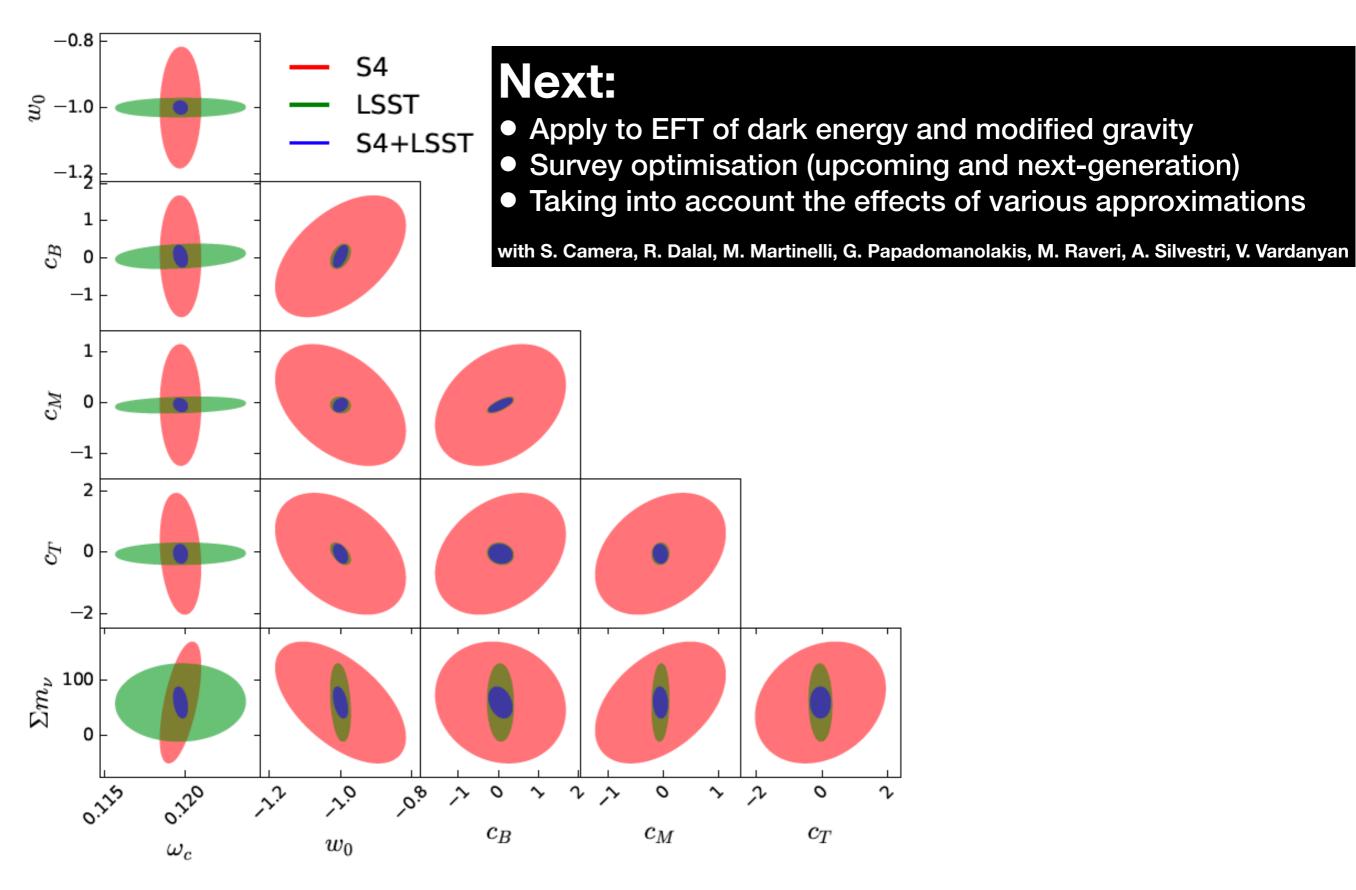


Einstein-Boltzmann codes

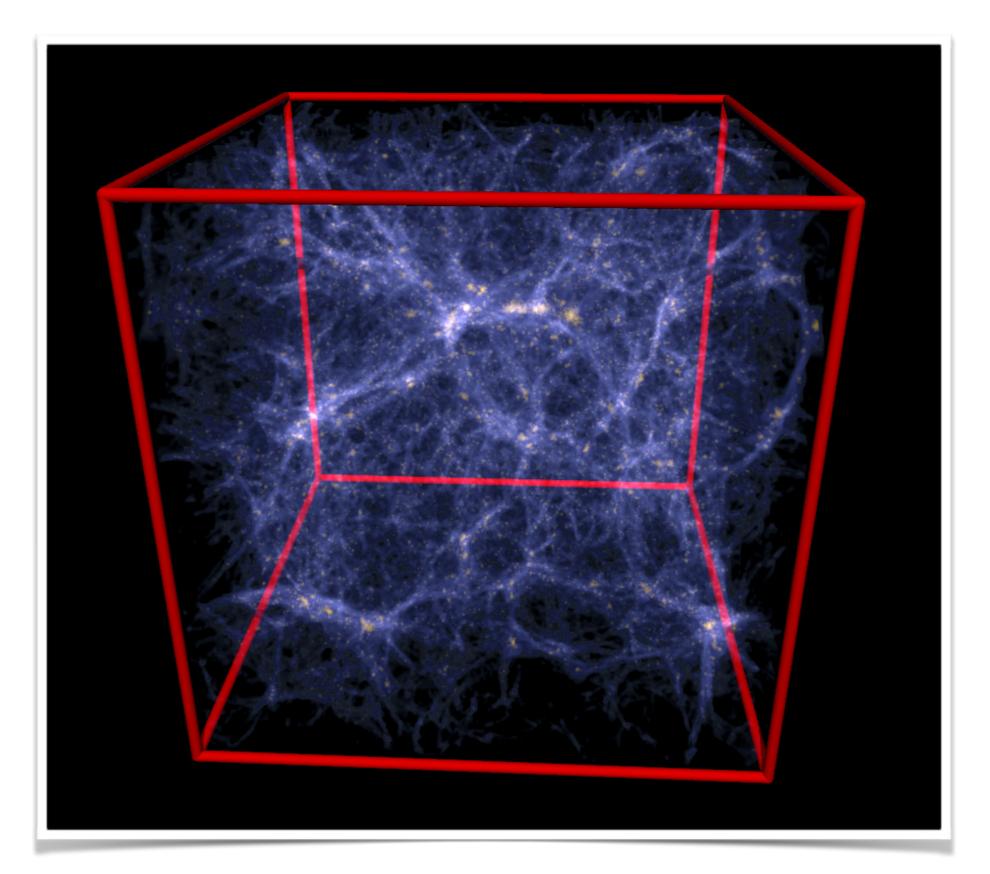




Alonso, Bellini, Ferreira, Zumalacarregui 2016



Alonso, Bellini, Ferreira, Zumalacarregui 2016



Computationally very expensive, ... not good when we have many models and parameters.

$$Z[J, K] = \exp(i\hat{S}_{1}) Z_{0}[J, K]$$

$$\hat{S}_{1} = -\int d1 \,\hat{B}(-1)v(1)\hat{\rho}(1)$$

$$\hat{\rho}_{j}(1) = \exp\left(-i\vec{k}_{1} \cdot \frac{\delta}{i\delta \vec{J}_{q,j}(1)}\right)$$

$$\hat{B}_{j}(1) = \left(i\vec{k}_{1} \cdot \frac{\delta}{i\delta \vec{K}_{p,j}(1)}\right)\hat{\rho}_{j}(1) =: \hat{b}_{j}(1)\hat{\rho}_{j}(1)$$

$$Z_{0}[L, 0] = V^{-l}(2\pi)^{3}\delta_{D}\left(\sum_{j=1}^{l} \vec{L}_{q_{j}}\right)e^{-(Q_{0}-Q_{D})/2}\prod_{2\leq b< a}^{l}\int_{k_{ab}}\prod_{1\leq k< j}^{l}(\Delta_{jk} + \mathcal{P}_{jk})$$

$$\mathcal{P}_{jk}(k_{jk}, \tau) = \int_{q}\left\{e^{g_{qp}^{2}(\tau, 0)k_{jk}^{2}(a_{0}k_{jk}^{0} + a_{1}k_{jk}^{1})} - 1\right\}e^{i\vec{k}_{jk}\cdot\vec{q}}$$

