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How do we measure distances?
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BAO as a Standard Ruler

• This distance of 150 Mpc is very accurately computed 
from the anisotropies of the CMB. 
–0.4% calibration with current CMB.

Image Credit: E.M. Huff, the SDSS-III team, and the 
South Pole Telescope team.  Graphic by Zosia Rostomian

Measure distance as function of time
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Hubble parameter H(z) = expansion rate 
Redshift z = stretching factor of wavelength  = stretching factor of space
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2 SCIENCE MOTIVATION AND REQUIREMENTS 24

Figure 2.10: Expansion rate of the Universe as a function of redshift. In the upper plot, the filled
blue circle is the H

0

measurement of [106], the solid black square shows the SDSS BAO measurement
of [107], the red square shows the BOSS galaxy BAO measurement of [6], the red circle shows the
BOSS Ly-↵ forest BAO measurement of [47], and the red x shows the BOSS Ly-↵ forest BAO-quasar
cross-correlation measurement of [108]. The lower plot shows projected DESI points.

Figure 2.11: The w
0

� wa plane showing projected limits (68%) from DESI using just BAO and
using the broadband (BB) power spectrum. Also shown is the limit from BOSS BAO. Planck priors
are included in all cases, and DESI includes the BGS and non-redundant part of BOSS. The figure
of merit of the surveys is inversely proportional to the areas of the error ellipses.
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Nonlinear structures: A limiting factor
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BAO as a Standard Ruler

• This distance of 150 Mpc is very accurately computed 
from the anisotropies of the CMB. 
–0.4% calibration with current CMB.

Image Credit: E.M. Huff, the SDSS-III team, and the 
South Pole Telescope team.  Graphic by Zosia Rostomian

Broadband power spectrum 

Nonlinear dynamics affects 
nearby galaxies, so their data 
is thrown away

BAO distance measurements 

Nonlinear motions wash out 
primordial BAO scale



Reconstruct linear density to suppress nonlinearities
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Approach 1: Backward reconstruction 
Estimate velocities, move galaxies back

Eisenstein, 
Padmanabhan, 

Pen, Tassev, 
Zaldarriaga, MS, …

Reconstruct linear density to suppress nonlinearities
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Approach 2: Forward modeling 
Sample ICs, evolve forward, compare vs observations, iterate

Jasche, Wandelt, 
Leclercq, Kitaura, 

…
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Approach 2: Forward modeling 
Sample ICs, evolve forward, compare vs observations, iterate

Jasche, Wandelt, 
Leclercq, Kitaura, 

…

Approach 3: Optimization problem  
Maximum-likelihood solution by solving optimization problem

Seljak, Aslanyan, 
Feng, Modi

Approach 1: Backward reconstruction 
Estimate velocities, move galaxies back

Eisenstein, 
Padmanabhan, 

Pen, Tassev, 
Zaldarriaga, MS, …

Reconstruct linear density to suppress nonlinearities
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What nonlinearities are we fighting?
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(1) Displacement field is a nonlinear functional  
of the linear initial density
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(1) Displacement field is a nonlinear functional  
of the linear initial density
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• Nonlinear terms are small, so displacement is quite linear 

• Perturbative modeling works well

e.g. Baldauf+ (2016)



(2) Shell crossing: Trajectories cross each other
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• Strongly nonlinear & difficult to model 

• Seems like we cannot tell initial from final position 
(How many crossings happened?) 

• Expect to loose memory of initial conditions

Initial

Final 



12

Initial

Final 

• Strongly nonlinear & difficult to model 

• Seems like we cannot tell initial from final position 
(How many crossings happened?) 

• Expect to loose memory of initial conditions

(2) Shell crossing: Trajectories cross each other



Reconstruction
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Goal: Estimate linear density from final particle locations 

Standard method: Undo Zeldovich displacement

Eisenstein, Seo, Sirko & Spergel (2007)

Initial

Final 

?



Reconstruction
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New strategy: 

•Estimate displacement assuming no shell crossing 

•Then estimate linear density from that displacement (pretty linear!)

