Constraining fundamental physics and halo energetics using Sunyaev-Zel'dovich measurements

MacNamara et al. 2009

Nick Battaglia Princeton University

> Nordita July 27 2017

Collaborators

Emmanuel Schaan (Princeton) Colin Hill (Columbia) Simone Ferraro (Berkeley) Jia Liu (Princeton) Dick Bond (CITA) Christoph Pfrommer (Postdam) Jon Sievers (UKZN) David Spergel (Princeton)

🛱 Penn

Baryons

Baryons - Cosmological implications

- Pushing into the non-linear regime leads to increasing the uncertainties from baryons and potential biases in the inference of cosmological parameters

- Or provides unique constraints on the main baryonic processes the govern growth of structure on these scales (galaxy formation)

Lensing is Low: Cosmology, Galaxy Formation, or New Physics?

Alexie Leauthaud^{1,2}, Shun Saito³, Stefan Hilbert^{4,5}, Alexandre Barreira³, Surhud More², Martin White⁶, Shadab Alam^{7,8}, Peter Behroozi^{6,9}, Kevin Bundy^{1,2}, Jean Coupon¹⁰,

Cosmological Simulations

Feedback In Realistic Environments

The Horizon Simulation

ellipticals

The Eagle Simulations

EVOLUTION AND ASSEMBLY OF GALAXIES AND THEIR ENVIRONMENTS The Hubble Sequence realised in cosmological simulations

Cosmological Simulations

Feedback In Realistic Environments

Are the sub-grid physics models realistic? What is the work being done on these systems? Predictions for the energetics of (massive) halos Impact on cosmological information?

Illustris Collaboration

CMB scattering sources (secondaries): SZ effect the

Kinetic Sunyaev-Zel'dovich Effect Doppler boosting of CMB photons

Gallery of recent kSZ results

What is measured?

Measuring the τ profile

Gallery of recent tSZ results

Combining tSZ & kSZ measurements

Previously, Knox+2004 Sehgal+2005 proposed to constrain T, τ & v_{pec}

Constraint dominant physical processes in galaxy formation

Ostriker, Bode & Babul 2005Model for the ICM with a couple parameters γ - polytropic indexAssumptions α - normalization of P_{NT} $P = K\rho^{\gamma}$ ϵ_{inj} - Eff. of energy injectedSpherical Symmetry

Spherical Symmetry Hydrostatic Equilibrium (Ptot) Conditions $E_f = E_i + E_{inj} + \Delta E_P$ $P_{tot}(R_f) = P_s(R_{vir})$ **Conservation of mass**

Solve for $P_{th}(r)$ and $\rho(r)$

Spherical Symmetry & Polytropic Index How do these assumptions look in simulations?

After stacking ✓

Combining tSZ & kSZ measurements

Given $P_{th}(r)$ and $\rho(r)$ from these measurements

Can we constrain γ , α & ϵ_{inj} ?

Density

Pressure

The improvement seen here is coming from: Higher resolution, lower noise, and a lager sample

Parametric

DESI LRGS extremely high fidelity measurements Can further sub-sample into other galaxy properties

Parametric

Can ask the same questions with Quasars

Beware of fisher forecasts What are some of the systematics? galaxy - gas offset 2-halo term

What is the distribution of masses in the sample?

Cosmological Implications

BOSS CMASS galaxies + ACTPol CMB data z ~ 0.6, M ~ 2 x 10^{13} M_{sun}

Cosmological impact of feedback

Alternatively: Use small scale information to constrain feedback Foreman+2016

kSZ with LSST - projected fields approach

kSZ with LSST - projected fields approach

CMB experiment	beam FWHM	effective $noise^a$
	[arcmin]	$\Delta_T \ [\mu \text{K-arcmin}]$
Planck (2015 LGMCA map)	5	47
Advanced ACTPol	1.4	10
CMB-S4 (case 1) ^b	3	3
CMB-S4 (case 2)	1	3
CMB-S4 (case 3)	3	1
CMB-S4 (case 4)	1	1

<u>LSST</u>

26 gal/arcmin² (preliminary)

BUT CAREFUL with SYSTEMATICS (foregrounds!)

Hill, Ferraro, Battaglia et al. 2016

Ferraro, Hill, Battaglia et al. 2016

Funded, large area, multiple frequency bands Potential for kSZ cross correlations is large Further ahead there will be Simons Obs. & CMB S4

The Simons Observatory

http://simonsobservatory.org

- A five year, \$45M+ program to pursue key Cosmic Microwave Background science targets, and advance technology and infrastructure in preparation for CMB-S4.
 - Merger of the ACT and POLARBEAR/Simons Array teams.
- Tentative plans include:
 - Major site infrastructure
 - Technology development (detectors, optics, cameras)
 - Demonstration of new high throughput telescopes.
 - CMB-S4 class receivers with partially filled focal planes.
 - Data analysis

POLARBEAR/Simons Array

Summary and Outlook

SZ cross-correlations are going to be a new window into thermodynamic process within halos

High S/N kSZ on coming soon

Learn about the physical processes Constrain sub-grid energetics models

Push future cosmological probes into non-linear regime

What is measured?

Velocity field on large-scales

$$\approx -\tau_{\text{cluster}} v_r$$

$$\mathbf{v} \approx \mathbf{f}_{g} \left(aH \frac{i\mathbf{k}}{k^{2}} \right) \delta$$
$$f_{g} = \frac{d\ln\delta}{d\ln a} \approx [\Omega_{m}(z)]^{\gamma}$$

$$f_g(z,k) pprox \mu(k) \Omega_m^\gamma(z)$$

Neutrinos

Pair-wise velocity statistic & measurements

$$\left\langle \frac{\Delta T}{T}(\mathbf{x}) | v_r^{\text{rec}}(\mathbf{y}) \right\rangle = -\bar{\tau} \left\langle v_r^{\text{true}}(\mathbf{x}) | v_r^{\text{rec}}(\mathbf{y}) \right\rangle$$

Also see Planck Coll. 2016 & SPT Soergel et al. 2016

Motivation - kSZ cosmology forecasts Pair-wise velocity estimator

Huge potential to constrain fundamental physical parameters and extensions to the concordance cosmological model

Beware of fisher forecasts What are some of the systematics? galaxy - gas offset 2-halo term

For a halo of a given mass, what is the optical depth?

Dependence on τ

Uncertainties on τ will soon be a leading systematic uncertainty in the cosmological parameters obtained from kSZ measurements

How does one measure τ since it is not a "direct" observable?

τ - y relation an empirical solution?

Not surprisingly there is a relation between τ - y

At fixed gas mass temperature fluctuations are small found in simulations but this appears to independent of SG-model at the < 10% level