$$G_{\rho...\rho}(1...n) = \hat{\rho}(1)\cdots\hat{\rho}(n) Z[J, K]$$

N-point correlation (spectra)

$$Z[J, K] = \exp\left(i\hat{S}_{I}\right) Z_{0}[J, K]$$

$$\hat{S}_{I} = -\int dl \, \hat{B}(-1)v(1)\hat{\rho}(1)$$

$$\hat{\rho}_{j}(1) = \exp\left(-i\vec{k}_{1} \cdot \frac{\delta}{i\delta \vec{J}_{q_{j}}(1)}\right)$$

$$\hat{B}_{j}(1) = \left(i\vec{k}_{1} \cdot \frac{\delta}{i\delta \vec{K}_{p_{j}}(1)}\right)\hat{\rho}_{j}(1) =: \hat{b}_{j}(1)\hat{\rho}_{j}(1)$$

$$Z_0[L,0] = V^{-l}(2\pi)^3 \delta_{\mathrm{D}} \left(\sum_{j=1}^l \vec{L}_{q_j} \right) \mathrm{e}^{-(Q_0 - Q_{\mathrm{D}})/2} \prod_{2 \le b < a}^l \int_{k_{ab}} \prod_{1 \le k < j}^l \left(\Delta_{jk} + \mathcal{P}_{jk} \right)$$

$$\mathcal{P}_{jk}(k_{jk},\tau) = \int_{q} \left\{ \mathrm{e}^{g_{qp}^{2}(\tau,0) \, k_{jk}^{2}\left(a_{\parallel}\lambda_{jk}^{\parallel} + a_{\perp}\lambda_{jk}^{\perp}\right)} - 1 \right\} \mathrm{e}^{\mathrm{i}\vec{k}_{jk}\cdot\vec{q}}$$

