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Scalar perturbations during inflation ☛ rich phenomenology:

- Features
- Isocurvature 
- Non vacuum states
- Nongaussianities
- Oscillations
- ...

Tensors typically assumed to be boring....
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H ➘ during inflation ☛ slightly red spectrum

Motivation

& important experimental programs on GWs, 
both at CMB and at smaller scaler



How to get less boring tensors?

excited modes of other fields during inflation 
(induced by the time dependent inflating background) 

additional source of GWs 

(GWs inherit properties of excited degrees of freedom)



Prototypical example 

Inflaton φ interacts with another scalar χ via 

ar
X

iv
:0

90
9.

07
51

v3
  [

as
tro

-p
h.

CO
]  

13
 D

ec
 2

00
9

Particle Production During Inflation: Observational Constraints and Signatures

Neil Barnaby1, Zhiqi Huang2

Canadian Institute for Theoretical Astrophysics,
University of Toronto, McLennan Physical Laboratories, 60 St. George Street, Toronto, Ontario, Canada M5S 3H8

1e-mail: barnaby@cita.utoronto.ca, 2e-mail: zqhuang@astro.utoronto.ca

In a variety of inflation models the motion of the inflaton may trigger the production of some
non-inflaton particles during inflation, for example via parametric resonance or a phase transition.
Particle production during inflation leads to observables in the cosmological fluctuations, such as
features in the primordial power spectrum and also nongaussianities. Here we focus on a prototype
scenario with inflaton, φ, and iso-inflaton, χ, fields interacting during inflation via the coupling
g2(φ−φ0)

2χ2. Since several previous investigations have hinted at the presence of localized “glitches”
in the observed primordial power spectrum, which are inconsistent with the simplest power-law
model, it is interesting to determine the extent to which such anomalies can be explained by this
simple and microscopically well-motivated inflation model. Our prototype scenario predicts a bump-
like feature in the primordial power spectrum, rather than an oscillatory “ringing” pattern as has
previously been assumed. We discuss the observational constraints on such features using a variety
of cosmological data sets. We find that bumps with amplitude as large as O(10%) of the usual
scale invariant fluctuations from inflation, corresponding to g2

∼ 0.01, are allowed on scales relevant
for Cosmic Microwave Background experiments. Our results imply an upper limit on the coupling
g2 (for a given φ0) which is crucial for assessing the detectability of the nongaussianity produced
by inflationary particle production. We also discuss more complicated features that result from
superposing multiple instances of particle production. Finally, we point to a number of microscopic
realizations of this scenario in string theory and supersymmetry and discuss the implications of our
constraints for the popular brane/axion monodromy inflation models.

PACS numbers: 11.25.Wx, 98.80.Cq

I. INTRODUCTION

Recently, there has been considerable interest in in-
flationary models where the motion of the inflaton trig-
gers the production of some non-inflation (iso-curvature)
particles during inflation [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17]. Examples have been stud-
ied where this particle production occurs via parametric
resonance [1, 2, 3, 4, 5, 6], as a result of a phase tran-
sition [7, 8, 9, 10, 11, 12, 13], or otherwise. In some
scenarios, backreaction effects from particle production
can slow the motion of the inflaton on a steep poten-
tial [14, 15, 16], providing a new inflationary mechanism.
Moreover, inflationary particle production arises natu-
rally in a number of realistic microscopic models from
string theory [14, 15, 16, 18, 19, 20] and also supersym-
metry (SUSY) [21].

In [5] it was shown that the production of massive iso-
curvature particles during inflation (and their subsequent
interactions with the slow roll condensate) provides a
qualitatively new mechanism for generating cosmological
perturbations. This new mechanism leads to a variety of
novel observable signatures, such as features [5] and non-
gaussianities [5, 22] in the primordial fluctuations. In this
paper we study in detail the observational constraints on
such distortions of the primordial power spectrum for a
variety of scenarios.

One motivation for this study is to determine whether
features generated by particle production during in-
flation can explain some of the anomalies in the ob-

served primordial power spectrum, P (k). A number
of different studies have hinted at the possible pres-
ence of some localized features in the power spectrum
[2, 13, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
which are not compatible with the simplest power law
P (k) ∼ kns−1 model. Although such glitches may sim-
ply be statistical anomalies, there is also the tantalizing
possibility that they represent a signature of primordial
physics beyond the simplest slow roll inflation scenario.
Forthcoming polarization data may play a crucial role in
distinguishing between these possibilities [13]. However,
in the meantime, it is interesting to determine the extent
to which such features may be explained by microscopi-
cally realistic inflation models.

We consider a very simple model where the inflaton,
φ, and iso-inflaton, χ, fields interact via the coupling

Lint = −g2

2
(φ − φ0)

2χ2 (1)

We focus on this simple prototype model in order to il-
lustrate the basic phenomenology of particle production
during inflation, however, we expect our results to gener-
alize in a straightforward way to more complicated sce-
narios. Models of the type (1) have been considered as a
probe of Planck-scale effects [1] and offer a novel exam-
ple of the non-decoupling of high energy physics during
inflation.1

1 For reasonable values of g2 the χ particles are extremely mas-

When φ crosses φ0, χ becomes temporarily 
massless and is cheap to produce

➽  ~           quanta of χ per unit volume are produced   
⇣
g �̇0

⌘3/2

that can source the tensor modes



Unfortunately...

