Reconstruction of the primordial CMB B-modes with CORE

Mathieu Remazeilles

The University of Manchester

"Exploring Cosmic Origins with CORE : B-mode component separation" Remazeilles et al., accepted by JCAP (2017) arXiv:1704.04501

> "Inflation and the cosmic microwave background" Nordita, Stockholm, 17-21 Jul 2017

Primordial B-modes with CORE

arXiv:1704.04501v2 [astro-ph.CO] 19 Jun 2017

Exploring Cosmic Origins with CORE: *B*-mode Component Separation

M. Remazeilles,¹ A. J. Banday,^{2,3} C. Baccigalupi,^{4,5} S. Basak,^{6,4} A. Bonaldi,¹ G. De Zotti,⁷ J. Delabrouille,⁸ C. Dickinson,¹ H. K. Eriksen,⁹ J. Errard,¹⁰ R. Fernandez-Cobos.¹¹ U. Fuskeland,⁹ C. Hervías-Caimapo,¹ M. López-Caniego,¹² E. Martinez-González,¹¹ M. Roman,¹³ P. Vielva,¹¹ I. Wehus,⁹ A. Achucarro,^{14,15} P. Ade,¹⁶ R. Allison,¹⁷ M. Ashdown,^{18,19} M. Ballardini,^{20,21,22} R. Banerji,⁸ N. Bartolo,^{23,24,7} J. Bartlett,⁸ D. Baumann,²⁵ M. Bersanelli,^{26,27} M. Bonato,^{28,4} J. Borrill,²⁹ F. Bouchet,³⁰ F. Boulanger,³¹ T. Brinckmann,³² M. Bucher,⁸ C. Burigana,^{21,33,22} A. Buzzelli,^{34,35,36} Z.-Y. Cai,³⁷ M. Calvo,³⁸ C.-S. Carvalho,³⁹ G. Castellano,⁴⁰ A. Challinor,²⁵ J. Chluba,¹ S. Clesse,³² I. Colantoni,⁴⁰ A. Coppolecchia,^{34,41} M. Crook,⁴² G. D'Alessandro, 34,41 P. de Bernardis, 34,41 G. de Gasperis, 34,36 J.-M. Diego,¹¹ E. Di Valentino,^{30,43} S. Feeney,^{18,44} S. Ferraro,⁴⁵ F. Finelli,^{21,22} F. Forastieri,⁴⁶ S. Galli,³⁰ R. Genova-Santos,^{47,48} M. Gerbino,^{49,50} J. González-Nuevo,⁵¹ S. Grandis,^{52,53} J. Greenslade,¹⁸ S. Hagstotz,^{52,53} S. Hanany,⁵⁴ W. Handley,^{18,19} C. Hernandez-Monteagudo,⁵⁵ M. Hills,⁴² E. Hivon,³⁰ K. Kiiveri,^{56,57} T. Kisner,²⁹ T. Kitching,⁵⁸ M. Kunz,⁵⁹ H. Kurki-Suonio,^{56,57} L. Lamagna,^{34,41} A. Lasenby,^{18,19} M. Lattanzi,⁴⁶ J. Lesgourgues,³² A. Lewis,⁶⁰ M. Liguori,^{23,24,7} V. Lindholm,^{56,57} G. Luzzi,³⁴ B. Maffei,³¹ C.J.A.P. Martins,⁶¹ S. Masi,^{34,41} D. McCarthy,⁶² J.-B. Melin,⁶³ A. Melchiorri,^{34,41} D. Molinari,^{33,46,21} A. Monfardini,³⁸ P. Natoli,^{33,46} M. Negrello,¹⁶ A. Notari,⁶⁴ A. Paiella,^{34,41} D. Paoletti,²¹ G. Patanchon,⁸ M. Piat,⁸ G. Pisano,¹⁶ L. Polastri,^{33,45} G. Polenta,^{65,66} A. Pollo,⁶⁷ V. Poulin,^{32,68} M. Quartin,^{69,70} J.-A. Rubino-Martin,^{47,48} L. Salvati,^{34,41} A. Tartari,⁸ M. Tomasi,²⁶ D. Tramonte,⁴⁷ N. Trappe,⁶² T. Trombetti,^{21,33,22} C. Tucker,¹⁶ J. Valiviita,^{56,57} R. Van de Weijgaert,^{71,72} B. van Tent,⁷³ V. Vennin,⁷⁴ N. Vittorio, 35,36 K. Young, 54 and M. Zannoni, 75,76 for the CORE collaboration.