Tassev & Zaldarriaga (2012); Zhu, Yu, Pen+ (2017); MS, Baldauf, Zaldarriaga (2017)

Initial

Final 
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SECOND ORDER RECONSTRUCTION

2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  
1% subsample of 20483 DM particles in 500 Mpc/h per-side box

MS, Baldauf & 
Zaldarriaga (2017)
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SECOND ORDER RECONSTRUCTION

1st order reconstruction 
2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  

1% subsample of 20483 DM particles in 500 Mpc/h per-side box
MS, Baldauf & 
Zaldarriaga (2017)
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SECOND ORDER RECONSTRUCTION

1st order reconstruction 
2D slices of 3D density smoothed with R=2 Mpc/h Gaussian  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Correlation coefficient with initial conditions
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MS, Baldauf, Zaldarriaga (2017); noise-free 40963 DM simulations at z=0.6



Correlation coefficient with initial conditions
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Large scales Small scales
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Perfect 
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MS, Baldauf, Zaldarriaga (2017); noise-free 40963 DM simulations at z=0.6



Correlation coefficient with initial conditions
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MS, Baldauf, Zaldarriaga (2017); noise-free 40963 DM simulations at z=0.6
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certainly degrade the performance of reconstruction in
practical applications. We plan to study this in future
work.

As described in Section III, we use the eight-step dis-
placement �(8) for our new reconstruction, but the one-
step displacement �

(1) for the standard reconstruction,
because this is what has been used in the literature so
far. Fig. 12 in Appendix D explores how the performance
depends on the number of steps used to construct the dis-
placement field �. We see only little benefit in using more
than eight iteration steps, indicating that the algorithm
has converged after eight steps. Extending the standard
reconstruction by applying it to the eight-step displace-
ment �(8) improves over using �

(1) on most scales, but it
still performs worse than our second-order reconstruction
(see Appendix B for discussion).

For the correlation coe�cient shown in Fig. 4, the first
order reconstruction does not depend on transfer func-
tions because any rescaling by a function of k would not
a↵ect the correlation coe�cient. In contrast, the second
order correction does require transfer functions that were
calibrated to simulations as described in Appendix A.
Just as in the case of forward modeling in [11], the shape
of the transfer functions can probably be understood us-
ing the EFT approach, but we leave this for future work.

C. Baryonic acoustic oscillations

FIG. 5. Fractional BAO signal in the power spectrum, given
by the fractional di↵erence of simulations initialized with and
without BAO wiggles, h(P̂wiggle � P̂nowiggle)i/hP̂nowigglei. Re-
construction sharpens the BAO wiggles so that they agree
with those in the linear initial conditions. The power spectra
are averaged over ten large-volume simulations at z = 0, using
the same random seed for each wiggle and nowiggle simulation
to cancel most of the cosmic variance [56, 63, 67, 68].

Measurements of the BAO scale from the galaxy power
spectrum are a prime example for the application of
reconstruction, because it reverses or avoids large-scale
shifts that would otherwise wash out the BAO wiggles

Mean BAO scale

Field vs lin. theory vs lin. realization

Initial conds. +0.05Mpc [+0.03%] +0.00Mpc [±0.00%]

Final conds. +0.49Mpc [+0.33%] +0.44Mpc [+0.30%]

Standard rec +0.02Mpc [+0.01%] �0.03Mpc [�0.02%]

New O(1) rec +0.05Mpc [+0.03%] ±0.00Mpc [±0.00%]

New O(2) rec +0.06Mpc [+0.04%] +0.02Mpc [+0.01%]

TABLE II. Systematic bias of the BAO scale estimated from
the best-fit BAO scale from the power spectrum of ten large-
volume simulations at z = 0. The BAO scale from the nonlin-
ear density is biased high by 0.3%. Reconstruction eliminates
that bias [36, 37, 53, 75–78]. The residual biases after re-
construction are small and likely consistent with zero because
the estimates are derived from only ten simulations. The left
column shows the sample mean of the best-fit BAO scale rela-
tive to the fiducial theoretical value, hr̂BAOi� rfidBAO; the right
column is relative to the initial condition of each simulation,
hr̂BAO � r̂linBAOi, canceling cosmic variance.

