An optimal Bayesian solution to the CMB delensing problem

Marius Millea

with

Ethan Anderes

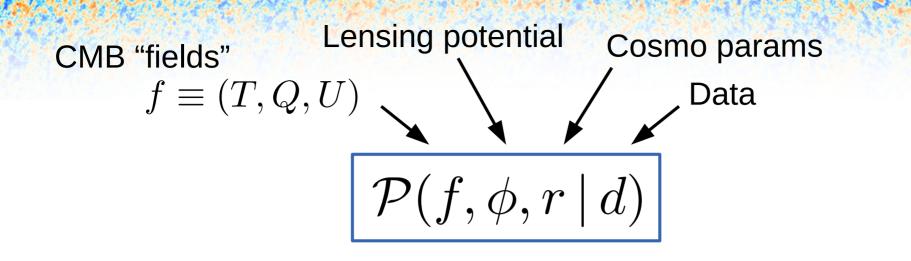


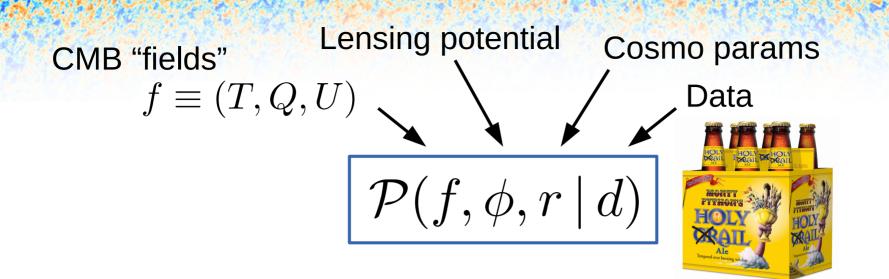
Ben Wandelt

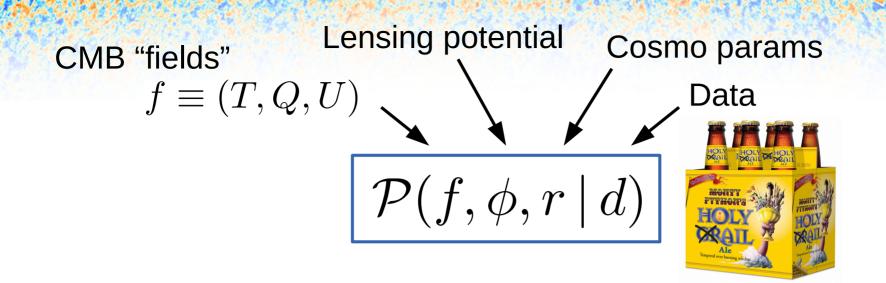
Nordita July 21, 2017

ALL MALE ALLS

How do we optimally delense future CMB data to obtain the best possible estimates of r?

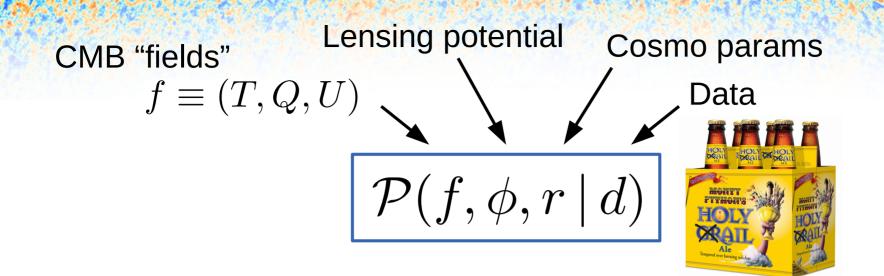






$$\hat{\phi}(\mathbf{L}) = \int d\mathbf{l_1} W(\mathbf{l_1}, \mathbf{l_2}) d(\mathbf{l_1})^* d(\mathbf{l_2})$$

All current analyses are based on this Currently near-optimal but will be suboptimal for next-gen noise levels



$$\hat{\phi}(\mathbf{L}) = \int d\mathbf{l_1} W(\mathbf{l_1}, \mathbf{l_2}) d(\mathbf{l_1})^* d(\mathbf{l_2})$$

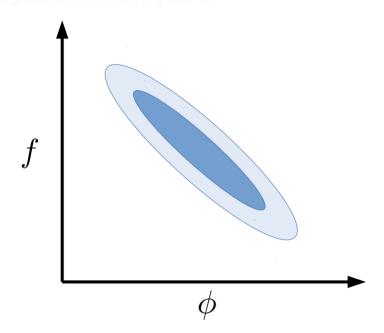
All current analyses are based on this Currently near-optimal but will be suboptimal for next-gen noise levels

$$\frac{\mathcal{P}(\phi \mid r, d)}{= \int df \mathcal{P}(f, \phi \mid r, d)}$$

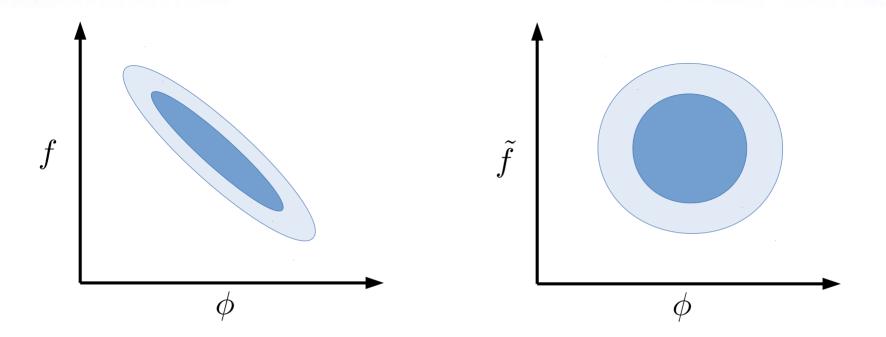
Carron & Lewis (2017), Hirata & Seljak (2003) give algorithm to *maximize* this

Why is sampling/minimizing $\mathcal{P}(f, \phi | d)$ such a hard problem?

