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Measure distance as function of time

, 150 Mpc ©d7
Distance ~ ~
angle o H(Z')

Hubble parameter H(z) = expansion rate
Redshift z = stretching factor of wavelength = stretching factor of space




)
oF
=
O
S
C B
o =
N~
2 65
© +
5 =
hE
S
T

N N 0 00
o o U

OO U1 O
o U1 O

Current state

Riess++ (2011)

|

XU+ + (2013) Font-Ribera++ (2014)

Anderson++

iom) Delubac++ (2014)

today

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Lookback time (redshitt z)

DESI Design Report 2016



—S| forecast

L
©
C
O
P,
C
S
Q
>
1]

today v | | ]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Lookback time (redshitt z)

DESI Design Report 2016



(Galaxy density)?2

Nonlinear structures: A limiting factor

Nonlinear
regime

... Fourier modes with wavenumber k

1

BAO distance measurements

Nonlinear motions wash out
porimordial BAO scale

Broadband power spectrum

Nonlinear dynamics affects
nearby galaxies, so their data
'S thrown away
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Approach 1: Backward reconstruction Padmanabhan,
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Approach 2: Forward modeling

Sample ICs, evolve forward, compare vs observations, iterate




Reconstruct linear density to suppress nonlinearities

Nonlinear
Initial dynamics Observed

¢ galaxy
conditions distribution

Reconstruction

Eisenstein,

Approach 1: Backward reconstruction Padmanabhan,

Estimate velocities, move galaxies back Pen, Tassev,
Zaldarriaga, MS, ...

; - Jasche, Wandelt,
Approach 2: Forward modeling 2§ e
Sample ICs, evolve forward, compare vs observations, iterate

S e Seljak, Asl :
Approach 3: Optimization problem e
Maximume-likelihood solution by solving optimization problem




What nonlinearities are we fighting”?




Displacement tield is a nonlinear functional
of the linear Iinitial density
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t fleld I1s a nonlinear functional

iInear Initial density

e Nonlinear terms are small, so displacement is quite linear

e Perturbative modeling works well

e.g. Baldauf+ (2016)



(2) Shell crossing: Trajectories cross each other

e Strongly nonlinear & difficult to model

e Seems like we cannot tell initial from final position
(How many crossings happened?)

e Expect to loose memory of initial conditions




(2) Shell crossing: Trajectories cross each other

Final / /
Initial

e Strongly nonlinear & difficult to model

e Seems like we cannot tell initial from final position
(How many crossings happened?)

e Expect to loose memory of initial conditions




Reconstruction

?2 22 2 4?8

Goal: Estimate linear density from final particle locations

Standard method: Undo Zeldovich displacement

Eisenstein, Seo, Sirko & Spergel (2007)



Reconstruction

New strategy:
e Estimate displacement assuming no shell crossing

e Then estimate linear density from that displacement (pretty linear!)

Tassev & Zaldarriaga (2012); Zhu, Yu, Pen+ (2017); MS, Baldauf, Zaldarriaga (2017)



Initial conditions

MS, Baldauf & 2D slices of 3D density smoothed with R=2 Mpc/h Gaussian
Zaldarriaga (2017) 1% subsample of 20483 DM particles in 500 Mpc/h per-side box 15
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MS, Baldauf &
Zaldarriaga (2017)

1st order reconstruction
2D slices of 3D density smoothed with R=2 Mpc/h Gaussian
1% subsample of 20483 DM particles in 500 Mpc/h per-side box 16
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1st order reconstruction
MS, Baldauf & 2D slices of 3D density smoothed with R=2 Mpc/h Gaussian
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Initial conditions
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Reconstructed, 8 steps
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1st order reconstruction
MS, Baldauf & 2D slices of 3D density smoothed with R=2 Mpc/h Gaussian
Zaldarriaga (2017) 1% subsample of 20483 DM particles in 500 Mpc/h per-side box23



Correlation coefficient with initial conditions
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MS, Baldauf, Zaldarriaga (2017); noise-free 40963 DM simulations at z=0.6
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Best-fit

Initial conditions

Final conditions

Standard rec

BAQO scale in 10 simulations

New O(2) rec
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Fractional error bar of BAO scale

V=2.6h"3Gpc’, z=0
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MS, Baldauf, Zaldarriaga (2017)



BSroadband power spectrum

Initial conditions
Final conditions

O(1) rec
t1(k) x O(1) rec
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MS, Baldauf, Zaldarriaga (2017)



Challenges

Add realism:
- Noise (looks ok)
- Halos & galaxies
- Redshift space distortions

* Survey mask

More complications when applying to real data”




Conclusions

Nonlinear physics limits science return of galaxy surveys
Reconstruction can reduce nonlinear terms

At z=0, reconstruction achieves >95% correlation with linear
density at k<0.35 hMpc-!

Improve BAO signal-to-noise by factor 2.7 (z=0) to 2.5 (z=0.6)

/0%-30% improvement over standard BAQO reconstruction

Can improve LSS survey science (mostly dark energy, maybe
also early universe physics)

Happy to chat about CMB-lensing X clustering forecasts for i, bias,
Os, and neutrino mass; ask me later




