CMB component separation intution

and GreenPol

Hans Kristian Eriksen
University of Oslo

Nordita, Stockholm July 2017

In collaboration with Unni Fuskeland, Ari Kaplan, Ingunn Wehus, Hao Liu,
Phil Lubin, Peter Meinhold, Pavel Naselsky and Andrea Zonca



Rms brightness temperature (LK)

The

Challenge

10°

10!

10°

-1

\ll

10‘2 o

107

|
30 44

' \\
\\\\

\\\\\\\\\\\\\\\‘ =

BB. 1= 10"

BB. 1= 107

70 100 143 217

—
\—_——

I
353

[E—
)

100
Frequency (GHz)

40' EWHM



Rms brightness temperature (LK)

The

Challenge

10°

10!

10°

-1

\ll

10‘2 o

107

|
30 44

' \\
\\\\

\\\\\\\\\\\\\\\‘ =

BB. 1= 10"

BB. 1= 107

70 100 143 217

—
\—_——

I
353

[E—
)

100
Frequency (GHz)

40' EWHM



The Challenge

1 degree FWHM

0 3 10 30 100
/uLKRJ @ 353 GHz




The Challenge

1 degree FWHM

0 3 10 30 100
pJKRJ © 30 GHz




Cumulative distribution

The Challeng

1.0

0.8

0.6

0.4

— Puyneh © 30 GHz
—  Pyuet © 353 GHz

Ill‘

0.2

Polarization amplitude [uK]



Cumulative distribution

The Challeng

— Puyncn © 30 GHz
— Pdust © 353 GHZ

Ill‘

0.8

0.6

0.4

0.2

Polarization amplitude [uK]



Cumulative distribution

The Challeng

1.0

0.8

0.6

0.4

—— Puynen © 30 GHz
——  Pyust © 353 GHz

Ill‘

0.2

Polarization amplitude [uK]



Cumulative distribution

The Challeng

1.0

0.8 |

0.6

0.4

—— Puynen © 30 GHz
——  Pyust © 353 GHz

Ill‘

0.2

Polarization amplitude [uK]



Rules of thumb:

Cumulative distribution

The Challenge

1.0

0.8 |

0.6

0.4

—— Puynen © 30 GHz
——  Pyust © 353 GHz

Ill‘

0.2

10° 10° 10
Polarization amplitude [uK]

103



Rules of thumb:

A, < 1K

at f

sky

~0.1

Cumulative distribution

The Challenge

1.0

0.8

0.6

0.4

0.2

Paynch @ 30 GHz

Ill T ll‘

Pdust © 353 GHz

Polarization amplitude [uK]



Rules of thumb:

A <1pK
g
A, < 10pK

atf, ~0.1

sky

atf, ~0.7
sky

Cumulative distribution

The Challenge

1.0

0.8 |

0.6

0.4

—— Puynen © 30 GHz
——  Pyust © 353 GHz

ll‘

0.2

Polarization amplitude [uK]



Rules of thumb:

Af

g

Af
g

A, < 100pK atf, ~0.99

for

<1lpK atf, ~0.1
< 10pK at fSky ~ 0.7

v e = 30 GHz
v Mt = 353 Ghz

Cumulative distribution

The Challenge

1.0

0.8

0.6

0.4

0.2

—— Puynen © 30 GHz
——  Pyust © 353 GHz

ll‘

Polarization amplitude [uK]



Rules of thumb:

A_<1pK atf, ~0.1

g sky

A_<10pK atf, ~0.7
g sky

A_<100pK atf, ~0.99
g sky

for

v e = 30 GHz
v Mt = 353 Ghz

For comparison, the
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What bias would one
expect if neglecting
foregrounds completely?
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NB! Only intended to provide a rough order-of-magnitude estimate!
Precise values depend of course sensitively on sky location and angular scales









What Is the ideal frequency coverage for a typical
CMB + synchrotron + thermal dust model space?



