Cosmology from the Stratosphere

measurements of primordial gravitational waves and gravitational lensing from near space

Nordita July 17, 2017

Jón E. Guðmundsson The **Oskar Klein Centre** for Cosmoparticle Physics, **Stockholm University**

standing in for William Jones
Princeton University

on behalf of the SPIDER Collaboration

The Gold Standard

Terabytes of raw Planck data...

...reduced to about 10k coefficients (modes)...

Planck collaboration: CMB power spectra, likelihoods, and parameters

...to which 6 parameters are fit

But there are caveats...

- Beyond LCDM the early universe
 - Pay no attention to the man behind the curtains
 - Mild indication of departure from LCDM
 - Inflation vs alternatives
- Cosmological concordance
 - The amplitude of linear fluctuations as measured at low redshift (with galaxy clusters and cosmic shear) appears significantly lower than that predicted by ΛCDM + CMB
- Degeneracies with T pose a limitation
 - The optical depth of reionization is not well constrained, and degeneracies with cosmological parameters and neutrino mass are large

SPIDER

The observational challenge

To clearly separate a primordial signal from more local sources we must

Constrain spectral energy distribution

The observational challenge

To clearly separate a primordial signal from more local sources we must

Constrain spectral energy distribution

Verify – statistical isotropy

The observational challenge

To clearly separate a primordial signal from more local sources we must

Constrain spectral energy distribution

Verify - statistical isotropy

_

Probe all angular scales

Large scale polarization

Reionization

BB

EE

Primordial gravitational waves

Lensing B-modes

December 2014 ca. Ross Island, Antarctica

Primary characteristics

Sky coverage	About 10 %	
Scan rate (az)	3.6 deg/s at peak	
Polarization modulation	Stepped cryogenic HWP	
Detector type	Antenna-coupled TES	
Multipole range	10 < \ell < 300	
Observation time	16 days at 36 km	
Limits on r [†]	0.03	

[†] Assuming no foregrounds, at 99% confidence

	Frequency [GHz]	
	95	150
Telescopes	3	3
Bandwidth [GHz]	22	36
Optical efficiency	30-45%	30-50%
Angular resolution* [arcmin]	41.1	28.2
Number of detectors [†]	675	1188
Detector loading [‡] [pW]	≤ 0.25	≤ 0.35
Instrument NET [µK·rts]	7.1	5.3

^{*}FWHM. †Current channel cuts

[‡]Including atmosphere, sleeve, window, and baffle

JPL Microdevices Lab

Long Duration Ballooning

- Circumpolar winds ~10 days/rev
- On average 20 day flights at 36 km
- Why Ballooning?
- Space like loading (NET)
- Access to larger angular scales
- Wider frequency windows
- Preparation for SPB promised land
- Why Antarctica?
- Continuous solar power
- Long flight times
- At what price?
- Narrow launch windows
- Recovery difficulties
- Mass, power, and automation

Our trajectory

Feb 5, 2015 — data recovery Fig. BAS

Nov 17, 2015 — payload recovery Fig. Ed Young

Observation regions

Polarization amplitude

SPIDER scanned approximately 10% of the sky

Fig. Sasha Rahlin

SPIDER 150 GHz band: Temperature

Comparison to *Planck* HFI: Temperature

Stacking hot spots: SPIDER

Figure removed from online version.

PRELIMINARY

PRELIMINARY

Stacking hot spots: Planck

SPIDER : full flight IQU

Figure removed from online version.

PRELIMINARY

SPIDER – Planck : full flight I**QU**

Figure removed from online version.

PRELIMINARY

We detect polarized foregrounds

Recent limits on circular polarization

- Possible astrophysical V-pol production mechanisms:
 - Stellar remnant, galaxy cluster, and primordial magnetic fields, QED extensions, and so forth...
- Non-ideal half wave-plate partially transforms circular polarization to linear

 Careful instrument characterization allows us to constrain circular polarization

SPIDER HWP

 SPIDER improves limits by orders of magnitude

SPIDER-2 development

- Receivers operating at 285 GHz are built and undergoing testing
- Project about 335 uKrts sensitivity per detector and 17 arcmin beam

SPB Ballooning

- Constant volume balloons
 - Stable altitude
- First science flight in 2016
- Potentially offers ~100 day flights

- Launch base in New-Zealand
- Intermediate latitudes
- Full diurnal cycles
- Payload mass ~1000 kg

SuperBIT Palestine 2016 Test Flight

SuperBIT Palestine 2016 Test Flight, w/ Hubble 2014

Waiting for launch

20

laurenemcnamara, thesfield, jacobgie94, ofthegood, bellarosacarla and sr.tanzim like this

2 DAYS AGO

Add a comment...

Stay tuned!