in the observed galaxy power spectrum, degrading the
measurement [17, 36, 65]. As mentioned above, the stan-
dard reconstruction technique has been successfully ap-
plied to several redshift surveys, improving the precision
of the measured BAO scale typically by a factor of ⇠ 2
[38–44], with similar improvements expected for future
surveys. It is therefore exciting to see if our method can
improve BAO measurements further. To answer this, we
use ten large-volume simulations with L = 1380 h�1Mpc
that were produced by Ding et al. [67] as described in
Section III C above.
Fig. 5 shows the fractional BAO signal in the simula-

tions. Our method restores the BAO signal of the linear
density perfectly, reversing the nonlinear damping. This
is not surprising given that the BAO signal is only vis-
ible at k < 0.5 hMpc�1, where the reconstructed den-
sity is more than 90% correlated with the linear density
as we already found in Fig. 4. Standard reconstruction
(green line in Fig. 5) also reduces the nonlinear damp-
ing, but it does not recover the full linear BAO wiggles
at k & 0.2 hMpc�1.
To see if the signal-to-noise ratio of the BAO scale es-

timated from the power spectrum is also improved by
reconstruction, we need to characterize the noise of the
estimated BAO scale. This would be straightforward if
we knew the covariance between power spectrum bins
after reconstruction, but that is di�cult to compute re-
liably. We therefore choose a simpler Monte Carlo ap-
proach and estimate the BAO uncertainty from the scat-
ter of the best-fit BAO scale among the ten simulations.
This provides a conservative estimate for the uncertainty
of the best-fit BAO scale (see Appendix C, where we also
describe our fitting procedure).
Fig. 6 compares the best-fit BAO scales estimated

from linear initial conditions, nonlinear late-time den-
sity, and reconstructed density in each of the ten simu-
lations, by fitting the BAO scale to the power spectrum



Best-fit BAO scale in 10 simulations
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FIG. 6. Fractional bias of the best-fit BAO scale relative to the fiducial BAO scale in ten 2.6h�3Gpc3 simulations at z = 0.
In each simulation, the BAO scale is estimated by fitting a model to the measured power spectrum at k  0.6 hMpc�1 as
described in Appendix C. The lower subpanels show histograms of the best-fit BAO scale (grey), and corresponding Gaussian
pdfs (solid black) based on sample mean and sample standard deviation of the best-fit BAO scale. The realizations are sorted
according to their initial linear BAO scale.

FIG. 7. Fractional BAO error bar as a function of maximum
wavenumber used for fitting the BAO scale. The error bar
is a Monte Carlo estimate obtained from ten simulations at
z = 0 with V = 2.6h�3Gpc3 each: We fit the BAO scale to
the ratio of wiggle and nowiggle power spectra in each of the
ten simulations, and then compute the scatter of the best-
fit BAO scale across the ten simulations. The iterative O(2)
reconstruction matches the linear initial conditions perfectly.

at k  kmax = 0.6 hMpc�1. This shows that our recon-
struction recovers the linear BAO scale with high preci-
sion and on a realization-by-realization basis.

To estimate if the estimated BAO scale is systemati-
cally biased relative to the true BAO scale, we compute
the expectation value of the best-fit BAO scale; see Ta-
ble II. Within the uncertainty of our ten simulations, we
do not find evidence for any systematic BAO bias after
any of the reconstruction methods that we tested. The
reconstructions thus eliminate the systematic nonlinear
BAO bias of⇠ 0.3% at z = 0 that is generated by shifts of
particles that were separated by the pristine BAO scale in

Rms scatter of BAO scale

Field vs lin. theory vs lin. realization

Initial conds. 0.35Mpc [0.24%] 0Mpc [0%]

Final conds. 0.99Mpc [0.66%] 1.20Mpc [0.81%]

Standard rec 0.63Mpc [0.42%] 0.55Mpc [0.37%]

New O(1) rec 0.44Mpc [0.29%] 0.13Mpc [0.08%]

New O(2) rec 0.37Mpc [0.25%] 0.08Mpc [0.05%]

TABLE III. Left column: Root-mean-square scatter of the
best-fit BAO scale between ten 2.6h�3Gpc3 simulations at
z = 0. This is a Monte Carlo estimate for the expected sta-
tistical 1� uncertainty when measuring the BAO scale from
the power spectrum in a single 2.6h�3Gpc3 volume. Right

column: Rms scatter of the BAO scale relative to that in the
initial conditions of each simulation, r̂BAO � r̂linBAO, which is
sourced by nonlinear shift terms as discussed in Section IVD.
All numbers are somewhat uncertain because they were esti-
mated from the scatter of only ten simulations.