The effect is too small:

where the enhancement factor

Height of feature 
in GW spectrum

Height of standard 
GW spectrum~ ⇥
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Nonrelativistic modes do not generate GWs

(more on this later)



Let us try something different…

If inflaton is a pseudoscalar with (broken) shift symmetry 
(well motivated by naturalness),

it interacts with (abelian) gauge field via

L⇧FF =
⇥

f
��⇥⇤⌅ F

�⇥ F ⇤⌅

(f=constant with dimensions of a mass)

LS 2011



The helicity-λ mode functions Aλ are coupled to φ(t):

for λ=-, the “mass term” is negative and large for ~1 Hubble time:

parity violating system, 
parity violating gauge modes 

Exponential amplification of left handed modes only!
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…and the energy of the electromagnetic field sources 
gravitational waves….
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AL and AR have different amplitudes

<hLhL>≠<hRhR>

Physics: in the limit of small 
transverse momentum two LH 

photons cannot create a RH graviton

ḧ� + 3
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Projector on helicity-λ
components



Parity violating gravitational waves 

PR(k) =
H2

⇥2 M2
P

✓
1 + 9� 10�7 H2

M2
P

e4⇥�

�6

◆

PL(k) =
H2

⇥2 M2
P

✓
1 + 2� 10�9 H2

M2
P

e4⇥�

�6

◆

� ⌘ ⇥̇

2 f H
& 1“standard” 

parity-invariant part parity-violation!



nongaussianities
(equilateral)

Photons source metric perturbations 
in a 2→1 process 



Photons source metric perturbations 
in a 2→1 process: 

hĥ�(k1) ĥ�(k2) ĥ�(k3) iequil = 6.1⇥ 10�10 �(k1 + k2 + k3)

k6
H6

M6
P

e6⇡⇠

⇠9

Large nongaussianities in tensors!

<hhh>~<hh>3/2

Cook, LS 13



But also…

NONGAUSSIANITIES in scalar modes

Barnaby Peloso 10
Ferreira Sloth 14

Effects above not detectable in the simplest version of this 
model without violating constraints from fNL

Strong constraint on the model ξ (<2.6)



Way out
Way out: field coupled to vectors is not the inflaton, and rolls 

only for a few efoldings (see Peloso talk)

Namba Peloso 
Shiraishi LS Unal 15

Non-boring phenomenology! (and under perturbative control!)

<EB>, <TB>≠0

<BBB>, <TBB>, etc ≠0

Bumps in B spectrum

Possible blue B spectra…

Peloso LS Unal 16



…which brings us to…



 Inflationary GWs for interferometers

Cook, LS 11

ξ increases during inflation
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GWs produced towards the end of inflation 
(i.e. at smaller scales) have larger amplitude

might be detected by interferometers
Note: constraints from fNL do not 

apply at interferometer scales!



Figure 4: Spectrum of GWs today h2⌦GW obtained from a numerical integration of the dynamical
equations of motion (for a model of quadratic inflaton potential, with inflaton - gauge field coupling f =
MPl/35), versus the local parametrization h2⌦GW / (f/f⇤)

nT , evaluated at various pivot frequencies f⇤
and with the spectral tilt nT obtained from successive approximations to the analytic expression (3.13).

from {HN , ⇠, ✏, ⌘} to {HN , ⇠, (✏� ⌘)}. This simplifies our next goal, which is to obtain a
model-independent parameter estimation based on the LISA sensitivity curves.

In Fig. 5 we plot the region in the parameter space (⇠, ✏�⌘) that LISA is capable of
probing, with the left and right panels depicting, LISA’s best (A5M5) and worst (A1M2)
configurations, respectively. In both panels we take as a pivot scale f⇤ the frequency
of the minimum of each LISA sensitivity curve h2⌦(AiMj)

GW (f), with f⇤|A5M5 ' 0.00346
Hz and f⇤|A1M2 ' 0.00390 Hz. We then compute the minimum ⇠ required for a GW
signal h2⌦GW(⇠; f⇤) to be above the minimum of the sensitivity curve, i.e. h2⌦GW(⇠ �
⇠min; f⇤|AiMj ) � h2⌦(AiMj)

GW (f⇤|AiMj ). For sufficiently small slow-roll parameters, (✏�⌘) ⌧
0.1, the answer is independent of the spectral tilt of the signal, and hence independent
of the slow-roll parameters. This explains the horizontal lines marked as ⇠min in the
plot. Of course, ⇠min depends on the inflationary Hubble scale H⇤, evaluated at the
e-fold N⇤ corresponding to the pivot scale f⇤, see (3.11). In the two panels we also
depict, as a reference, the (⇠, ✏ � ⌘) behavior for our fiducial quadratic inflation model,
evaluated numerically for 30 . MP l/f  35. The Hubble rate in chaotic inflation with
a quadratic potential at the e-fold N⇤ ⇠ 25 (corresponding to the frequencies f⇤|AiMj )
is Hc ⇠ 2.6 · 10�5MP l ' 6.4 · 1013 GeV. Taking this value as a reference, we see that
LISA cannot probe any Hubble rate smaller than ⇠ O(10�2)Hc, as a too large ⇠min is
in tension with perturbativity requirements [93]. In particular, if we take ⇠min = 5.5
as the maximum tolerated value at N⇤ ' 25, the minimum Hubble rate that can be
probed by the different LISA configurations ranges from H