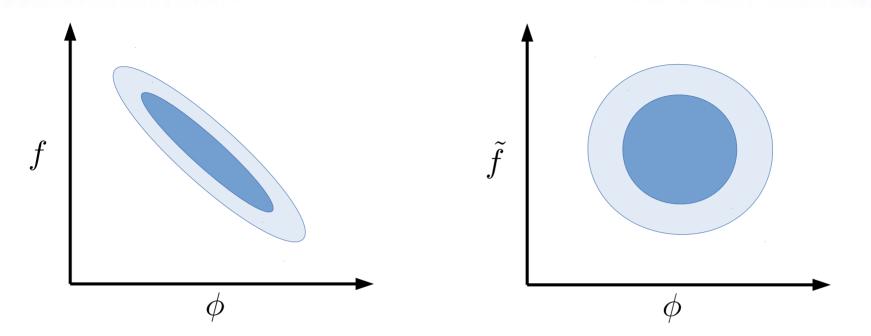
Why is sampling/minimizing $\mathcal{P}(f, \phi | d)$ such a hard problem?



Why is sampling/minimizing $\mathcal{P}(f, \phi | d)$ such a hard problem?



Why is sampling/minimizing $\mathcal{P}(f, \phi | d)$ such a hard problem?



So, as pointed out by Anderes et al. 2015, its very beneficial to reparametrize,

$$\mathcal{P}(\tilde{f}, \phi \mid d) = \mathcal{P}(f(\tilde{f}), \phi \mid d) \left| \frac{df}{d\tilde{f}} \right| \qquad \text{But now we introduce this determinant...}$$
where $\tilde{f} = \mathcal{L}(\phi)f \implies \left| \frac{df}{d\tilde{f}} \right| = 1/\left| \mathcal{L}(\phi) \right|$

- Infinite resolution: lensing is a remapping (i.e. permutation) so $\det |\mathcal{L}(\phi)| = 1$

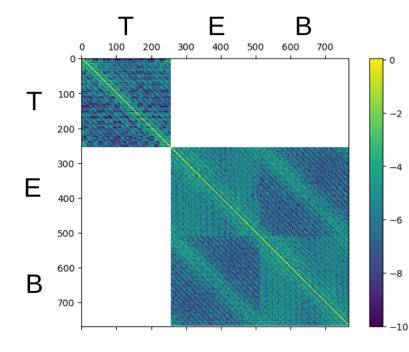
- Infinite resolution: lensing is a remapping (i.e. permutation) so $\det |\mathcal{L}(\phi)| = 1$
- This is not the case when we have *pixelization*. Consider the Taylor series approx:

- Infinite resolution: lensing is a remapping (i.e. permutation) so $\det |\mathcal{L}(\phi)| = 1$
- This is not the case when we have *pixelization*. Consider the Taylor series approx:

$$\tilde{f}(x) = f(x + \nabla \phi(x)) \approx \underbrace{\left[1 + \nabla \phi(x) \cdot \nabla + \ldots\right]}_{\mathcal{L}(\phi)} f(x)$$

- Infinite resolution: lensing is a remapping (i.e. permutation) so $\det |\mathcal{L}(\phi)| = 1$
- This is not the case when we have *pixelization*. Consider the Taylor series approx:

$$\tilde{f}(x) = f(x + \nabla \phi(x)) \approx \underbrace{\left[1 + \nabla \phi(x) \cdot \nabla + \ldots\right]}_{\mathcal{L}(\phi)} f(x)$$



Matrix representation of $\mathcal{L}(\phi)$ for 16x16 1' pixel TEB maps for 7th order Taylor series approximation

$$\log(\operatorname{abs}(\mathcal{L}(\phi)_{ij}))$$

300

400

500

600

700

Ε

В

- Infinite resolution: lensing is a remapping (i.e. permutation) so $\det |\mathcal{L}(\phi)| = 1$
- This is not the case when we have *pixelization*. Consider the Taylor series approx:

$$\log(\operatorname{abs}(\mathcal{L}(\phi)_{ij}))$$

not close to 1!

$$\det |\mathcal{L}(\phi)| = 1.9 \times 10^{-9}$$

- Infinite resolution: lensing is a remapping (i.e. permutation) so $\det |\mathcal{L}(\phi)| = 1$
- This is not the case when we have *pixelization*. Consider the Taylor series approx:

$$\tilde{f}(x) = f(x + \nabla \phi(x)) \approx \underbrace{\left[1 + \nabla \phi(x) \cdot \nabla + \ldots\right]}_{\mathcal{L}(\phi)} f(x)$$

$$\xrightarrow{\mathsf{T}}_{\mathbf{T}} \underbrace{\mathsf{E}}_{00} \underbrace{\mathsf{E}}_{00} \underbrace{\mathsf{B}}_{00} \underbrace{\mathsf{B}}_{00} \underbrace{\mathsf{B}}_{00} \underbrace{\mathsf{C}}_{00} \underbrace{\mathsf{B}}_{00} \underbrace{\mathsf{C}}_{00} \underbrace{\mathsf{B}}_{00} \underbrace{\mathsf{C}}_{00} \underbrace{\mathsf{B}}_{00} \underbrace{\mathsf{C}}_{00} \underbrace{\mathsf{C}}_{0$$

Additionally, the variation of the determinant with ϕ is significant.