the initial conditions [17, 65], and that would be present
when measuring the BAO scale from the nonlinear power
spectrum without reconstruction. This is consistent with
previous findings [36, 37, 53, 75–78].
To estimate the statistical 1� uncertainty correspond-

ing to measuring the BAO scale from the power spectrum
in a 2.6h�3Gpc3 volume, we compute the root-mean-
square (rms) scatter of the best-fit BAO scale between
the ten simulations; see Table III and Fig. 7.
The uncertainty of the BAO scale from the nonlinear

power spectrum is increased by a factor of 2.8 at z = 0
and by a factor of 2.6 at z = 0.6 relative to the uncer-
tainty from the linear power spectrum. This is again
caused by shifts of particles that were separated by the
BAO scale in the early universe. By reducing those shifts,
standard reconstruction [17] reduces the statistical BAO
uncertainty by a factor of 1.6 at z = 0 and by a factor
of 1.9 at z = 0.6 relative to performing no reconstruc-



Fractional error bar of BAO scale
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FIG. 6. Fractional bias of the best-fit BAO scale relative to the fiducial BAO scale in ten 2.6h�3Gpc3 simulations at z = 0.
In each simulation, the BAO scale is estimated by fitting a model to the measured power spectrum at k  0.6 hMpc�1 as
described in Appendix C. The lower subpanels show histograms of the best-fit BAO scale (grey), and corresponding Gaussian
pdfs (solid black) based on sample mean and sample standard deviation of the best-fit BAO scale. The realizations are sorted
according to their initial linear BAO scale.

FIG. 7. Fractional BAO error bar as a function of maximum
wavenumber used for fitting the BAO scale. The error bar
is a Monte Carlo estimate obtained from ten simulations at
z = 0 with V = 2.6h�3Gpc3 each: We fit the BAO scale to
the ratio of wiggle and nowiggle power spectra in each of the
ten simulations, and then compute the scatter of the best-
fit BAO scale across the ten simulations. The iterative O(2)
reconstruction matches the linear initial conditions perfectly.

at k  kmax = 0.6 hMpc�1. This shows that our recon-
struction recovers the linear BAO scale with high preci-
sion and on a realization-by-realization basis.

To estimate if the estimated BAO scale is systemati-
cally biased relative to the true BAO scale, we compute
the expectation value of the best-fit BAO scale; see Ta-
ble II. Within the uncertainty of our ten simulations, we
do not find evidence for any systematic BAO bias after
any of the reconstruction methods that we tested. The
reconstructions thus eliminate the systematic nonlinear
BAO bias of⇠ 0.3% at z = 0 that is generated by shifts of
particles that were separated by the pristine BAO scale in

Rms scatter of BAO scale

Field vs lin. theory vs lin. realization

Initial conds. 0.35Mpc [0.24%] 0Mpc [0%]

Final conds. 0.99Mpc [0.66%] 1.20Mpc [0.81%]

Standard rec 0.63Mpc [0.42%] 0.55Mpc [0.37%]

New O(1) rec 0.44Mpc [0.29%] 0.13Mpc [0.08%]

New O(2) rec 0.37Mpc [0.25%] 0.08Mpc [0.05%]

TABLE III. Left column: Root-mean-square scatter of the
best-fit BAO scale between ten 2.6h�3Gpc3 simulations at
z = 0. This is a Monte Carlo estimate for the expected sta-
tistical 1� uncertainty when measuring the BAO scale from
the power spectrum in a single 2.6h�3Gpc3 volume. Right

column: Rms scatter of the BAO scale relative to that in the
initial conditions of each simulation, r̂BAO � r̂linBAO, which is
sourced by nonlinear shift terms as discussed in Section IVD.
All numbers are somewhat uncertain because they were esti-
mated from the scatter of only ten simulations.