(A5M5)
min ' 6.3 · 1011 GeV to

– 16 –

Example: chaotic inflation, f=MP/35

LISA, various designs

GW amplitude

Bartolo and many others 2016



Back to explosive 
production of scalars



Prototypical example 

Inflaton φ interacts with another scalar χ via 
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In a variety of inflation models the motion of the inflaton may trigger the production of some
non-inflaton particles during inflation, for example via parametric resonance or a phase transition.
Particle production during inflation leads to observables in the cosmological fluctuations, such as
features in the primordial power spectrum and also nongaussianities. Here we focus on a prototype
scenario with inflaton, φ, and iso-inflaton, χ, fields interacting during inflation via the coupling
g2(φ−φ0)

2χ2. Since several previous investigations have hinted at the presence of localized “glitches”
in the observed primordial power spectrum, which are inconsistent with the simplest power-law
model, it is interesting to determine the extent to which such anomalies can be explained by this
simple and microscopically well-motivated inflation model. Our prototype scenario predicts a bump-
like feature in the primordial power spectrum, rather than an oscillatory “ringing” pattern as has
previously been assumed. We discuss the observational constraints on such features using a variety
of cosmological data sets. We find that bumps with amplitude as large as O(10%) of the usual
scale invariant fluctuations from inflation, corresponding to g2

∼ 0.01, are allowed on scales relevant
for Cosmic Microwave Background experiments. Our results imply an upper limit on the coupling
g2 (for a given φ0) which is crucial for assessing the detectability of the nongaussianity produced
by inflationary particle production. We also discuss more complicated features that result from
superposing multiple instances of particle production. Finally, we point to a number of microscopic
realizations of this scenario in string theory and supersymmetry and discuss the implications of our
constraints for the popular brane/axion monodromy inflation models.

PACS numbers: 11.25.Wx, 98.80.Cq

I. INTRODUCTION

Recently, there has been considerable interest in in-
flationary models where the motion of the inflaton trig-
gers the production of some non-inflation (iso-curvature)
particles during inflation [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17]. Examples have been stud-
ied where this particle production occurs via parametric
resonance [1, 2, 3, 4, 5, 6], as a result of a phase tran-
sition [7, 8, 9, 10, 11, 12, 13], or otherwise. In some
scenarios, backreaction effects from particle production
can slow the motion of the inflaton on a steep poten-
tial [14, 15, 16], providing a new inflationary mechanism.
Moreover, inflationary particle production arises natu-
rally in a number of realistic microscopic models from
string theory [14, 15, 16, 18, 19, 20] and also supersym-
metry (SUSY) [21].

In [5] it was shown that the production of massive iso-
curvature particles during inflation (and their subsequent
interactions with the slow roll condensate) provides a
qualitatively new mechanism for generating cosmological
perturbations. This new mechanism leads to a variety of
novel observable signatures, such as features [5] and non-
gaussianities [5, 22] in the primordial fluctuations. In this
paper we study in detail the observational constraints on
such distortions of the primordial power spectrum for a
variety of scenarios.

One motivation for this study is to determine whether
features generated by particle production during in-
flation can explain some of the anomalies in the ob-

served primordial power spectrum, P (k). A number
of different studies have hinted at the possible pres-
ence of some localized features in the power spectrum
[2, 13, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
which are not compatible with the simplest power law
P (k) ∼ kns−1 model. Although such glitches may sim-
ply be statistical anomalies, there is also the tantalizing
possibility that they represent a signature of primordial
physics beyond the simplest slow roll inflation scenario.
Forthcoming polarization data may play a crucial role in
distinguishing between these possibilities [13]. However,
in the meantime, it is interesting to determine the extent
to which such features may be explained by microscopi-
cally realistic inflation models.

We consider a very simple model where the inflaton,
φ, and iso-inflaton, χ, fields interact via the coupling

Lint = −g2

2
(φ − φ0)

2χ2 (1)

We focus on this simple prototype model in order to il-
lustrate the basic phenomenology of particle production
during inflation, however, we expect our results to gener-
alize in a straightforward way to more complicated sce-
narios. Models of the type (1) have been considered as a
probe of Planck-scale effects [1] and offer a novel exam-
ple of the non-decoupling of high energy physics during
inflation.1

1 For reasonable values of g2 the χ particles are extremely mas-

When φ crosses φ0, χ becomes temporarily 
massless and it is “cheaply” produced

➽ about            quanta of χ per unit volume are produced   
⇣
g �̇0

⌘3/2

that can source the tensor modes



Unfortunately...