Define $f_t(x) \equiv f(x + t\nabla\phi(x))$

 $f_{t=0}(x) = f(x)$ $f_{t=1}(x) = \tilde{f}(x)$

s.t.

Define
$$f_t(x) \equiv f(x + t\nabla\phi(x))$$
 s.t. $f_{t=0}(x) = f(x)$
 $f_{t=1}(x) = \tilde{f}(x)$

One can show f_t obeys an ODE "flow" equation

$$\frac{df_t(x)}{dt} = \nabla \phi(x) \cdot \left[\mathbb{1} + t\nabla \nabla \phi(x)\right]^{-1} \cdot \nabla f_t(x)$$

Define
$$f_t(x) \equiv f(x + t\nabla\phi(x))$$
 s.t. $f_{t=0}(x) = f(x)$
 $f_{t=1}(x) = \tilde{f}(x)$

One can show f_t obeys an ODE "flow" equation

$$\frac{df_t(x)}{dt} = \nabla \phi(x) \cdot \left[\mathbb{1} + t\nabla \nabla \phi(x)\right]^{-1} \cdot \nabla f_t(x)$$

• To *lense* a map, just run the ODE from t=0 to t=1

Define
$$f_t(x) \equiv f(x + t\nabla\phi(x))$$
 s.t. $f_{t=0}(x) = f(x)$
 $f_{t=1}(x) = \tilde{f}(x)$

One can show f_t obeys an ODE "flow" equation

$$\frac{df_t(x)}{dt} = \nabla \phi(x) \cdot \left[\mathbb{1} + t\nabla \nabla \phi(x)\right]^{-1} \cdot \nabla f_t(x)$$

- To *lense* a map, just run the ODE from t=0 to t=1
- To *delense* a map, just run it backwards from t=1 to t=0

Define
$$f_t(x) \equiv f(x + t\nabla\phi(x))$$
 s.t. $f_{t=0}(x) = f(x)$
 $f_{t=1}(x) = \tilde{f}(x)$

One can show f_t obeys an ODE "flow" equation

$$\frac{df_t(x)}{dt} = \nabla \phi(x) \cdot \left[\mathbb{1} + t\nabla \nabla \phi(x)\right]^{-1} \cdot \nabla f_t(x)$$

- To *lense* a map, just run the ODE from t=0 to t=1
- To *delense* a map, just run it backwards from t=1 to t=0
- This operation provably has determinant = 1

Define
$$f_t(x) \equiv f(x + t\nabla\phi(x))$$
 s.t. $f_{t=0}(x) = f(x)$
 $f_{t=1}(x) = \tilde{f}(x)$

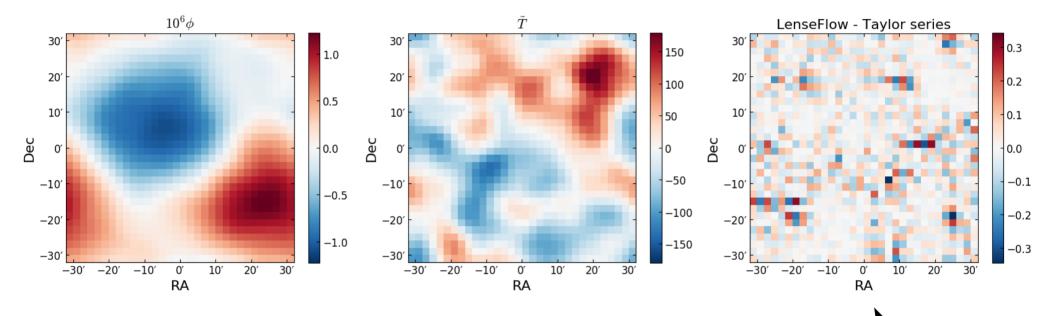
One can show f_t obeys an ODE "flow" equation

$$\frac{df_t(x)}{dt} = \nabla \phi(x) \cdot \left[\mathbb{1} + t\nabla \nabla \phi(x)\right]^{-1} \cdot \nabla f_t(x)$$

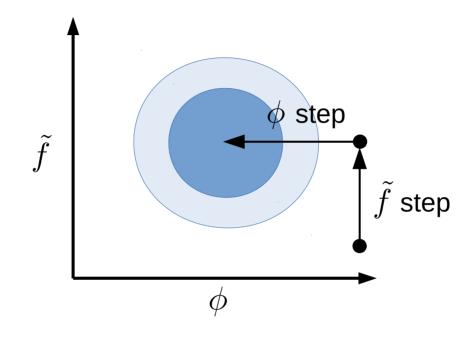
- To *lense* a map, just run the ODE from t=0 to t=1
- To delense a map, just run it backwards from t=1 to t=0
- This operation provably has determinant = 1

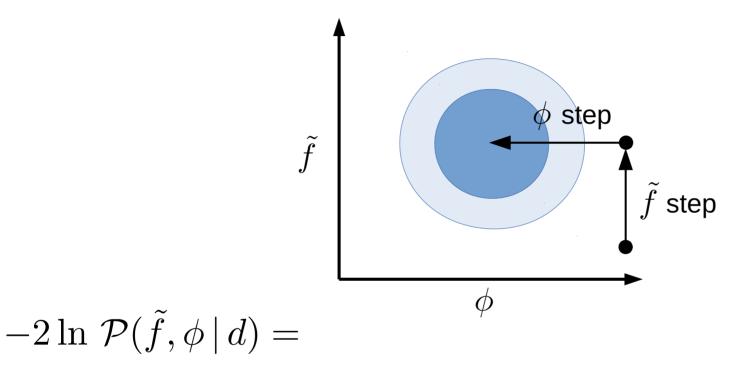
(In practice we use 4th order Runge-Kutta with 7 time-steps.)