Method: Posterior mapping
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Method: Posterior mapping

Assume following typical model for a single pixel on the sky:
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Method: Posterior mapping

Given a set of observed frequencies with associated instrumental noise RMS's, the
posterior distribution for this model reads

Plo)~Ll0|P(6] =c ( V)P(/ss,ﬁd,n)

Computationally very cheap, and mapping out the full posterior distribution by
Metropolis-Hastings MCMC (producing ~few millions samples) takes a few seconds on
a single CPU core

Note: This is essentially a special case of the Planck 2015 analysis, reducing Commander to a single
pixel, and including only CMB, synchrotron and thermal dust in the model
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Experiment setup

To parametrize different experiment setups, we introduce three experiment parameters:

Ny ang: Number of frequency bands between v, and v,,.,
Vi Lowest frequency
1, Ratio between two neighboring frequencies (ie., logarithmic spacing)

For modelling per-detector noise as a function of frequency, we adopt the radiometer
equation

+T GO+Gatm(v)

o= Tsys _ (Tcmb + Tinst + Tsidelobe+ o atmos

_\/Av_ \/Av \N

In addition, since most experiments are limited by focal plane area, and the size of a
diffraction limited detector scales inverse proportionally to its wavelength, the effective
noise (including focal plane penalty) scales as

OJO +Gatm (V)
3/2

V3/2 OJground(v) - v

(Lots of other effects as well, of course, but we only care about order-of-magnitude
estimates here)

Distribute channels according to total signal-to-noise in the following cases
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Case 1: Low foreground, high-latitude sky
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1) For low-foreground regions, the optimal solution is ~60 — 600 Ghz (ie., COrE+ - like)

2) However, extending to lower frequencies carries a very low cost in sensitivity, even
when accounting for focal plane area. Critical point: S ~ v-3, while N ~ v-32,
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1) As foregrounds become brighter, the optimal solution moves to lower frequencies.
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* Without the focal plane penalty, a pure low-frequency experiment would perform better than a
pure high-frequency experiment

This is because the CMB is more orthogonal to synchrotron (S ~ v-3) than to thermal dust (T ~ vt5) over relevant
frequencies
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1) If foregrounds are negligible, minimum CMB RMS is obtained by focussing all
detectors around the foreground minimum, covering ~60-300 GHz
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General conclusions: Minimum frequency [GHZ]
1) If foregrounds are negligible, minimum CMB RMS is obtained by focussing all
detectors around the foreground minimum, covering ~60-300 GHz

2) But if foregrounds are non-negligible, extend the frequency range as much as
possible until the model breaks down, even when accounting for focal plane area!
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1) While a lowest frequency of ~40-60 GHz is good for optimizing CMB RMS in the low
foreground case, such experiments have essentially no handle on f3..
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1) While a lowest frequency of ~40-60 GHz is good for optimizing CMB RMS in the low
foreground case, such experiments have essentially no handle on 3..

2) If at all possible, one should strive to include frequencies below 30 GHz in order to
measure synchrotron properly (as opposed to gambling on being lucky)
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Case 4: Ground-based, intermediate latitudes
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1) Best 5-band ground-based solution is 10-350 GHz (maximum leverage)

2) Two nearly equally sensitive solutions exist for 10-90 GHz and 45-350 GHz.
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In order to go deep (r < 0.01), we need to measure both low and
and high frequencies to high precision!
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/2° N supports unique cross-linking




Sensitivity per focalplane

Frequency |FWHM Bandwidth NET P:xels/TeIescop Aggregate NET
[GHz] [Arcmin] [GHz] [uK*Vsec] [uK*Vsec]

4 316 120
15 53 4 316 13 88
20 40 4 443 19 102
30 27 6 361 25 72
45* 18 6 200 40 16

* 10-30 GHz receivers assume currently available HEMT amplifiers
cooled to 20K

* 45 GHz receiver assumes an achievable bolometric detector array.

The above assumptions are for one telescope each frequency. We expect a real
experiment will incorporate more than one telescope per frequency.
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Conclusions

Strict noise optimization was a good strategy for the CMB field as a
whole as long as CMB experiments were noise dominated

That strategy ended abruptly with Planck and BICEP2

From now on, the name of the game is component separation, not
noise reduction

In this landscape, frequency leverage is the key factor

Low-frequency observations should be an integral part of any
ambitious next-generation project, both for sensitivity and robustness
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