The effect is too small:

where the enhancement factor
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in support of inflation. The current upper bound on tensor modes produced during inflation
for a single field model is provided by the BICEP/Keck collaboration, that, after including
other constraints from cosmological measurements, finds the limit r < .07 [3], where r is
the tensor-to-scalar ratio defined as r ⌘ PT /P⇣ ' 4.5 ⇥ 108 PT . Future CMB experiments
aim at pushing this limit further. In particular, the next generation CMB-S4 experiment
aims at a tensor-to-scalar ratio sensitivity of r ⇠ 10�4 [4]. Direct detection, in the near
future, of the stochastic PGW background generated during inflation from amplification of
vacuum fluctuations is unlikely due to CMB constraints [3] which yield an upper bound
⌦GW h2 . 10�15 on the energy density of PGWs. Far future experiments such as BBO or
DECIGO, however, aim at sensitivies of the order ⌦GW h2 ⇠ 10�15 � 10�17 [5, 6].

There has been an increasing interest in the possibility of disentangling the value of r
from the energy scale of inflation by adding new sources of tensor modes. Such an interest
was partly motivated by an early belief [7] that models of inflation in String Theory gener-
ally take place at such low energies that r is small and unobservable. Moreover, alternative
mechanisms producing gravitational waves lead in general to a phenomenology that is much
richer than that of the “standard” PGWs generated by the amplification of vacuum fluc-
tuations, which have a featureless, slightly red power spectrum, do not violate parity, and
do not present any detectable nongaussianities. In particular, models where the inflaton is
coupled to gauge fields through a parity-violating interaction have been shown to be able to
generate a spectrum of PGWs where all those properties of vacuum tensors are violated to
some degree [8–23]. Reference [24] has considered the case where chiral fermions are sourcing
PGWs. The possibility that the PGW spectrum shows some features implies, in particular,
that those PGWs might even be directly detectable by interferometers, as first proposed
in [25] and also discussed in [9, 11, 12, 19] (the work [26] refers to much of the literature on
this topic).

Models generating additional tensor modes usually assume the existence of a sector
whose finite momentum modes are for some reason excited during inflation and act as a
classical source of tensors [25, 27]. One the simplest and most studied systems where a sector
gets excited during inflation is that of a scalar field � that interacts with the inflaton �
through the coupling [28, 29]

L�� = �g2

2
(�� �⇤)

2 �2 , (1.2)

with �⇤ a constant. If, as is the case during inflation, the spatial gradients of � are negligible,
the coupling (1.2) can be seen as an e↵ective mass m� = g |�� �⇤| for �. When m� crosses

zero (that is, when � crosses �⇤), quanta of � with momenta up to ⇠
q

g |�̇| are excited [30–

32]. Those quanta act in their turn as a source of gravitational waves, whose amplitude was
first computed in [25, 27] and was found not to be competitive with that of the PGWs gen-
erated by the amplification of vacuum fluctuations, eq. (1.1). More specifically, by choosing
the coupling g = 1 to maximize the e↵ect, reference [25] found that the tensor-to-scalar ratio
r
sourced

of the induced tensors was satisfying the condition

r
sourced

r
vacuum

. 5⇥ 10�7

⇣r
vacuum

.07

⌘

, (1.3)

which was leading to a small and unobservable r
sourced

. 10�8 even for the largest allowed
r
vacuum

' .07.

– 2 –

( )
Nonrelativistic modes do not generate GWs



Idea: symmetry restoration → produce massless scalars

where MP = (8⇡G)�1/2 is the reduced Planck mass, ⇧ lm
ij = ⇧l

i⇧
m
j � 1

2

⇧ij⇧lm is the trans-
verse, traceless projector, ⇧ij = �ij � @i@j/�, and a prime denotes derivatives with respect
to conformal time ⌧ .

As we have discussed in the Introduction, our goal is to consider a scenario where the
mass of a scalar field � goes from a nonvanishing to a vanishing value during inflation. We do
so by considering an additional field � which controls the mass of � and that behaves as an
order parameter in a phase transition describing a symmetry restoration. More specifically,
we will consider a system where a field � and the inflaton ' are subject to a potential of the
form

L'� = �1

2
@µ'@

µ'� 1

2
@µ�@

µ� � µ

2
'�2 � �

4
�4 � V (') , (2.3)

where V (') is some flat potential able to support inflation, � is a dimensionless coupling
constant, and µ is a mass dimension-1 coupling constant. The coupling between ' and �
would generally take the form µ

2

('� '⇤) �2, where '⇤ is some constant value crossed by the
expectation value of ' during inflation. However, we can always set '⇤ = 0 by an appropriate
shift of '. Reference [36] also studied a system where a field analogous to � evolved towards
a vanishing expectation value during inflation. In that paper, however, that field was not
coupled to the inflaton, so that its evolution was more slow than in the present work.