LenseFlow vs. Taylor series

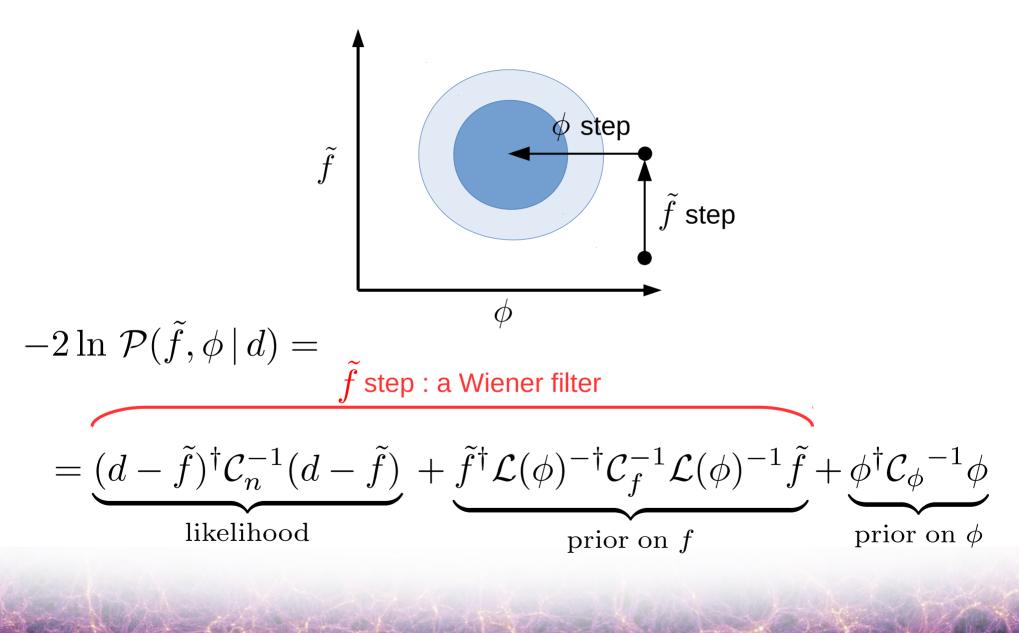


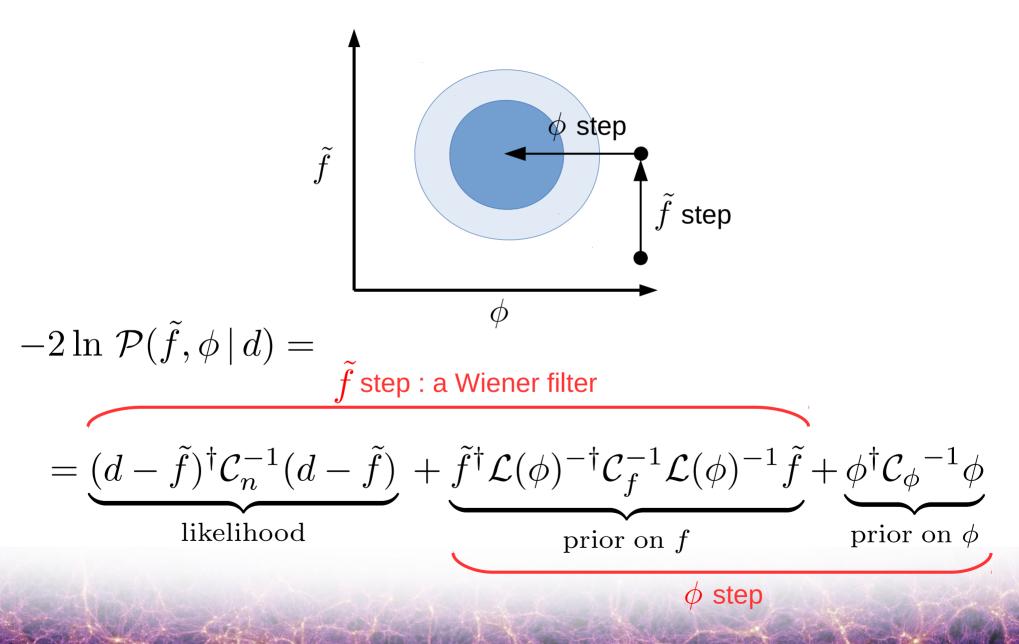
Differences between the two which lead to different determinants

