Large Tensor Non-Gaussianity from Axion-Gauge Fields Dynamics (arXiv : 1707.03023)

Aniket Agrawal, Tomohiro Fujita, Eiichiro Komatsu

$$\mathcal{L} = \mathcal{L}_{GR} + \mathcal{L}_{\phi} + \mathcal{L}_{\chi} - \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + \frac{\lambda \chi}{4f} F^a_{\mu\nu} \tilde{F}^{a\mu\nu}$$

- Produces gravitational waves, over a large range of wave numbers that are highly non-Gaussian
- Without producing significant scalar non-Gaussianity

Vacuum or Sources?

• B mode => quantum gravity. Maybe not!

Characteristic	Vacuum Fluctuation	Axion-Gauge-Fields Dynamics	Observable
Scalar NG	small	small	f _{NL}
Scale independence of P _h	All scales	Over >5 orders of k	r or P _h
Tensor NG = B_h/P_h^2	~1	>>1	B-mode bispectrum
Interpretation	QUANTUM GRAVITY	CLASSICAL GRAVITY, QUANTUM SOURCES	

MITIGATING SYSTEMATICS IN FUTURE CMB SPACE MISSIONS

Ranajoy Banerji - APC, Paris

NORDITA, Stockholm – 17/07/2017

Next generation of CMB

- Beam asymmetry and misalignment
- Pointing inaccuracies
- Gain mismatch

These cause leakage of signal from Intensity to Polarisation

Not only do we have to deal with foregrounds and the lensing signal.

Systematics will be a major contributor to the noise budget.

How do we approach the issue?

 Develop models of how the leakage projects on the timestream and polarisation maps

 $\boldsymbol{d} = \mathbf{A}\boldsymbol{S} + \mathbf{T}\boldsymbol{y} + \boldsymbol{n},$

 Estimate and correct for the leakage signal

 $\boldsymbol{S} = \left[\mathbf{A}^T \mathbf{C}_n^{-1} \mathbf{F}_{\mathrm{T}} \mathbf{A} \right]^{-1} \mathbf{A}^T \mathbf{C}_n^{-1} \mathbf{F}_{\mathrm{T}} \boldsymbol{d}$

Requires End-2-End simulations to validate the techniques.

Extreme Scenarios

The tightest possible constraints on the power spectrum due to primordial black holes

arXiv:1706.10288

Philippa Cole University of Sussex, United Kingdom Supervised by Christian Byrnes

PBHs forming in early matter phase

Investigating the bispectrum of secondary CMB sources with ACTPol What is the bispectrum?

How do we measure it?

$$\hat{f}_{j} = N_{j,i} 4\pi^{2} \int d\vec{\ell}_{1} d\vec{\ell}_{2} d\vec{\ell}_{3} \delta(\vec{\ell}_{1} + \vec{\ell}_{2} + \vec{\ell}_{3}) b_{i}^{T}(\ell_{1}, \ell_{2}, \ell_{3}) C^{-1} a(\vec{\ell}_{1}) C^{-1} a(\vec{\ell}_{2}) C^{-1} a(\vec{\ell}_{3})$$

The data sets

- Deep56 field ~600 deg²
- ACTPol 148GHz
- Planck 100GHz and 217GHz

Current Measurements

Туре	Measured f_{NL}
lensing-tSZ	0.68 ± 0.41
lensing-DSFG	0.26 ± 0.20
lensing-ISW	-6.84 ± 9.59
tSZ-tSZ-tSZ	1.31 ± 0.37
tSZ-tSZ-DSFG	1.54 ± 0.62
tSZ-DSFG-DSFG	-1.23 ± 0.86
Poisson Radio	1.00 ± 0.14
radio-DSFG-tSZ	7.72 ± 1.50
DSFG Poisson and Clustered	0.87 ± 0.57
radio-tSZ	3.07 ± 0.63
radio-DSFG	1.07 ± 1.66

Adri Duivenvoorden

PhD student Stockholm University Supervisor: Katherine Freese

SPIDER (balloon-borne CMB polarimeter) (w/ J. Gudmundsson)

• Analyzing 90 & 150 GHz data from Jan. 2015 flight (Next flight (incl. 280 GHz) Dec. 2018)

- → Simulate temperature-to-polarization leakage + E/B mixing due to asymmetric beams.
 - Jointly infer sky + beams w/ Hamiltonian Monte Carlo.

Estimate the CMB BTT-correlation (also BTE, BEE) w/ D. Meerburg

- Non-vanishing in parity-conserving universe
- Unconstrained observable:
 - Natural to cross-correlate low-resolution B-mode experiments w/ high resolution TT, TE, EE observations to obtain squeezed limit.
 - Constrains primordial scalar-tensor non-Gaussianity:

$$\langle BTT \rangle \sim \langle \gamma_{\sigma}(\mathbf{k}_1) \zeta(\mathbf{k}_2) \zeta(\mathbf{k}_3) \rangle$$

(e.g. see Lee, Baumann, Pimentel,2016 for signal due to massive spinfields during inflation)

→ Working on full-sky (KSW-like) cubic estimator

For all combinations of T, E, B

The University of Manchester

Impact of modeling foreground uncertainties on future CMB polarization satellite experiments

Carlos Hervías-Caimapo

Anna Bonaldi Michael L. Brown Jodrell Bank Centre for Astrophysics, University of Manchester

Forecast on the detectability of $r=10^{-3}$.

Main conclusion: foregrounds characterization must be very accurate to hope to measure r=10⁻³

More accurate mass estimates than quadratic estimator at low noise

known concentration and redshift