We will assume without loss of generality that '̇ > 0, so that the term proportional to
µ in the Lagrangian (2.3) behaves like a negative mass squared term for � at early times,
triggering symmetry breaking, while at later times it behaves like a positive mass term,
enforcing � = 0. More explicitly, for ' < 0 the minimum of the potential for � is �min =

±
q

�µ'
� , while for ' > 0, the minimum is �min = 0. We will assume that some earlier

inflationary dynamics has chosen one of the two minima, say �min = +
q

�µ'
� > 0 for the

early value of the zero mode of the � field.
Let us now introduce a third field �, that will be our source of gravitational waves. The

field � interacts with � through the lagrangian

L� = �1

2
@µ�@

µ�� h2

2
�2�2, (2.4)

where h is a dimensionless coupling constant. If � tracks the minimum of its potential (we
will see in Subsection 4.3 under which conditions this requirement is satisfied) then the mass
of � will be given by

m� =

(

q

�h2

� µ' for t < t⇤

0 for t > t⇤,
(2.5)

where t⇤ corresponds to the time when ' crosses 0. If the inflaton evolves under the usual
slow-roll conditions then we can model its time evolution around t⇤ as

'(t) ' '̇⇤ (t� t⇤) , (2.6)

so that the mass of � reads

m� =

(

⇤
3
2
�
p
t⇤ � t for t < t⇤

0 for t > t⇤
, ⇤3

� ⌘ h2 µ

�
'̇⇤ . (2.7)

– 4 –

inflaton φ<0 ⇒ <σ>≠0  

inflaton φ>0 ⇒ <σ>=0  

…and the field σ determines mass of auxiliary field χ…

where MP = (8⇡G)�1/2 is the reduced Planck mass, ⇧ lm
ij = ⇧l

i⇧
m
j � 1

2

⇧ij⇧lm is the trans-
verse, traceless projector, ⇧ij = �ij � @i@j/�, and a prime denotes derivatives with respect
to conformal time ⌧ .

As we have discussed in the Introduction, our goal is to consider a scenario where the
mass of a scalar field � goes from a nonvanishing to a vanishing value during inflation. We do
so by considering an additional field � which controls the mass of � and that behaves as an
order parameter in a phase transition describing a symmetry restoration. More specifically,
we will consider a system where a field � and the inflaton ' are subject to a potential of the
form

L'� = �1

2
@µ'@

µ'� 1

2
@µ�@

µ� � µ

2
'�2 � �

4
�4 � V (') , (2.3)

where V (') is some flat potential able to support inflation, � is a dimensionless coupling
constant, and µ is a mass dimension-1 coupling constant. The coupling between ' and �
would generally take the form µ

2

('� '⇤) �2, where '⇤ is some constant value crossed by the
expectation value of ' during inflation. However, we can always set '⇤ = 0 by an appropriate
shift of '. Reference [36] also studied a system where a field analogous to � evolved towards
a vanishing expectation value during inflation. In that paper, however, that field was not
coupled to the inflaton, so that its evolution was more slow than in the present work.

We will assume without loss of generality that '̇ > 0, so that the term proportional to
µ in the Lagrangian (2.3) behaves like a negative mass squared term for � at early times,
triggering symmetry breaking, while at later times it behaves like a positive mass term,
enforcing � = 0. More explicitly, for ' < 0 the minimum of the potential for � is �min =

±
q

�µ'
� , while for ' > 0, the minimum is �min = 0. We will assume that some earlier

inflationary dynamics has chosen one of the two minima, say �min = +
q

�µ'
� > 0 for the

early value of the zero mode of the � field.
Let us now introduce a third field �, that will be our source of gravitational waves. The

field � interacts with � through the lagrangian

L� = �1

2
@µ�@

µ�� h2

2
�2�2, (2.4)

where h is a dimensionless coupling constant. If � tracks the minimum of its potential (we
will see in Subsection 4.3 under which conditions this requirement is satisfied) then the mass
of � will be given by

m� =

(

q

�h2

� µ' for t < t⇤

0 for t > t⇤,
(2.5)

where t⇤ corresponds to the time when ' crosses 0. If the inflaton evolves under the usual
slow-roll conditions then we can model its time evolution around t⇤ as

'(t) ' '̇⇤ (t� t⇤) , (2.6)

so that the mass of � reads

m� =

(

⇤
3
2
�
p
t⇤ � t for t < t⇤

0 for t > t⇤
, ⇤3

� ⌘ h2 µ

�
'̇⇤ . (2.7)
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…that sources GWs…

Goolsby-Cole, LS 17
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Figure 2. Left: Numerical plot of M4
P

H4 P11
T as a function of �k ⌧⇤ for (top to bottom) ⇤� =

30H, 20H, 10H. Right: The amplitude of P11
T at its peak, �k ⌧⇤ ' 3, as a function of ⇤�/H.

The solid line corresponds to the fit P11
T (�k ⌧⇤ = 3) = 2.5⇥ 10�6 ⇤5

�

M4
P H

, the red bullets correspond to

numerical evaluation of the integral (3.33).

3.3.2 Evaluation of the tensor power spectrum

Let us now evaluate P11

T and P01

T .

