

Observational properties of very weakly coupled dark matter

Tommi Tenkanen

Queen Mary University of London

Talk based on arXiv: 1706.07442 and 1705.05567

Nordita 12/7/2017

Evidence for Dark Matter

- Great deal of evidence for the existence of dark matter: rotational velocity curves of galaxies, Bullet Cluster, acoustic peaks in the Cosmic Microwave Background (CMB) radiation spectrum...
- Still the nature of dark matter is unknown

What is Dark Matter?

- ▶ What is the correct explanation for the invisible matter content observed in the universe? Does the dark matter particle exist? Or are there many dark matter particles?
- Are they WIMP's, FIMP's, SIMP's, GIMP's, PIDM's, WISP's, ALP's, Wimpzillas, sterile neutrinos, or primordial black holes? Or should gravity be modified?
- ▶ How can we tell which model is the correct one (if any)?

Search for Dark Matter

Many on-going experiments exist

▶ But... what if dark matter interacts only feebly with the known particles, or not at all?

Model for a Decoupled Hidden Sector

▶ The scalar sector of the model is specified by the potential

$$V(\Phi, s) = \mu_{\rm h}^2 \Phi^{\dagger} \Phi + \lambda_{\rm h} (\Phi^{\dagger} \Phi)^2 + \frac{1}{2} \mu_{\rm s}^2 s^2 + \frac{\lambda_{\rm s}}{4} s^4 + \frac{\lambda_{\rm sh}}{2} \Phi^{\dagger} \Phi s^2$$

- ightharpoonup Here Φ and s are, respectively, the usual Standard Model Higgs doublet and a real singlet scalar.
- ► The coupling between Φ and s acts as a portal between the Standard Model and an unknown Hidden Sector (the so-called Higgs portal).

Other options

 \blacktriangleright We can also introduce a sterile neutrino ψ

$$\mathcal{L}_{ ext{Hidden}} = ar{\psi} (i \partial \hspace{-0.1cm}/ - m_{\psi}) \psi + i \hspace{-0.1cm} g \hspace{-0.1cm} s \hspace{-0.1cm} ar{\psi} \gamma_5 \psi$$

or promote s to be a complex doublet of a hidden SU(2) symmetry, and so on¹

- ▶ Either the scalar s, the fermion ψ , the vector A_{μ} , or many of them simultaneously, can play the role of dark matter
- ▶ How was the observed DM abundance produced?

¹See e.g. Heikinheimo, TT, Tuominen (arXiv:1704.05359)

Dark Matter production mechanisms

► There are basically two mechanisms for dark matter production: freeze-out and freeze-in

The Freeze-Out

- ▶ Dark matter is initially in thermal equilibrium with the SM particles. This requires a rather strong coupling, $\lambda_{\rm sh} \simeq 0.1$.
- May lead to a WIMP miracle: thermal relic with weak cross-section and a mass $m_s \sim \text{EW}$ scale gives the right relic abundance.
- ► Starts to be very constrained by experiments²

²For a recent review, see e.g. G. Arcadi et al. (arXiv: 1703.07364)

Frozen-in Dark Matter

- ▶ Requires $\lambda_{sh} \lesssim 10^{-7}$, or otherwise the singlet sector thermalizes with the SM (this is sometimes called a FIMP scenario)
- Cannot (usually) be tested by collider experiments but can be tested by cosmological and astrophysical observations
- ➤ These include indirect detection signals, astrophysical imprints of self-interacting or non-thermal DM, imprints on CMB etc.

Review of freeze-in scenarios

Out now! See arXiv: 1706.07442

The Dawn of FIMP Dark Matter: A Review of Models and Constraints

Nicolás Bernal, a,b Matti Heikinheimo, c Tommi Tenkanen, d Kimmo Tuominen d and Ville Vaskonen d

No particle DM?

- What if DM does not consist of new particles but primordial black holes (PBHs)?
- ▶ PBHs can easily form in the early Universe from sufficiently large density perturbations³
- ▶ Especially the LIGO observation of $\mathcal{O}(10)M_{\odot}$ BH mergers is interesting for PBHs

³See e.g. Carr et al. (arXiv: 1705.05567) and Carr, TT, Vaskonen (arXiv: 1706.03746) + refs. therein

Primordial black holes (arXiv: 1705.05567)

Primordial black holes (arXiv: 1705.05567)

Conclusions

- ► The nature of dark matter is still unknown
- Weakly coupled hidden sectors contain many interesting features, which have NOT been studied extensively
- Primordial black holes are a compelling alternative to particle DM and may constitute all DM
- Cosmological and astrophysical observations provide a valuable resource on testing different dark matter models