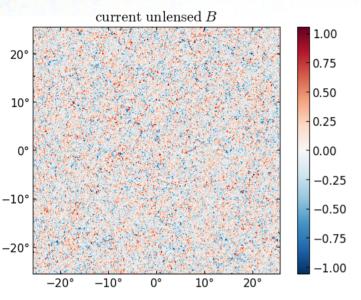


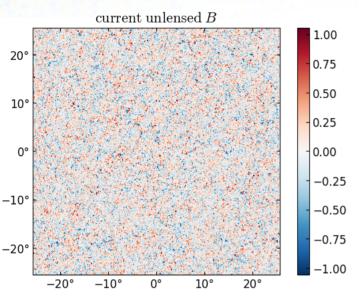


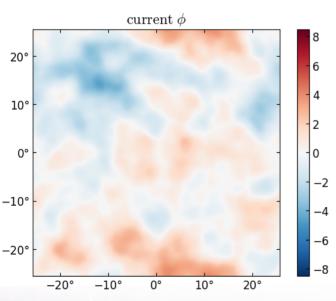
$$= \underbrace{(d - \tilde{f})^{\dagger} \mathcal{C}_{n}^{-1} (d - \tilde{f})}_{\text{likelihood}} + \underbrace{\tilde{f}^{\dagger} \mathcal{L}(\phi)^{-\dagger} \mathcal{C}_{f}^{-1} \mathcal{L}(\phi)^{-1} \tilde{f}}_{\text{prior on } f} + \underbrace{\phi^{\dagger} \mathcal{C}_{\phi}^{-1} \phi}_{\text{prior on } \phi}$$