• P11

T . To calculate P11

T we need the following expression, that allows us to compute the
factor proportional to the transverse-traceless projectors

⇧ ab
ij (k)⇧ cd

ij (k0) pa(kb � pb) (kc � pc) pd =
1

2

✓

p2 � (p · k)2
k2

◆

2

. (3.32)

After taking the limit ⌧ ! 0, so that we evaluate the e↵ects at the end inflation, when
the relevant scales are well outside of the horizon, we obtain

P11

T =
H4

2⇡3 k3M4

P

Z

d3p

✓

p2 � (p · k)2
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. (3.33)

We have integrated the above expression numerically and a plot for ⇤� = 10H, 20H
and 30H is shown in the left panel of Figure 2 as a function of �k ⌧⇤. In the right
panel of Figure 2 we plot the amplitude of P11

T at the peak �k ⌧⇤ ' 3 as a function of
⇤�/H. That figure shows that the amplitude of the spectrum P11

T at its peak scales,
for ⇤� � H, as

Ph(k) = 2.5⇥ 10�6

H4

M4

P

⇤5

�

H5

. (3.34)

• P01

T . The relevant correlator is computed from

2⇡2

k3
�(k

1

+ k
2

) ⇥ �

2Re
�P01

T
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= � 1
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d⌧ 0
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d3q d3q0

(2⇡)3
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0) hh(0)ij (k, ⌧)h(0)ij (k0 � q� q0, ⌧ 0)i+Gk(⌧, ⌧

0) hh(0)ij (k� q� q0, ⌧ 0)h(0)ij (k0, ⌧)i ⇤

⇥ ⇥

�0(q, ⌧ 0)�0(q0, ⌧ 0) + (q · q0)�(q, ⌧ 0)�(q0, ⌧ 0)
⇤

, (3.35)
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Figure 2. Left: Numerical plot of M4
P

H4 P11
T as a function of �k ⌧⇤ for (top to bottom) ⇤� =

30H, 20H, 10H. Right: The amplitude of P11
T at its peak, �k ⌧⇤ ' 3, as a function of ⇤�/H.

The solid line corresponds to the fit P11
T (�k ⌧⇤ = 3) = 2.5⇥ 10�6 ⇤5

�

M4
P H

, the red bullets correspond to

numerical evaluation of the integral (3.33).

3.3.2 Evaluation of the tensor power spectrum

Let us now evaluate P11

T and P01

T .

• P11

T . To calculate P11

T we need the following expression, that allows us to compute the
factor proportional to the transverse-traceless projectors

⇧ ab
ij (k)⇧ cd

ij (k0) pa(kb � pb) (kc � pc) pd =
1

2

✓

p2 � (p · k)2
k2

◆

2

. (3.32)

After taking the limit ⌧ ! 0, so that we evaluate the e↵ects at the end inflation, when
the relevant scales are well outside of the horizon, we obtain

P11

T =
H4
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. (3.33)

We have integrated the above expression numerically and a plot for ⇤� = 10H, 20H
and 30H is shown in the left panel of Figure 2 as a function of �k ⌧⇤. In the right
panel of Figure 2 we plot the amplitude of P11

T at the peak �k ⌧⇤ ' 3 as a function of
⇤�/H. That figure shows that the amplitude of the spectrum P11

T at its peak scales,
for ⇤� � H, as

Ph(k) = 2.5⇥ 10�6

H4

M4

P

⇤5

�

H5

. (3.34)

• P01

T . The relevant correlator is computed from

2⇡2

k3
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, (3.35)
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Amplitude at peak

where MP = (8⇡G)�1/2 is the reduced Planck mass, ⇧ lm
ij = ⇧l

i⇧
m
j � 1

2

⇧ij⇧lm is the trans-
verse, traceless projector, ⇧ij = �ij � @i@j/�, and a prime denotes derivatives with respect
to conformal time ⌧ .

As we have discussed in the Introduction, our goal is to consider a scenario where the
mass of a scalar field � goes from a nonvanishing to a vanishing value during inflation. We do
so by considering an additional field � which controls the mass of � and that behaves as an
order parameter in a phase transition describing a symmetry restoration. More specifically,
we will consider a system where a field � and the inflaton ' are subject to a potential of the
form

L'� = �1

2
@µ'@

µ'� 1

2
@µ�@

µ� � µ

2
'�2 � �

4
�4 � V (') , (2.3)

where V (') is some flat potential able to support inflation, � is a dimensionless coupling
constant, and µ is a mass dimension-1 coupling constant. The coupling between ' and �
would generally take the form µ

2

('� '⇤) �2, where '⇤ is some constant value crossed by the
expectation value of ' during inflation. However, we can always set '⇤ = 0 by an appropriate
shift of '. Reference [36] also studied a system where a field analogous to � evolved towards
a vanishing expectation value during inflation. In that paper, however, that field was not
coupled to the inflaton, so that its evolution was more slow than in the present work.

We will assume without loss of generality that '̇ > 0, so that the term proportional to
µ in the Lagrangian (2.3) behaves like a negative mass squared term for � at early times,
triggering symmetry breaking, while at later times it behaves like a positive mass term,
enforcing � = 0. More explicitly, for ' < 0 the minimum of the potential for � is �min =

±
q

�µ'
� , while for ' > 0, the minimum is �min = 0. We will assume that some earlier

inflationary dynamics has chosen one of the two minima, say �min = +
q

�µ'
� > 0 for the

early value of the zero mode of the � field.
Let us now introduce a third field �, that will be our source of gravitational waves. The

field � interacts with � through the lagrangian

L� = �1

2
@µ�@

µ�� h2

2
�2�2, (2.4)

where h is a dimensionless coupling constant. If � tracks the minimum of its potential (we
will see in Subsection 4.3 under which conditions this requirement is satisfied) then the mass
of � will be given by

m� =

(

q

�h2

� µ' for t < t⇤

0 for t > t⇤,
(2.5)

where t⇤ corresponds to the time when ' crosses 0. If the inflaton evolves under the usual
slow-roll conditions then we can model its time evolution around t⇤ as