Accepted by JCAP (2017)

Primordial CMB B-mode power spectrum

- CMB B-modes on large scales = signature of primordial gravitational waves predicted by inflation
- The amplitude (tensor-to-scalar ratio) depends on the energy scale of inflation:

 $r = 0.008 x (E_{inf} / 10^{16} \text{ GeV})^4$

The space mission concept CORE

Frequency	Beam	Q and U noise RMS
[GHz]	[arcmin]	$[\mu K.arcmin]$
60	17.87	10.6
70	15.39	10.0
80	13.52	9.6
90	12.08	7.3
100	10.92	7.1 E Ful
115	9.56	7.0
130	8.51	5.5 • 19
145	7.68	5.1 in r
160	7.01	5.2
175	6.45	5.1 pol
195	5.84	4.9
220	5.23	5.4 Hi ç
255	4.57	7.9 tor
295	3.99	10.5 - C
340	3.49(4.0)	15.7
390	3.06(4.0)	31.1
450	2.65(4.0)	64.9
520	2.29(4.0)	164.8
600	1.98(4.0)	506.7

Full-sky

19 frequency bands in range 60 – 600 GHz

- Aggregate sensitivity in polarization ~ 2 μK.arcmin
- High resolution allowing for 60% delensing

- Challinor et al 2017, for the CORE collab. –

- Delabrouille et al 2017, for the CORE collaboration -

Primordial B-mode vs foregrounds

Foreground minimum at ~70 GHz on degree scales (but scale-dependent)

Polarization <u>less complex</u> than intensity (less foreground components) but <u>more difficult</u> (requires higher precision since CMB signal is much weaker)

Foregrounds cannot be avoided by limiting the frequency range of observations to high frequencies :

 \rightarrow at ~300 GHz, Synchrotron has same amplitude and color than CMB B-modes (r=10⁻²) !

Remazeilles et al 2017, for the CORE collaboration

Sky simulation: Q Stokes polarization maps

Planck Sky Model (PSM) – *Delabrouille et al 2013*

Remazeilles et al 2017, for the CORE collaboration

Sky simulation: B-mode polarization maps

Remazeilles et al 2017, for the CORE collaboration

Component separation methods

Three independent methods, either blind or parametric:

• Commander – Eriksen et al 2004, 2008 ; Remazeilles et al 2016

Bayesian parametric fitting with MCMC Gibbs sampling

Spectral fitting in <u>pixel space</u>

• SMICA – Delabrouille et al 2003 ; Cardoso et al 2008

Spectral Matching Independent Component Analysis

Power spectrum fitting in <u>harmonic space</u>

• NILC – Delabrouille et al 2009 ; Remazeilles et al 2011 ; Basak et al 2012, 2013

Needlet Internal Linear Combination

Constrained variance minimization in wavelet space

These algorithms have been thoroughly and successfully used on Planck data! — Planck 2015 results. IX., A&A 2016

After foregrounds cleaning and 60% delensing: $r = (5.4 \pm 1.5) \times 10^{-3}$ $r = 5 \times 10^{-3}$ ~ 4\sigma detection

(with lensing)

Remazeilles et al 2017, for the CORE collaboration

Issue #1: Required precision on synchrotron?

● Is the frequency range [60 – 600 GHz] sufficient to fit for synchrotron at the required precision?