 $G_{\rho\ldots\rho}(1\ldots n) = \hat{\rho}(1)\cdots\hat{\rho}(n) Z[\boldsymbol{J},\boldsymbol{K}]$

N-point correlation (spectra)

$$Z[\boldsymbol{J},\boldsymbol{K}] = \exp\left(\mathbf{i}\hat{S}_{\mathbf{I}}\right) Z_{0}[\boldsymbol{J},\boldsymbol{K}];$$

$$\hat{S}_{\mathbf{I}} = -\int d\mathbf{1} \,\hat{B}(-1)v(1)\hat{\rho}(1)$$

$$\hat{\rho}_{j}(1) = \exp\left(-\mathbf{i}\vec{k}_{1} \cdot \frac{\delta}{\mathbf{i}\delta\vec{J}_{q_{j}}(1)}\right)$$

$$\hat{B}_{j}(1) = \left(\mathbf{i}\vec{k}_{1} \cdot \frac{\delta}{\mathbf{i}\delta\vec{K}_{p_{j}}(1)}\right)\hat{\rho}_{j}(1) =: \hat{b}_{j}(1)\hat{\rho}_{j}(1)$$

$$Z_0[L,0] = V^{-l}(2\pi)^3 \delta_{\mathrm{D}} \left(\sum_{j=1}^l \vec{L}_{q_j} \right) \mathrm{e}^{-(Q_0 - Q_{\mathrm{D}})/2} \prod_{2 \le b < a}^l \int_{k_{ab}} \prod_{1 \le k < j}^l \left(\Delta_{jk} + \mathcal{P}_{jk} \right)$$

$$\mathcal{P}_{jk}(k_{jk},\tau) = \int_{q} \left\{ \mathrm{e}^{g_{qp}^2(\tau,0)\,k_{jk}^2\left(a_{\parallel}\lambda_{jk}^{\parallel} + a_{\perp}\lambda_{jk}^{\perp}\right)} - 1 \right\} \mathrm{e}^{\mathrm{i}\vec{k}_{jk}\cdot\vec{q}}$$

 $G_{\rho\ldots\rho}(1\ldots n) = \hat{\rho}(1)\cdots\hat{\rho}(n) Z[\boldsymbol{J},\boldsymbol{K}]$

N-point correlation (spectra)

$$Z[J, K] = \exp\left(i\hat{S}_{I}\right) Z_{0}[J, K];$$

$$\hat{S}_{I} = -\int d1 \,\hat{B}(-1)\psi(1)\hat{p}(1)$$

$$\hat{p}_{j}(1) = \exp\left(-i\vec{k}_{1} \cdot \frac{\delta}{i\delta\vec{J}_{q_{j}}(1)}\right)$$