'(t) ' '̇⇤ (t� t⇤) , (2.6)

so that the mass of � reads

m� =

(

⇤
3
2
�
p
t⇤ � t for t < t⇤

0 for t > t⇤
, ⇤3

� ⌘ h2 µ

�
'̇⇤ . (2.7)
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After imposing many constraints on the model…

We now note, first, that h appears only in condition (ii). In order to maximize the volume
of our parameter space while remaining within the perturbative regime we set from now
on h = 1. Moreover, we note that, once the perturbativity requirement � < 1 is imposed,
conditions (i), (iii), (iv), (v) and (vi) reduce simply to conditions (i) and (iii). Therefore we
are left just with

(i) µ � 1.7⇥ 10�4H ,

(iii)
µ2

�
⌧ 6 |⌘|H2 . (5.3)

We remember that we are seeking to maximize ⇤�/H, which is proportional to (µ/(�H))1/3.
Trading µ for ⇤� in the equations above by using

⇤3

� =
h2 µ

�

p
2✏HMP ! 3⇥ 103

µ

�
H2 , (5.4)

we obtain the following constraints

(i) �⇤3

� � .5H3 ,

(iii) �1/2 ⇤3

� ⌧ 8⇥ 103
p

|⌘|H3 , (5.5)

where ⇤� is maximized by setting

� ' 4⇥ 10�9 |⌘|�1, ⇤� ' 500 |⌘|1/3H . (5.6)

From now on we set |⌘| = .02 to fix ideas (this is the value one obtains if one assumes that
✏ gives a negligible contribution to the scalar spectral index ns = 1 + 2 ⌘ � 6 ✏ ' .96). Then,
trading µ for r

sourced

= 103 ⇤5

�/(HM4

P ) and for r
vacuum

= .8⇥ 108H2/M2

P , so that

r
sourced

r
vacuum

'
⇣r

vacuum

0.07

⌘

✓

⇤�

620H

◆

5

⌧ 5⇥ 10�4

⇣r
vacuum

0.07

⌘

. (5.7)

We conclude therefore that the sourced component, in the case of a single � species, can give
at most a O(.1%) contribution to the vacuum contribution to the primordial spectrum of
tensors, and that such a situation is obtained in the regime where the vacuum contribution
is maximal while in agreement with the existing observational constraints. Figure 6 shows
the constraint plot for the allowed value of µ and � with constant lines r using the above
relations.

We finally note that Figure 4 shows an excellent agreement between the analytical
approximation and the actual numerical solution to the background evolution equations. In
that Figure, the constraint (iii) above, which limits the amplitude of the sourced tensors, is
fully saturated. Therefore, it is possible that the constraint (iii) might even be violated by
a factor 10 or so without changing significantly the dynamics of the system. This in turn
implies that the bound (5.7) might be slightly too restrictive. We do not expect, however,
this consideration to significantly a↵ect our conclusion that the sourced component is well
subdominant with respect to the vacuum one, at least in the case of a single (or a few) �
species.
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at CMB scales (imposing amplitude of scalars unchanged)

…about 3 orders of magnitude more than original case of 
massive χ 🙂 

…but still too small (for a single χ species)😞



After imposing many constraints on the model…

…at interferometer scales (no CMB constraints):

Printed by Wolfram Mathematica Student Edition

Figure 6. Constraint plot for equation (5.5) showing the allowed parameter space for µ and �. Lines
of constant r are showed ranging from r = 10�4 � 10�10.

5.2 Direct detectability by gravitational wave interferometers

Next, we ask the question of whether it would be possible to obtain tensors with a larger
amplitude at smaller scales directly probed by gravitational interferometers such as Advanced
LIGO or LISA [26, 39]. While, on the one hand, the sensitivity of those experiments to
primordial gravitational waves is much weaker than that of CMB polarization, on the other
hand the system is not subject to the constraints imposed by CMB observations. In the case
of production of primordial gravitational waves by the amplification of vacuum fluctuations
of gauge fields, this allows for observable gravitational waves at interferometer scales [25].

In the case of the present model, however, the upper bound (5.7) is imposed by condi-
tions (i) and (iii) above, which in turn derive just from the requirement of the consistency
of the background dynamics, and do not depend strongly on the CMB constraints. The
only di↵erence is that we can disentangle ✏ and H by not imposing the COBE relation
2✏ ' 107H2/M2

P . More explicitly, by imposing h = 1, we obtain

⌦
GW

h2 ⌧ 1.2⇥ 10�11 ��5/3 µ
5/3H2/3

M
7/3
P

. (5.8)

Now, all inequalities (5.1) are best satisfied when ✏ and |⌘| are largest. When both slow roll
parameters are of the order of the unity, the most stringent among those inequalities are
again (i) and (iii). If we saturate them we obtain

⌦
GW

h2 ⌧ 1.4⇥ 10�9 (✏ |⌘|)5/3
✓

H

MP

◆

2/3

. (5.9)

Finally, we note that energy conditions require that the value of the Hubble parameter
at the smaller scales probed by CMB interferometers must be smaller than the value of
the same quantity at CMB scales, which is constrained by observations to H = 1.1 ⇥
10�4

p
r
vacuum

MP < 3⇥ 10�5MP . As a consequence we get the absolute upper bound

⌦
GW

h2 ⌧ 1.3⇥ 10�12 (✏ |⌘|)5/3 . (5.10)
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(compare to LISA sensitivity ~10-13)



Before concluding…

work in progress with Adshead, Pearce, Peloso and Mike Roberts

Large GWs from fermions?