Issue #2: Averaging of dust spectral indices within pixels / beams

Dust spectral indices in the sky

Map pixelization

Effect of averaged power-law indices within pixels / beams: spurious curvature C ≠ 0 in the foreground spectral distribution! - Chluba et al 2017 – - Remazeilles et al 2017, for the CORE collaboration –

on degraded pixelization

Issue #3: What about magnetic dust?

- Diffuse magnetic dust (MD) not yet observed (we need observations!)
- Theoretically, MD is <u>highly polarized</u> ~35%
- In SMC, MD shows <u>spectral degeneracy</u> with CMB around 100 GHz !
- We may need component-separation methods that use both spectral and spatial correlations
 e.g. a la GNILC - Remazeilles et al 2011 ; Planck intermediate result XLVIII

Conclusions

After foregrounds cleaning and 60% delensing,

- CORE enables to measure the primordial CMB B-mode power spectrum at both <u>reionization</u> and <u>recombination</u> peaks without bias.
- CORE enables to measure $r = 5 \times 10^{-3}$ at 4σ significance without bias.

CORE allows to constrain the Starobinsky's R² inflation model.

General issues that future CMB B-mode experiments may be facing:

- Foreground mismodelling : omitting curvature, AME, dust components
- Lack of frequency range / sensitivity to $\beta_{_{synchrotron}}$ and $T_{_{dust}}$
- Averaging effects of spectral indices by pixelization / beam convolution
- Spectral degeneracies, e.g. CMB and magnetic dust?

Backup slides

Further improvements for $r = 10^{-3}$

 Aggregating CORE 60 – 600 GHz observations with <u>external foreground data</u> (e.g. C-BASS 5 GHz, future catalogues of polarized sources) can help in reducing the bias and uncertainty on r = 10⁻³

Remazeilles et al 2017, for the CORE collaboration

Using multipoles $2 \le \ell \le 50$

What frequencies ?

How many frequency bands ?
What frequency range ?

1. Biases may occur from a lack of frequency bands:

2. Biases may occur from a limited frequency range:

Residual foregrounds on NILC CMB B-mode

Galactic foregrounds in polarization

Component	Spectrum	Polarization fraction	References
Synchrotron	- Power-law β~-3, variations Δβ~0.2 - In theory, curvature C=-0.3 - Flattening from multiple power-laws / populations of electrons	~15-20% (up to ~50%)	Page et al (2007), Kogut et al (2007), Macellari et al (2011), Vidal et al (2015)
Thermal dust Magnetic dust?	 Modified black-body Possibly 2 components/flattening at frequencies <300 GHz Decorrelation across frequencies Similar to thermal dust, but flatter index at frequencies ~100 GHz 	~5% - 10% (up to ~20+%) Variable (up to ~35% ?)	Ponthieu et al (2005), Planck intermediate results. XIX (2015), Planck intermediate results. L (2016) Draine & Lazarian (1999), Draine & Hensley (2013), Hoang & Lazarian (2015)
Anomalous Microwave Emission (AME)	- Not yet detected (70GHz-300 GHz) - Peaked spectrum ~10-60 GHz	<~5% <~1%	Lazarian & Draine (2000), Dickinson (2011), Lopez- Caraballo et al. (2011), Macellari et al. (2011), Rubino-Martin et al. (2012), Planck 2015 results. XXV
Free-free	- Power-law β~-2.14 with positive curvature (steepening at frequencies >~100 GHz)	Intrisically zero, in practice <~1%	Rybicki & Lightman (1979), Keating et al. (1998), Macellari et al. (2011)

Extragalactic foregrounds in polarization

• Radio and IR source polarization at ~100 GHz start to dominate the primordial CMB B-mode at $r = 10^{-3}$ on angular scales $\ell \gtrsim 50$

Curto et al 2013

Future CMB satellites aim at detecting r ~ 10⁻³

Matsumura et al., 2013

COrE

COrE Collaboration et al., 2011

CORE Delabrouille et al., 2017

EPIC Bock et al., 2008

PRISM André et al., 2014

Impact on r of foreground mismodelling

Impact on r of mismodelling a two-component dust by a single MBB component:

Remazeilles et al, MNRAS 2016