Reconstructing linear information from nonlinear galaxy surveys

Marcel Schmittfull Institute for Advanced Study

Nordita Stockholm, July 13th 2017

Collaborators: Tobias Baldauf & Matias Zaldarriaga

How do we measure distances?

Measure distance as function of time

Distance
$$\sim \frac{150 \,\mathrm{Mpc}}{\mathrm{angle}} \sim \int_0^z \frac{dz'}{H(z')}$$

Hubble parameter H(z) = expansion rate Redshift z = stretching factor of wavelength = stretching factor of space

Current state

DESI Design Report 2016

DESI Design Report 2016

Nonlinear structures: A limiting factor

BAO distance measurements

Nonlinear motions wash out primordial BAO scale

Broadband power spectrum

Nonlinear dynamics affects nearby galaxies, so their data is thrown away

Initial conditions

Nonlinear dynamics

Reconstruction

Observed galaxy distribution

7

Approach 1: Backward reconstruction Estimate velocities, move galaxies back Eisenstein, Padmanabhan, Pen, Tassev, Zaldarriaga, MS, ...

Approach 1: Backward reconstruction Estimate velocities, move galaxies back Eisenstein, Padmanabhan, Pen, Tassev, Zaldarriaga, MS, ...

Approach 2: Forward modeling Sample ICs, evolve forward, compare vs observations, iterate Jasche, Wandelt, Leclercq, Kitaura,

Approach 1: Backward reconstruction Estimate velocities, move galaxies back Eisenstein, Padmanabhan, Pen, Tassev, Zaldarriaga, MS, ...

Approach 2: Forward modeling Sample ICs, evolve forward, compare vs observations, iterate Jasche, Wandelt, Leclercq, Kitaura,

Seljak, Aslanyan,

Feng, Modi

Approach 3: Optimization problem Maximum-likelihood solution by solving optimization problem

What nonlinearities are we fighting?

(1) Displacement field is a nonlinear functional of the linear initial density

$$\begin{split} \boldsymbol{\psi}(\mathbf{k}) &= \frac{\mathbf{k}}{k^2} \delta_0(\mathbf{k}) \\ &+ \int_{\mathbf{k}_1} \mathbf{L}^{(2)}(\mathbf{k}_1, \mathbf{k} - \mathbf{k}_1) \delta_0(\mathbf{k}_1) \delta_0(\mathbf{k} - \mathbf{k}_1) \\ &+ \cdots \end{split}$$

(1) Displacement field is a nonlinear functional of the linear initial density

- Nonlinear terms are small, so displacement is quite linear
- Perturbative modeling works well

(2) Shell crossing: Trajectories cross each other

- Strongly nonlinear & difficult to model
- Seems like we cannot tell initial from final position (How many crossings happened?)
- Expect to loose memory of initial conditions

(2) Shell crossing: Trajectories cross each other

- Strongly nonlinear & difficult to model
- Seems like we cannot tell initial from final position (How many crossings happened?)
- Expect to loose memory of initial conditions

Reconstruction

Goal: Estimate linear density from final particle locations

Standard method: Undo Zeldovich displacement

Eisenstein, Seo, Sirko & Spergel (2007)

Reconstruction

New strategy:

- Estimate displacement assuming no shell crossing
- Then estimate linear density from that displacement (pretty linear!)

14

Observed

MS, Baldauf & Zaldarriaga (2017)

MS, Baldauf & Zaldarriaga (2017)

Reconstructed, 2 steps

MS, Baldauf & Zaldarriaga (2017)

Reconstructed, 3 steps

MS, Baldauf & Zaldarriaga (2017)

Reconstructed, 4 steps

MS, Baldauf & Zaldarriaga (2017)

Reconstructed, 5 steps

MS, Baldauf & Zaldarriaga (2017)

Reconstructed, 6 steps

MS, Baldauf & Zaldarriaga (2017)

Reconstructed, 7 steps

MS, Baldauf & Zaldarriaga (2017)

Reconstructed, 8 steps

MS, Baldauf & Zaldarriaga (2017)

Correlation coefficient with initial conditions

MS, Baldauf, Zaldarriaga (2017); noise-free 4096³ DM simulations at z=0.6

Correlation coefficient with initial conditions

MS, Baldauf, Zaldarriaga (2017); noise-free 4096³ DM simulations at z=0.6

Correlation coefficient with initial conditions

MS, Baldauf, Zaldarriaga (2017); noise-free 4096³ DM simulations at z=0.6

BAO signal

Best-fit BAO scale in 10 simulations

Fractional error bar of BAO scale

Broadband power spectrum

Challenges

Add realism:

- Noise (looks ok)
- Halos & galaxies
- Redshift space distortions
- Survey mask

•

. . .

More complications when applying to real data?

Conclusions

Nonlinear physics limits science return of galaxy surveys

Reconstruction can reduce nonlinear terms

At z=0, reconstruction achieves >95% correlation with linear density at k<0.35 hMpc⁻¹

Improve BAO signal-to-noise by factor 2.7 (z=0) to 2.5 (z=0.6)

70%-30% improvement over standard BAO reconstruction

Can improve LSS survey science (mostly dark energy, maybe also early universe physics)

Happy to chat about CMB-lensing X clustering forecasts for f_{NL} , bias, σ_8 , and neutrino mass; ask me later