Typically not an option, because of Pauli blocking… but…

Chiral fermions sourcing scalars, one loop two vertices diagram

(Dated: July 12, 2017)

Blablabla

PACS numbers: 98.80.Cq, 98.80.Qc

We start from the ”Y” Lagrangian

L = Ȳ
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�/f  , so that we obtain the  form of the Lagrangian
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In this form, the equation of motion for the scalar is
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which we perturb as
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So that we can expand �� = ��
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that are both solved with retarded propagators G
k

(⌧, ⌧ 0):

G
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Let us write for simplicity for the time being
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so that
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Now, the correlator h�� ��i gets various contributions at O(f�2)
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(9)

We have four terms. Let us compute them one-by-one.

(pseudoscalar inflaton φ, shift symmetric coupling to fermion Y)

Y has nonvanishing occupation number up to k~φ/f>>H.

Lots of fermions ⇒ Lots of GWs? fNL?



Conclusions
• Various mechanisms of particle creation 

during inflation ⇒ extra sources of tensors

• Disentangle amplitude of tensors r from 
energy scale of inflation

• Shift symmetric coupling to vector very 
successful with rich phenomenology

• Other options? Look more complicated…
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0.9◦; from Planck, 15.9′; from CMBPol, 9.4”; and from a
CV-limited experiment, 1.9 µarcsec, in good agreement
with previous forecasts [4, 23–25].
In Fig. 4, we plot, separately, the contributions from

only TB and only EB correlation to the sum in Eq. (9),
as a function of multipole moment l, for the cases of
SPIDER, Planck, and CMBPol, for r = 0.22. The off-
diagonal terms that contain the covariance between TB
and EB are small. The dominant contribution to the con-
straint on∆α comes from the TB correlation for WMAP-
5, and from EB for the higher-precision instruments. Dif-
ferent multipoles give the leading summands in σ−2

∆α for
different instruments, but unlike the case of GW chiral-
ity, small angular scales (l ! 100) always dominate the
sum.

FIG. 4: Diagonal (TB,TB and EB,EB) summands of Eq. (9),
for r = 0.22, are plotted against the multipole l to show that
the constraints to∆α from future CMB experiments will come
primarily from l’s of ∼100, 500, or 700 (depending on the
instrument).

IV. SEPARATING GRAVITATIONAL
CHIRALITY FROM COSMOLOGICAL

BIREFRINGENCE

In this Section, we ask how well the effects of chiral
gravity and CB can be distinguished, assuming that a

TB/EB correlation has been detected.

A. First-Order Effects on the EB and TB
Correlations

To first order in∆α and∆χ, the TB/EB power spectra
are a sum of a part CA,chi

l due to chiral GWs and a

part CA,rot
l due to CB. The combined EB and TB power

spectra can be written,

CTB,obs
l = ∆χCTB,t

l (∆χ = 1) + 2∆αCTE
l ,

CEB,obs
l = ∆χCEB,t

l (∆χ = 1) + 2∆αCEE
l ,

(10)

where the superscript t indicates the tensor-induced part
of the power spectrum, while the absence of it denotes
the full power spectrum, including the scalar part.

FIG. 5: We show TB and EB power spectra from chiral GWs
for ∆χ = 0.2 and r = 0.22 (dashed red curves) and from
cosmological birefringence for ∆α = 5′ (solid blue curves).

Fig. 5, which shows CA,chi
l and CA,rot

l , demonstrates
that the contributions from these two mechanisms are
qualitatively different. Our goal now is to quantify how
well they can be distinguished, given the finite precision
of the temperature/polarization maps.

The Fisher matrix for ∆α and ∆χ has the following

Nonvanishing <EB> and <TB> 
could also be produced by some 

late-Universe effect
(e.g. pseudoscalar quintessence)

Gluscevic and Kamionkowski 2010 
have however shown that it is 

possible to distinguish a primordial 
<EB> and <TB> 
from a late one

Note



Also note

A “natural” coupling that might lead to 
nonvanishing <EB> and <TB> is

�L =
⇤

f 0 ⇥�⇥⇤⌅ R
�⇥

µ⇧ R⇤⌅
µ⇧

however...
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X 1
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d3k
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Action for tensor modes in theory with �R R̃

A� = 1� �
k

a

⇥̇

2 f 0 M2
P

for k too large one of the modes is strongly 
coupled and/or a ghost

if we choose parameters so to stay away from strongly 
coupled regime, then effect on tensor modes is too weak
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