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     ν
0
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     ν
0
dust  = 353 Ghz

For comparison, the 
RMS of a pure B-mode 
signal (l=25-150 at 1 deg 
FWHM) with a given 
value of r is

   ~35 nK  for r = 10-2

   ~3.5 nK for r = 10-4
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Tensor-to-scalar ratio foreground floor

NB! Only intended to provide a rough order-of-magnitude estimate! 
       Precise values depend of course sensitively on sky location and angular scales

Question:

What bias would one 
expect if neglecting
foregrounds completely?



  



  

 



  

 

What is the ideal frequency coverage for a typical 
CMB +  synchrotron + thermal dust model space?
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Method: Posterior mapping

 Assume following typical model for a single pixel on the sky:

where g(ν) is the conversion factor between RJ and thermodynamic temperature units

 Six free parameters:

 Acmb:  CMB amplitude

 As: Synchrotron amplitude at 30 GHz 

 Ad: Thermal dust amplitude at 353 GHz

 βs: Synchrotron spectral index

 βd: Thermal dust spectral index

 Td: Effective thermal dust temperature
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Method: Posterior mapping

 Given a set of observed frequencies with associated instrumental noise RMS's, the 
posterior distribution for this model reads

 Computationally very cheap, and mapping out the full posterior distribution by 
Metropolis-Hastings MCMC (producing ~few millions samples) takes a few seconds on 
a single CPU core

 Note: This is essentially a special case of the Planck 2015 analysis, reducing Commander to a single 
pixel, and including only CMB, synchrotron and thermal dust in the model
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Experiment setup
 To parametrize different experiment setups, we introduce three experiment parameters:

 Nband: Number of frequency bands between νmin and νmax

 νmin: Lowest frequency 

 fν: Ratio between two neighboring frequencies (ie., logarithmic spacing)

 For modelling per-detector noise as a function of frequency, we adopt the radiometer 
equation 

 In addition, since most experiments are limited by focal plane area, and the size of a 
diffraction limited detector scales inverse proportionally to its wavelength, the effective 
noise (including focal plane penalty) scales as

 (Lots of other effects as well, of course, but we only care about order-of-magnitude 
estimates here)

 Distribute channels according to total signal-to-noise in the following cases

σ=
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Case 1: Low foreground, high-latitude sky

1) For low-foreground regions, the optimal solution is ~60 – 600 Ghz (ie., COrE+ - like)

2) However, extending to lower frequencies carries a very low cost in sensitivity, even 
when accounting for focal plane area. Critical point: S ~ ν-3, while N ~ ν-3/2.
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1) As foregrounds become brighter, the optimal solution moves to lower frequencies.
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Case 3: Galactic plane

N
band

 = 9

A
fg
    = 100 µK

1) If foregrounds are negligible, minimum CMB RMS is obtained by focussing all 
detectors around the foreground minimum, covering ~60-300 GHz

2) But if foregrounds are non-negligible, extend the frequency range as much as 
possible until the model breaks down, even when accounting for focal plane area!

General conclusions:
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Spectral index constraining power

N
band

 = 9

A
fg
    = 10 µK

1) While a lowest frequency of ~40-60 GHz is good for optimizing CMB RMS in the low 
foreground case, such experiments have essentially no handle on βs.

2) If at all possible, one should strive to include frequencies below 30 GHz in order to 
measure synchrotron properly (as opposed to gambling on being lucky)

0.90.2
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Case 4: Ground-based, intermediate latitudes

N
band

 = 5

A
fg
    = 10 µK

1) Best 5-band ground-based solution is 10-350 GHz (maximum leverage)

2) Two nearly equally sensitive solutions exist for 10-90 GHz and 45-350 GHz.
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What do we know at this stage?

 There are no «lucky» foreground 
holes in which we can see B-
modes below r ~ 0.01 without 
component separation

 There is no realistic frequency 
range in which either 
synchrotron or dust may be 
neglected for r < 0.01

In order to go deep (r < 0.01), we need to measure both low and
and high frequencies to high precision!
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«GreenPol» -- low frequencies from Greenland

Possibly one of the 
cleanest 
spots in 

the entire sky!

North
ern hemisphere

Southern hemisphere

•Long: 38.48° W 
•El: 3216.00 masl 
•Lat: 72.5800° N 
•Danish Com for Sci Res
• NSF-OPP
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72° N supports unique cross-linking



  

Sensitivity per focalplane
Frequency 
[GHz]

FWHM 
[Arcmin]

Bandwidth 
[GHz]

NET 
[µK*√sec]

Pixels/Telescop
e

Aggregate NET 
[µK*√sec]

10 80 4 316 7 120

15 53 4 316 13 88

20 40 4 443 19 102

30 27 6 361 25 72

45* 18 6 200 40 16

• 10-30 GHz receivers assume currently available HEMT amplifiers 
cooled to 20K

• 45 GHz receiver assumes an achievable bolometric detector array.
The above assumptions are for one telescope each frequency.  We expect a real 
experiment will incorporate more than one telescope per frequency.  
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Conclusions
 Strict noise optimization was a good strategy for the CMB field as a 

whole as long as CMB experiments were noise dominated

 That strategy ended abruptly with Planck and BICEP2

 From now on, the name of the game is component separation, not 
noise reduction

 In this landscape, frequency leverage is the key factor

 Low-frequency observations should be an integral part of any 
ambitious next-generation project, both for sensitivity and robustness


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	page6 (1)
	page6 (2)
	page6 (3)
	page6 (4)
	page6 (5)
	page6 (6)
	page6 (7)
	page6 (8)
	page6 (9)
	page7 (1)
	page7 (2)
	page7 (3)
	page8 (1)
	page8 (2)
	page8 (3)
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page9 (5)
	page9 (6)
	page9 (7)
	page10 (1)
	page10 (2)
	page10 (3)
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page11 (5)
	page11 (6)
	page11 (7)
	page11 (8)
	page12 (1)
	page12 (2)
	page13 (1)
	page13 (2)
	page13 (3)
	page14 (1)
	page14 (2)
	page14 (3)
	page15 (1)
	page15 (2)
	page15 (3)
	page15 (4)
	page15 (5)
	page15 (6)
	page15 (7)
	page16 (1)
	page16 (2)
	page16 (3)
	page17 (1)
	page17 (2)
	page17 (3)
	page17 (4)
	page17 (5)
	page18 (1)
	page18 (2)
	page18 (3)
	page19 (1)
	page19 (2)
	page19 (3)
	page19 (4)
	page19 (5)
	page20 (1)
	page20 (2)
	page20 (3)
	page20 (4)
	page20 (5)
	page21 (1)
	page21 (2)
	page21 (3)
	page21 (4)
	page21 (5)
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	page26 (1)
	page26 (2)
	page26 (3)
	page26 (4)
	page26 (5)
	page26 (6)

