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How do we optimally delense future CMB data 
to obtain the best possible estimates of �?
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Carron & Lewis (2017), 
Hirata & Seljak (2003) give 
algorithm to maximize this
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Why is sampling/minimizing such a hard problem? 

So, as pointed out by Anderes et al. 2015, its very beneficial to reparametrize,

But now we 
introduce this 
determinant...

where
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What is the determinant of lensing?

Matrix representation of 
for 16x16 1’ pixel TEB maps for 7th order 
Taylor series approximation
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● Infinite resolution: lensing is a remapping (i.e. permutation) so 

not close to 1!

Additionally, the variation of the determinant with � is significant.

● This is not the case when we have pixelization. Consider the Taylor series approx:
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LenseFlowA solution: 

Define s.t.

One can show       obeys an ODE “flow” equation

● To lense a map, just run the ODE from t=0 to t=1
● To delense a map, just run it backwards from t=1 to t=0
● This operation provably has determinant = 1

(In practice we use 4th order Runge-Kutta with 7 time-steps.)



  

LenseFlow vs. Taylor series

Differences between the two which 
lead to different determinants



  

Ok, let’s maximize & sample! 
The algorithm we devise is a coordinate descent
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Starting point: Simulated data with: 1uK-arcmin noise, r=0.05

Step 1 Step 3 Step 30



  

30min on 1 single multi-core CPU for these 2500deg2

1024x1024, 3 arcmin pixels
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more conjugate gradient steps => 4 hours)Masking works too
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What about �?
For now, a slightly simplified preview:

Samples of :
...



  

Conclusions

• We can maximize

• Sampling is coming up and I’ve given 
you a preview of it

• Looking forward to more improvement, 
application to data, and feedback from 
the community (see our paper soon!)
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LenseFlow determinant

So for LenseFlow so we can ignore it!



  



  



  
LenseFlow

Taylor series
Differences between two which 
lead to different determinants
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