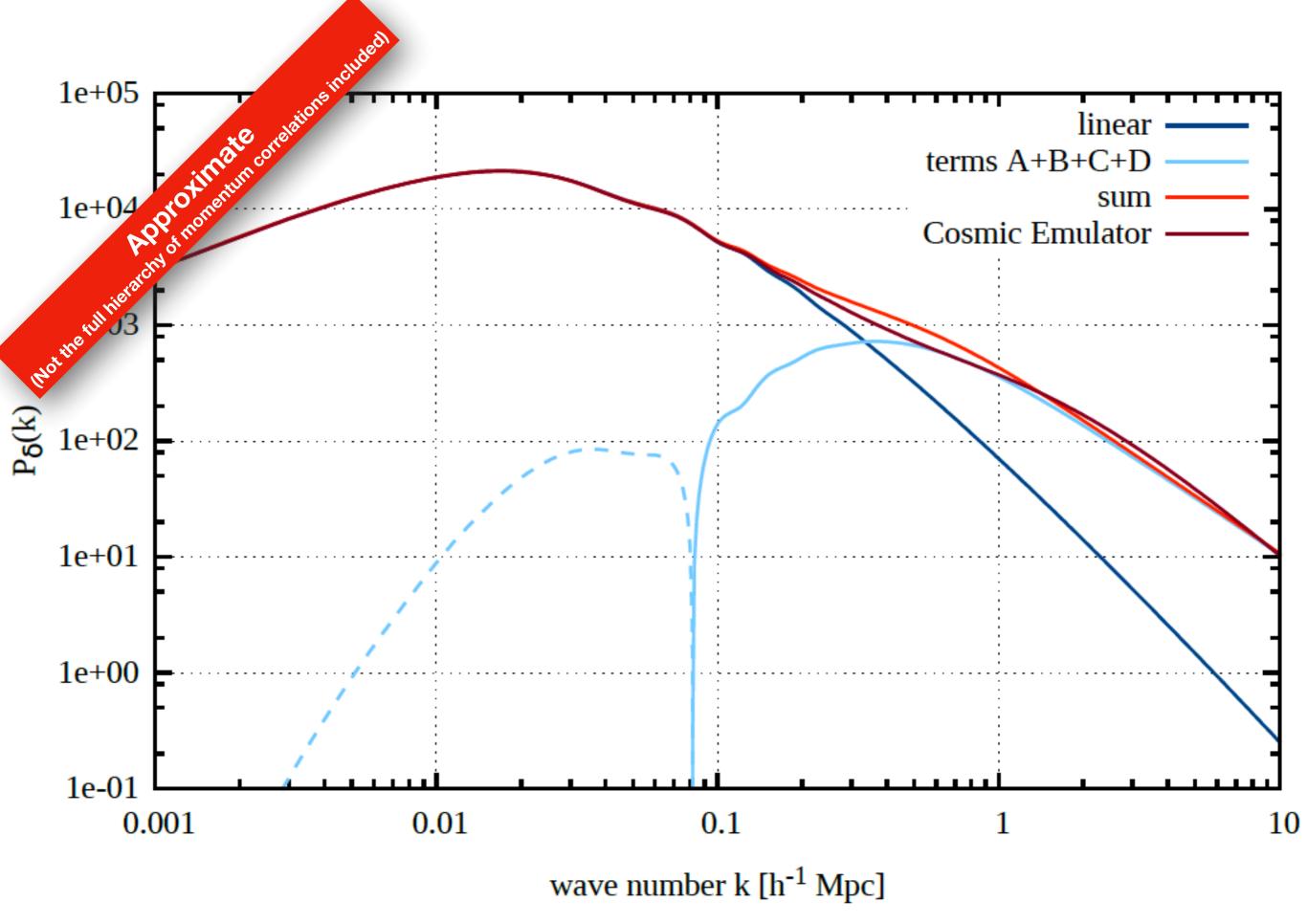
$$\hat{B}_{j}(1) = \left(i\vec{k}_{1} \cdot \frac{\delta}{i\delta\vec{K}_{p_{j}}(1)}\right)\hat{p}_{j}(1) =: \hat{b}_{j}(1)\hat{p}_{j}(1)$$

$$Z_{0}[L, 0] = V^{-l}(2\pi)^{3}\delta_{D}\left(\sum_{j=1}^{l} \vec{L}_{q_{j}}\right)e^{-(Q_{0}-Q_{D})/2}\prod_{2\leq b< a}^{l}\int_{k_{ab}}\prod_{1\leq k< j}^{l}(\Delta_{jk} + \mathcal{P}_{jk})$$

$$\mathcal{P}_{jk}(k_{jk}, \tau) = \int_{q}\left\{e^{g_{qp}^{2}(\tau,0)k_{jk}^{2}(a_{jk}d_{jk}^{1} + a_{k}A_{jk}^{1}) - 1\right\}e^{i\vec{k}_{jk}\cdot\vec{q}}$$

 $G_{\rho\ldots\rho}(1\ldots n) = \hat{\rho}(1)\cdots\hat{\rho}(n) Z[\boldsymbol{J},\boldsymbol{K}]$

N-point correlation (spectra)



Bartelmann et al. 2014

Advantages

- Fast: a few seconds on a simple computer
- Works already at first-order interaction
- Accurate
- Physical insight (linear to nonlinear transition)
- Easy to modify ==> what you need is two-particle interaction potential

Advantages

- Fast: a few seconds on a simple computer
- Works already at first-order interaction
- Accurate
- Physical insight (linear to nonlinear transition)
- Easy to modify ==> what you need is two-particle interaction potential

We are now modifying it for non-standard cosmology, in particular modified gravity, where screening mechanisms are included. (with V. Vardanyan, G. Papadomanolakis and L. Amendola)

Summary

- Ample data will soon be available form various precision low-redshift surveys, such as Euclid, SKA, LSST, DESI, etc.
- There is a lot of information at all scales, including ultra-large and small, which needs to be extracted and used.
- This is important in particular for testing beyond-standard models, including modified gravity and dark energy.
- Codes and techniques should be developed for both ends of the spectrum.
- The analytical framework of kinetic field theory of large-scale structure looks particularly very interesting, exciting, and promising, if understood and used properly.