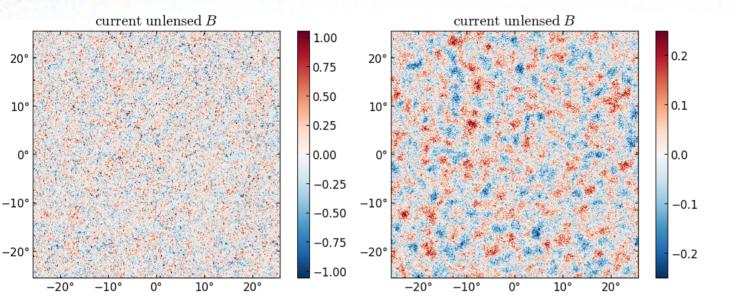


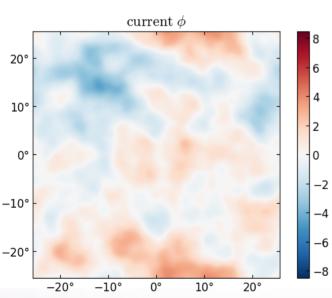


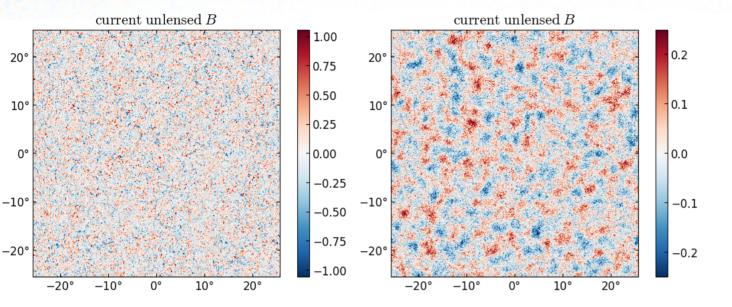


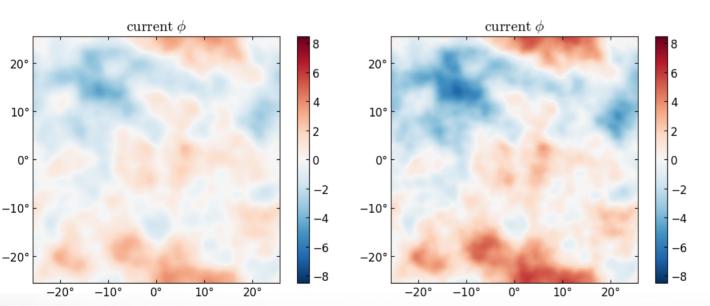






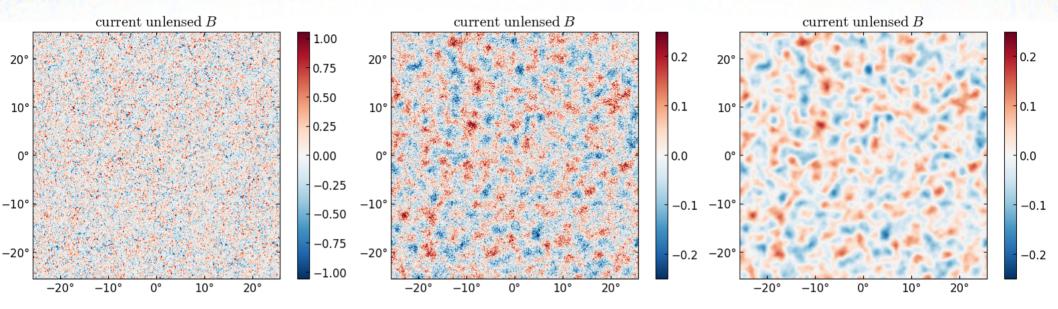


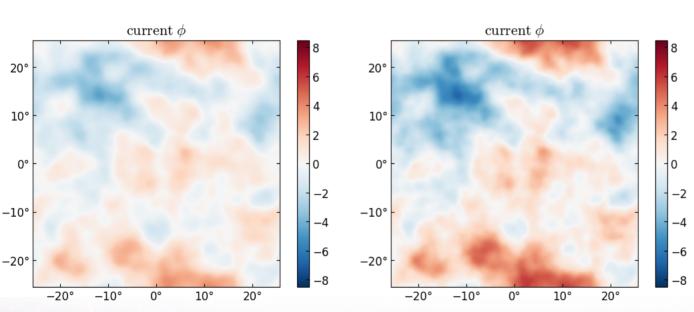




Simulated data with: 1uK-arcmin noise, r=0.05

Starting point: $\phi = 0$





Simulated data with: 1uK-arcmin noise, r=0.05

-20°

-10°

0°

10°

20°

Starting point: $\phi = 0$

-20°

-10°

0°

10°

20°

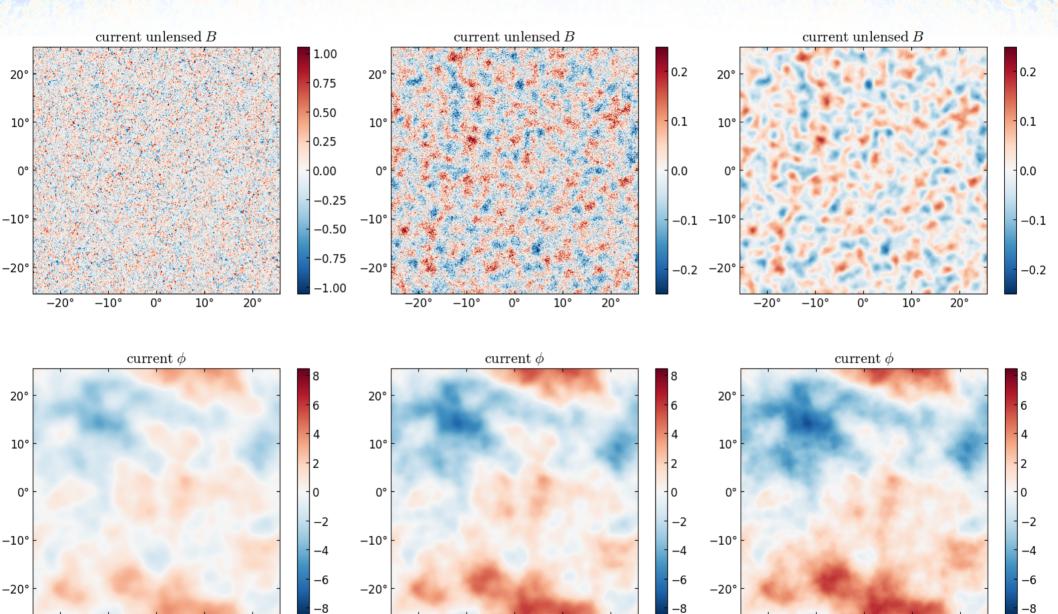
-20°

-10°

0°

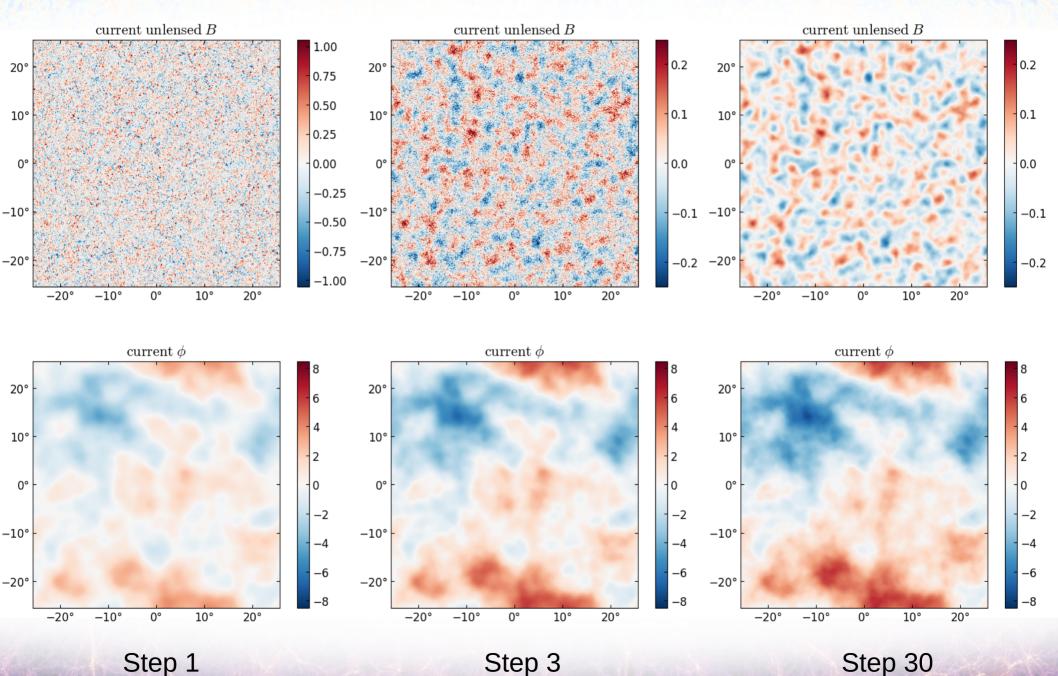
10°

20°



Simulated data with: 1uK-arcmin noise, r=0.05

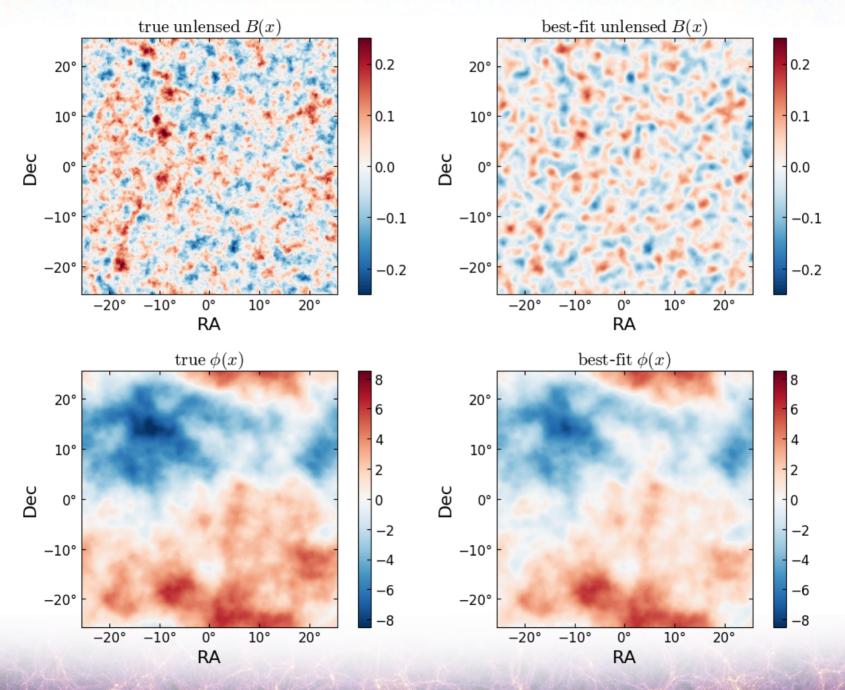
Starting point: $\phi = 0$

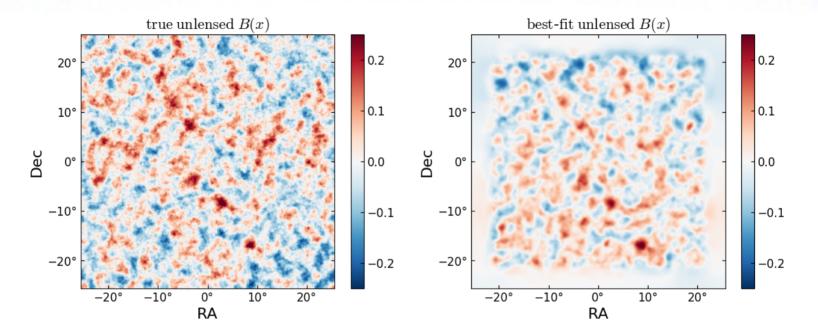


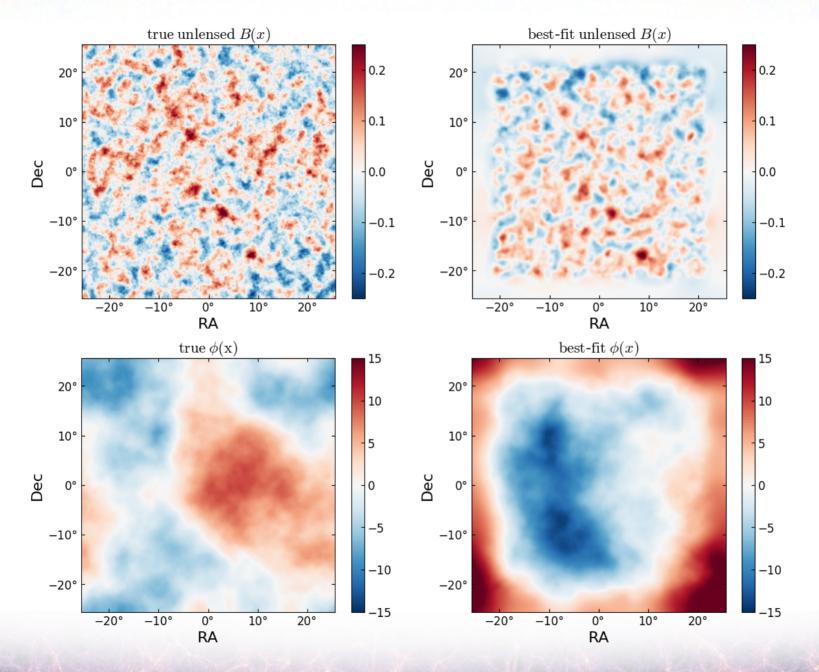
Step 1

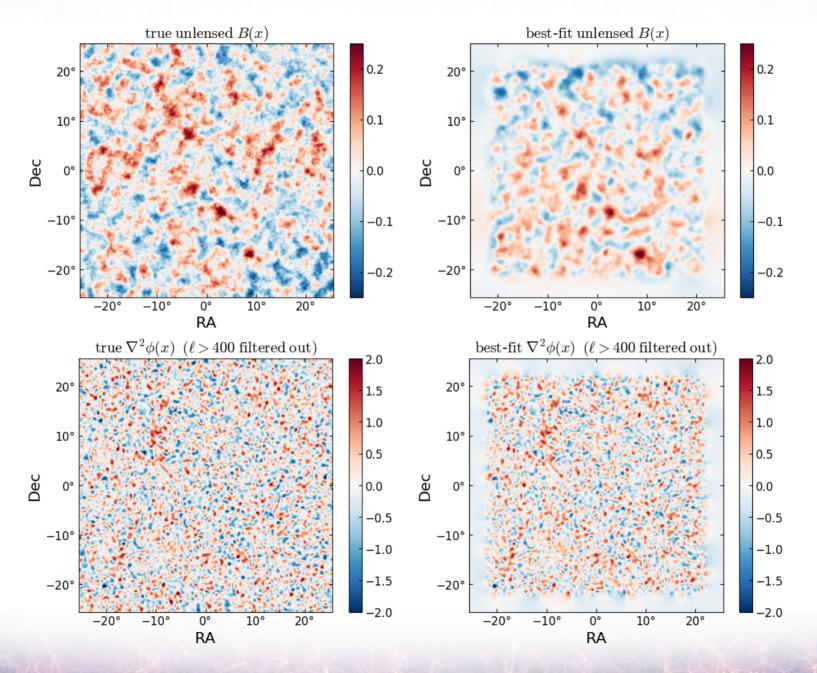
Step 3

30min on 1 single multi-core CPU for these 2500deg² 1024x1024, 3 arcmin pixels



