

Higgs inflation and gravitational degrees of freedom

Syksy Räsänen

University of Helsinki Department of Physics and The Helsinki Institute of Physics

Using what you have

$$S = \int d^4x \sqrt{-g} \left(\frac{1 + \xi \phi^2}{2} g^{\alpha\beta} R_{\alpha\beta} - \frac{1}{2} g^{\alpha\beta} \nabla_{\alpha} \phi \nabla_{\beta} \phi - V(\phi) \right)$$
$$V(\phi) = \frac{\lambda}{4} \phi^4$$

- Inflation with the Standard Model Higgs uses the only known scalar field that may be elementary. (Bezrukov and Shaposhnikov: 0710.3755)
- Non-minimal coupling $\xi\phi^2$ makes the Einstein frame potential exponentially flat.
 - The coupling constant ξ only affects the amplitude.
 - Reheating is known, so no ambiguity in N. (Figueroa et al: 1504.04600)
- The classical predictions are in excellent agreement with observations: $n_s = 0.96$, $r = 5 \times 10^{-3}$.

When the action is not enough

 Complication: classical low-energy action is not enough to specify the theory.

$$S = \int d^4x \sqrt{-g} \left(\frac{1 + \xi \phi^2}{2} g^{\alpha\beta} R_{\alpha\beta} - \frac{1}{2} g^{\alpha\beta} \nabla_{\alpha} \phi \nabla_{\beta} \phi - V(\phi) \right)$$
$$V(\phi) = \frac{\lambda}{4} \phi^4$$

- Two sources of ambiguity.
 - Quantum theory: how to calculate loop corrections?
 - General relativity: what are the gravitational degrees of freedom?

Loop-corrected potential

- Different inflationary possibilities:
 - Plateau: apparently not spoiled by loops.
 - Inflection point: can give $r \sim 0.1$.
 - False vacuum: new physics needed for graceful exit.
 - Hilltop: under investigation. (Enckell, Enqvist, SR, Tomberg)

The many faces of Einstein gravity

$$S = \int d^4x \sqrt{-g} \left(\frac{1 + \xi \phi^2}{2} g^{\alpha\beta} R_{\alpha\beta}(g, \partial g, \partial^2 g) - \frac{1}{2} g^{\alpha\beta} \nabla_{\alpha} \phi \nabla_{\beta} \phi - V(\phi) \right)$$

- Usually the gravitational degrees of freedom are taken to be the metric and its first derivative.
- In the Palatini formalism, the metric and the connection are independent degrees of freedom.
- In the Einstein-Hilbert case, metric and Palatini formalisms are equivalent.
- With a non-minimally coupled scalar field, they give different physical theories. (Bauer and Demir: 0803.2664)

The many faces of Einstein gravity

$$S = \int d^4x \sqrt{-g} \left(\frac{1 + \xi \phi^2}{2} g^{\alpha\beta} R_{\alpha\beta} (\Gamma, \partial \Gamma) - \frac{1}{2} g^{\alpha\beta} \nabla_{\alpha} \phi \nabla_{\beta} \phi - V(\phi) \right)$$

- Usually the gravitational degrees of freedom are taken to be the metric and its first derivative.
- In the Palatini formalism, the metric and the connection are independent degrees of freedom.
- In the Einstein-Hilbert case, metric and Palatini formalisms are equivalent.
- With a non-minimally coupled scalar field, they give different physical theories. (Bauer and Demir: 0803.2664)

Metric vs. Palatini

$$S = \int d^4x \sqrt{-g} \left(\frac{1 + \xi \phi^2}{2} g^{\alpha\beta} R_{\alpha\beta} (\Gamma, \partial \Gamma) - \frac{1}{2} g^{\alpha\beta} \nabla_{\alpha} \phi \nabla_{\beta} \phi - V(\phi) \right)$$

- In both cases, the Einstein frame is reached with the conformal transformation $g_{\alpha\beta}=(1+\xi\phi^2)^{-1}\tilde{g}_{\alpha\beta}$
- In the Palatini case, the conformal transformation does not affect the Ricci tensor.
- Therefore we get a different Einstein frame potential.
- On the plateau, both give $n_s = 1-2/N = 0.96$, but r is different:
 - Metric: $r = 12/N^2 = 5 \times 10^{-3}$
 - Palatini: $r = 2/(\xi N^2) = 8 \times 10^{-4}/\xi$ $(\lambda/\xi = 10^{-10})$

Inflection point inflation: metric vs. Palatini

(SR and Wahlman)

(Colour shows the running of the spectral index α_s = 0.01±0.01.)

 Metric formulation range of r is within reach of next generation experiments, Palatini not.

- Higgs inflation uses only the known particle physics and gravitational degrees of freedom.
- Metric formalism value for r will be tested by next generation CMB experiments.
- The issue of quantum corrections is not settled.
 - Consistency conditions between cosmology and colliders.
- Have to specify the gravitational degrees of freedom.
 - Formulations that are equivalent for Einstein gravity differ when there is a non-minimally coupled scalar: Palatini, teleparallel, ...
 - CMB observations can be used to determine the gravitational degrees of freedom.