the initial conditions [17, 65], and that would be present
when measuring the BAO scale from the nonlinear power
spectrum without reconstruction. This is consistent with
previous findings [36, 37, 53, 75–78].
To estimate the statistical 1� uncertainty correspond-

ing to measuring the BAO scale from the power spectrum
in a 2.6h�3Gpc3 volume, we compute the root-mean-
square (rms) scatter of the best-fit BAO scale between
the ten simulations; see Table III and Fig. 7.
The uncertainty of the BAO scale from the nonlinear

power spectrum is increased by a factor of 2.8 at z = 0
and by a factor of 2.6 at z = 0.6 relative to the uncer-
tainty from the linear power spectrum. This is again
caused by shifts of particles that were separated by the
BAO scale in the early universe. By reducing those shifts,
standard reconstruction [17] reduces the statistical BAO
uncertainty by a factor of 1.6 at z = 0 and by a factor
of 1.9 at z = 0.6 relative to performing no reconstruc-



Broadband power spectrum
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FIG. 8. Same as Fig. 6, but for each simulation we estimate the BAO scale in the linear initial conditions and subtract it
o↵. This cancels the cosmic variance caused by linear finite-volume fluctuations of the initial conditions, allowing for a more
accurate comparison of methods. The remaining scatter between simulations corresponds to the BAO uncertainty caused by
nonlinear shift terms (see text for discussion). Our reconstruction reduces this substantially and recovers the linear BAO scale
in each individual simulation with high precision.

FIG. 9. Nonlinear BAO noise contribution �NL sourced by
nonlinear shift terms that wash out the acoustic peak. The
plot shows an estimate of this nonlinear noise divided by the
BAO signal, as a function of the maximum wavenumber used
to fit for the BAO scale in the power spectrum. To cancel
the linear noise contribution, the linear BAO scale of each
simulation is substracted from the measured late-time BAO
scale as in Fig. 8; the rms scatter of that di↵erence between
simulations is given by nonlinear terms that are not present
in the initial conditions. By construction, the linear density
has zero nonlinear noise and is therefore not shown. Recon-
struction reduces the nonlinear noise due to nonlinear shifts
significantly. See Section IVD for discussion.

our reconstruction method recovers the full broadband
power spectrum of the initial conditions. This is shown in
Fig. 10, where the measured power spectrum after recon-
struction is divided by the linear initial power spectrum
linearly scaled to the redshift z = 0 of the simulation.

The original nonlinear power spectrum agrees with the
linear power spectrum within 5% at k  0.11 hMpc�1

FIG. 10. Power spectra in our L = 500 h�1Mpc simulation
at z = 0, divided by the linear initial power spectrum linearly
scaled to z = 0. Compared to the nonlinear density without
reconstruction (thick solid line), reconstruction significantly
improves the agreement with the linear power spectrum on
intermediate scales. Our first-order reconstruction, r · �,
has no transfer functions, while the second-order method uses
transfer functions discussed in Appendix A. The spectra are
raw spectra without mitigating CIC kernel or shot noise, both
of which matter at k & 1 hMpc�1. The high-k upturn of the
first-order reconstruction happens because our initial density
has zero shot noise but the late-time density has a small shot
noise, n̄�1 = 1.47h�3Mpc3. This can be avoided by multi-
plying with t̄1(k) given in Eq. (A6), which acts like a Wiener
filter (thin solid line).

in our simulations at redshift z = 0. Our first-order
reconstruction without transfer functions improves this
slightly, so that reconstructed and linear power agree
within 5% at k  0.16 hMpc�1. The second-order
method gives a larger improvement, agreeing with the



Challenges

31

Add realism: 
• Noise (looks ok) 
• Halos & galaxies 
• Redshift space distortions 
• Survey mask 
• … 

More complications when applying to real data?
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Nonlinear physics limits science return of galaxy surveys 

Reconstruction can reduce nonlinear terms 

At z=0, reconstruction achieves >95% correlation with linear 
density at k<0.35 hMpc-1 

Improve BAO signal-to-noise by factor 2.7 (z=0) to 2.5 (z=0.6) 

70%-30% improvement over standard BAO reconstruction 

Can improve LSS survey science (mostly dark energy, maybe 
also early universe physics)  

Happy to chat about CMB-lensing X clustering forecasts for fNL, bias, 
σ8, and neutrino mass; ask me later

Conclusions