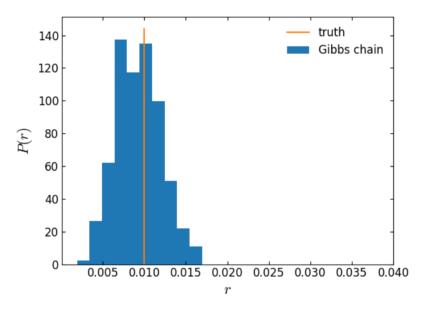




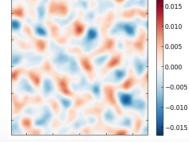


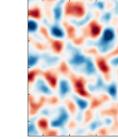
What about r?

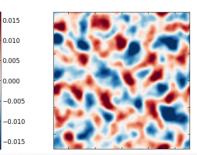
For now, a slightly simplified preview: $\mathcal{P}(f, \hat{\phi}, r \,|\, d)$



Samples of :







0.010 0.005 0.000 -0.005 -0.010

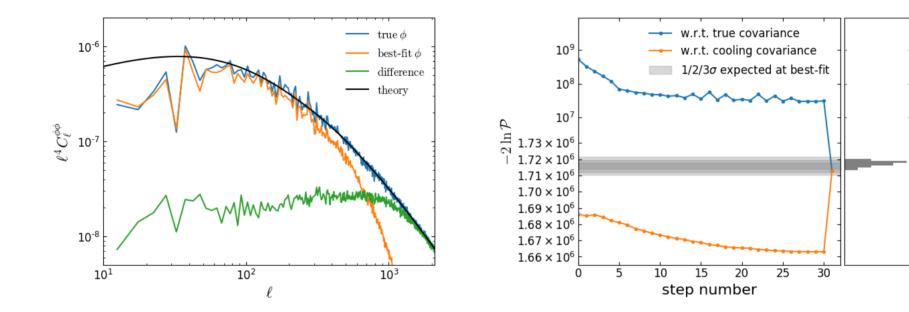
-0.015

0.015

. . .

Conclusions

- We can maximize $\mathcal{P}(f,\phi,r\,|\,d)$
- Sampling is coming up and I've given you a preview of it
- Looking forward to more improvement, application to data, and feedback from the community (see our paper soon!)



$$\frac{df_t(x)}{dt} = \underbrace{\nabla\phi(x) \cdot \left[\mathbb{1} + t\nabla\nabla\phi(x)\right]^{-1}}_{p_t} \cdot \nabla f(x)$$

$$\frac{df_t(x)}{dt} = \underbrace{\nabla\phi(x) \cdot \left[\mathbb{1} + t\nabla\nabla\phi(x)\right]^{-1}}_{p_t} \cdot \nabla f(x)$$

$$\mathcal{L}(\phi) = [\mathbb{1} + \varepsilon \ p_{t_n} \cdot \nabla] \cdots [\mathbb{1} + \varepsilon \ p_{t_0} \cdot \nabla]$$

$$\frac{df_t(x)}{dt} = \underbrace{\nabla\phi(x) \cdot \left[\mathbb{1} + t\nabla\nabla\phi(x)\right]^{-1}}_{p_t} \cdot \nabla f(x)$$

$$\mathcal{L}(\phi) = [\mathbb{1} + \varepsilon \ p_{t_n} \cdot \nabla] \cdots [\mathbb{1} + \varepsilon \ p_{t_0} \cdot \nabla]$$

logdet $[\mathbb{1} + \varepsilon \ p_t \cdot \nabla] = \varepsilon \operatorname{Tr} [p_t \cdot \nabla] + \mathcal{O}(\epsilon^2)$

$$\frac{df_t(x)}{dt} = \underbrace{\nabla\phi(x) \cdot \left[\mathbb{1} + t\nabla\nabla\phi(x)\right]^{-1}}_{p_t} \cdot \nabla f(x)$$

$$\mathcal{L}(\phi) = [\mathbb{1} + \varepsilon \ p_{t_n} \cdot \nabla] \cdots [\mathbb{1} + \varepsilon \ p_{t_0} \cdot \nabla]$$

logdet $[\mathbb{1} + \varepsilon \ p_t \cdot \nabla] = \varepsilon \operatorname{Tr} [p_t \cdot \nabla] + \mathcal{O}(\epsilon^2)$

So for LenseFlow det $|\mathcal{L}(\phi)| = 1$ so we can ignore it!

